JPS60201858A - Adaptive control of feeding speed of machine tool - Google Patents

Adaptive control of feeding speed of machine tool

Info

Publication number
JPS60201858A
JPS60201858A JP5554784A JP5554784A JPS60201858A JP S60201858 A JPS60201858 A JP S60201858A JP 5554784 A JP5554784 A JP 5554784A JP 5554784 A JP5554784 A JP 5554784A JP S60201858 A JPS60201858 A JP S60201858A
Authority
JP
Japan
Prior art keywords
speed
machine tool
cutting
command
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5554784A
Other languages
Japanese (ja)
Other versions
JPH0375297B2 (en
Inventor
Seido Koda
幸田 盛堂
Takayuki Tateishi
孝之 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP5554784A priority Critical patent/JPS60201858A/en
Publication of JPS60201858A publication Critical patent/JPS60201858A/en
Publication of JPH0375297B2 publication Critical patent/JPH0375297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To achieve automatic adaptive control of feeding speed by detecting the fluctuation of the feeding speed of machine tool due to the cutting load through a linear position detector and feeding a correction speed command on the basis of the detected level and the setting level. CONSTITUTION:Upon increase of the cutting speed, cutting resistance is applied onto the feeding shaft system to produce the resilient displacement between a ball screw 5 and an engaging nut thus to lap the periodic speed fluctuation due to the resilient deformation of constant speed command VC over the linear motion of table 3 and to cause modulation of the pulse width of the rectangular output from a linear scale 2. Then the modulated rectangular wave is converted through F/V converter into speed fluctuation analog voltage and removed of D.C. component through DC/AC converter while rectified through full-wave rectifier as a sinusoidal wave around the point O and converted through RMS/DC converter into D.C. voltage signal. Then the effective value of the speed fluctuation is fed as a deceleration command MV into AGC circuit and compared with a setting command to perform acceleration/deceleration in accordance to the difference thus to perform adaptive control of feeding speed of table 3.

Description

【発明の詳細な説明】 本発明は工作機械の送り速度の適応側−御方式に関する
ものであり、更に詳しくはワーク切削負荷の増大もしく
は減少に応じて、自動的に送り速度を加減速する工作機
械に於ける送り速度の自動制御方法および装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive control system for the feed rate of a machine tool, and more specifically to a machine tool that automatically accelerates or decelerates the feed rate in accordance with an increase or decrease in the cutting load of a workpiece. The present invention relates to a method and device for automatically controlling the feed rate in a machine.

イ、従来技術 工作機械に於ける送り速度の自動制御方式としてこれま
で種々の適応制御方式が考案、試作されてきたが、現在
実用に供されて方法として、工作機械の主軸モーターの
負荷電流を検出し、この電流値の大小に応じて切削負荷
を推定し、これによって送り速度を制御する方法が知ら
れている。この方式はセンサとしての主軸負荷電流値の
検出が容易なため装置の全体的な構造が簡易となり、そ
の分だけ適応制御方式の信頼性を向上させることが可能
である。
B. Conventional technology Various adaptive control methods have been devised and prototyped as automatic feed rate control methods for machine tools, but the method currently in practical use is to control the load current of the main shaft motor of a machine tool. There is a known method of detecting the current value, estimating the cutting load according to the magnitude of the current value, and controlling the feed rate based on this. In this method, since the main shaft load current value can be easily detected as a sensor, the overall structure of the device is simplified, and the reliability of the adaptive control method can be improved accordingly.

しかしながら、主軸モーターの負荷電流は主軸に掛かる
切削トルクの変化を間接的に測定していることになるの
で、切削加工条件の如何によっては切削負荷を正しく推
定することが不可能な場合がある。例えばエンドミルカ
ッタ等の剛性の低い工具による切削加工に於いては、切
削トルクよりもむしろ工具に発生する曲げ抵抗の方が加
工精度に大きく影響し、また切削′トルクよりも送り方
向の曲げ抵抗による工具折損の頻度が高いことが経験的
に知られている。更に上記曲げ抵抗の測度精度は必ずし
も高くないため、送り速度の制御手段として曲げ抵抗を
利用することには可成りの不利益が認められる。即ち、
このように主軸モータの負荷電流の変化を検出し、これ
により送り速度を制御する方式に於いては、曲げ抵抗の
推定精度が極めて低いため、切削負荷の増減による工具
系の撓み量の変化をワークの送り速度の制御因子として
利用することには、ワーク加工精度の維持上看過ごすこ
とのできない難点が見受けられた。
However, since the load current of the spindle motor indirectly measures the change in the cutting torque applied to the spindle, it may not be possible to accurately estimate the cutting load depending on the cutting conditions. For example, when cutting with a tool with low rigidity such as an end mill cutter, the bending resistance generated in the tool has a greater influence on the machining accuracy than the cutting torque, and the bending resistance in the feeding direction has a greater influence than the cutting torque. It is known from experience that the frequency of tool breakage is high. Furthermore, since the measurement accuracy of the bending resistance is not necessarily high, there are considerable disadvantages in using the bending resistance as a means for controlling the feed rate. That is,
In this method of detecting changes in the load current of the spindle motor and controlling the feed rate using this method, the accuracy of estimating bending resistance is extremely low, so changes in the amount of deflection of the tool system due to increases and decreases in cutting load are difficult to detect. When using it as a control factor for the feed rate of the workpiece, there was a problem that could not be overlooked in terms of maintaining workpiece machining accuracy.

口9発明の目的 本発明の主要な目的は、在来の送り速度の適応制御方式
に於いて不可避であつた上記の如き制約を解消し得る工
作機械に於ける送り速度の適応制御方法および装置を提
供することにある。
9. Object of the Invention The main object of the present invention is to provide a method and apparatus for adaptive feed rate control in a machine tool that can eliminate the above-mentioned limitations that are inevitable in conventional feed rate adaptive control methods. Our goal is to provide the following.

本発明の他の主要な目的は、切削負荷による工作機械の
送り系の速度変動を直線位置検出器によって検出し、こ
の検出値から変換された実効値を利用して前記送り系の
送り速度を自動制御し得るようにした適応制御方式を提
供することにある。
Another main object of the present invention is to detect speed fluctuations in the feed system of a machine tool due to cutting load using a linear position detector, and use an effective value converted from this detected value to determine the feed speed of the feed system. The object of the present invention is to provide an adaptive control method that enables automatic control.

ハ0発明の構成 本発明は、切削負荷による工作機械の送り系の速度変動
を直線位置検出器によって検出し、この検出値から変換
された速度変動の実効値を予め設定されている速度指令
と比較演算し、この比較演算結果を修正速度指令として
前記送り系の送り速度を適応制御する工作機械に於ける
送り速度の適応制御方法を第一の要旨とするものである
C0 Structure of the Invention The present invention detects speed fluctuations in the feed system of a machine tool due to cutting load using a linear position detector, and converts the effective value of the speed fluctuations converted from this detected value into a preset speed command. The first gist of the present invention is a method for adaptively controlling the feed speed in a machine tool, which performs a comparison calculation and uses the result of the comparison calculation as a modified speed command to adaptively control the feed speed of the feed system.

本発明はまた、工作機械のテーブル駆動装置と、該テー
ブルに配設された直線位置検出器と、該検出器による検
出値を実効値に変換して自動ゲイン調整回路に伝達する
ため前記検出器と自動ゲイン調整回路の間に順次配設さ
れた周波数/電圧変換器、直流/交流変換器、全波整流
回路、ならびに実効値/直流電圧変換器からなる工作機
械に於ける送り速度の適応制御装置を第二の要旨とする
ものである。
The present invention also provides a table driving device for a machine tool, a linear position detector disposed on the table, and a linear position detector for converting a detected value by the detector into an effective value and transmitting it to an automatic gain adjustment circuit. Adaptive control of feed rate in machine tools consisting of a frequency/voltage converter, a DC/AC converter, a full-wave rectifier circuit, and an effective value/DC voltage converter, which are arranged in sequence between the automatic gain adjustment circuit and the automatic gain adjustment circuit. The second gist is the device.

二、実施例 第1図は本発明に係る適応制御装置の構成を例示する説
明図である。工作機械には切削工具に回転駆動力を伝達
するための主軸と、ワー、りに送り運動を伝達するため
の送り軸があり、第1図に示す実施図に於いては立型フ
ライス盤を想定して、3軸の送り軸のうちの1軸(X軸
)のみを図示している。
2. Embodiment FIG. 1 is an explanatory diagram illustrating the configuration of an adaptive control device according to the present invention. A machine tool has a main shaft for transmitting rotational driving force to the cutting tool, and a feed shaft for transmitting feed motion to the cutting tool.In the implementation diagram shown in Figure 1, a vertical milling machine is assumed. Only one of the three feed axes (X-axis) is illustrated.

図示しない工作機械制御装置から速度指令VCが入力さ
れると、この指令に従って送りサーボモータ(4)が回
転し、該送りサーボモータに連結されたボール・スクリ
ュー(5)の回転運動によってテーブル(3)がX軸方
向に直線運動を行い、該テーブルに固着されたワークは
所定の方向に移動し位置決めが行われる。この時のテー
ブル(3)の位置は、テーブルに固定されたリニア・ス
ケール(2)の目盛を直線位置検出器(リニア・スケー
ル検出器)(1)で光学的、検出、−62と、よ7、読
、取、i6゜リニア・スケールからの検出信号は、通常
第1図(A)に示すように矩形波として検出されるが、
このパルス数はリニア・スケール(2)の分解能(通常
1μm1もしくは10μm)に相当し7、テーブルの移
動速度の増大と共に矩形波出力の周波数が高くなる。
When a speed command VC is input from a machine tool control device (not shown), the feed servo motor (4) rotates according to this command, and the table (3) is rotated by the rotational movement of the ball screw (5) connected to the feed servo motor. ) makes a linear movement in the X-axis direction, and the work fixed to the table moves in a predetermined direction and is positioned. At this time, the position of the table (3) is determined by optically detecting the scale of the linear scale (2) fixed to the table with a linear position detector (linear scale detector) (1), such as -62. 7. Read, take, i6 The detection signal from the linear scale is usually detected as a rectangular wave as shown in Figure 1 (A),
This number of pulses corresponds to the resolution of the linear scale (2) (usually 1 .mu.m or 10 .mu.m)7, and as the table movement speed increases, the frequency of the rectangular wave output increases.

切削負荷がない場合もしくは小さい場合には、テーブル
(3)は速度指令VCに対応した速度で移動し、リニア
・スケール(2)からはこの速度に対応した一定周波数
の矩形波が出力される。
When there is no cutting load or when the cutting load is small, the table (3) moves at a speed corresponding to the speed command VC, and the linear scale (2) outputs a rectangular wave with a constant frequency corresponding to this speed.

切削負荷が増大するにつれて、切削抵抗による負荷が送
り軸系にかかり、送り系で秦も剛性の低いボール・スク
リュー(5)と該ボール・スクリューと係合するナツト
の間に弾性変位を生しる。この結果、テーブルの直線運
動には一定の速度指令VCに弾性変位による周期的速度
変動が重畳されることになり、リニア・スケール(2)
の矩形波出力にパルス幅の変調を生じる。
As the cutting load increases, the load due to the cutting resistance is applied to the feed shaft system, and in the feed system, elastic displacement occurs between the ball screw (5), which has low rigidity, and the nut that engages with the ball screw. Ru. As a result, in the linear motion of the table, periodic speed fluctuations due to elastic displacement are superimposed on a constant speed command VC, and the linear scale (2)
This produces a pulse width modulation in the square wave output.

パルス幅を変調された矩形波は、周波数/電圧(F/V
)変換器により第1図(B)に見られるような速度変動
アナログ電圧に変換される。更に直流/交流電圧(DC
/AC)変換器により第1図(C)に示すように直流分
(オフセット)を除去され、0を中心とする正弦波とし
て全波整流(絶対値)回路に伝達され第1図(D)に示
すように全波整流され、この後、実効値/直流電圧(R
MS/DC)変換器により第1図(E)に見られるよう
な直流電圧信号に変換される。
The pulse width modulated square wave is frequency/voltage (F/V
) converter into a speed varying analog voltage as seen in FIG. 1(B). Furthermore, DC/AC voltage (DC
/AC) converter removes the DC component (offset) as shown in Figure 1 (C), and transmits it to the full-wave rectifier (absolute value) circuit as a sine wave centered at 0, as shown in Figure 1 (D). Full-wave rectification is performed as shown in , and then the effective value/DC voltage (R
MS/DC) converter converts the signal into a DC voltage signal as shown in FIG. 1(E).

速度変動の実効値(二条平均平方根値:■S値)は振幅
の2乗に相当する減速指令MYとして自動ゲイン調整(
AGC)回路に入力される。ここで、減速指令MYは予
め設定されている速度指令VCと比較演算され、速度指
令VCと減速指令MVとの差、即ち減速指令MVの大/
J%に応じた速度指令の加減速が行われる。斯くして算
出された修正速度指令MVCは送りサーボモータ(4)
へ転送されテーブル(3)の送り速度を適応制御する。
The effective value of speed fluctuation (two-story root mean square value: ■S value) is determined by automatic gain adjustment (
AGC) circuit. Here, the deceleration command MY is compared with a preset speed command VC, and the difference between the speed command VC and the deceleration command MV is calculated, i.e., the difference between the speed command VC and the deceleration command MV is calculated.
The speed command is accelerated or decelerated according to J%. The corrected speed command MVC calculated in this way is the feed servo motor (4)
The feed speed of table (3) is adaptively controlled.

無負荷の場合もしくは負荷が小さい場合には、テーブル
(3)の送り速度の変動はなく、従−) でM V −
0となり、テーブル(3)はVCの速度で移動する。
When there is no load or when the load is small, there is no change in the feed rate of table (3), and M V -
0, and table (3) moves at the speed of VC.

AGC回路は一種の関数発生器で、第2図に見られる如
く入力に対して直線的に減速をかける直線減速、もしく
は入力に対して指数関数的に減速をかける指数減速等の
採用が可能である。
The AGC circuit is a type of function generator, and as shown in Figure 2, it is possible to adopt linear deceleration that decelerates the input linearly, or exponential deceleration that decelerates the input exponentially. be.

実用上、修正速度指令MVCもしくは減速指令MVがあ
る制限値(例えば第2図のVCo、MVo)を越えた場
合には、何らかの異常が発生したものと見做し、工作機
械を停止するための措置を講じる必要がある。
In practice, if the modified speed command MVC or deceleration command MV exceeds a certain limit value (for example, VCo, MVo in Figure 2), it is assumed that some abnormality has occurred, and the machine tool is stopped. Action needs to be taken.

第2図に於いては速度変動に応じてアナログ的に減速す
る過程が示されているが、ディジタル的(段階的)に速
度を修正することも可能である。
Although FIG. 2 shows the process of analog deceleration in response to speed fluctuations, it is also possible to correct the speed digitally (stepwise).

切削時の変動波形例を第3図に示す。速度指令VC−4
00■/sinのステップ入力を与え、空切削の後、被
加工物と接触(図中マ印)して定常切削に至る過程を示
したものである。上から工作機械主軸頭の振動加速度(
Acc、) 、リニア・スケール(2)からの矩形波出
力をF/V変換器で変換した後の速度変動(F/V) 
、そして送りサーボモータ(4)に直結したタコ・ジェ
ネレータ(図示せず)からの回転速度変動(T O)を
示したものである。この結果、リニア・スケールからの
出力(F/V)及び加速度波形にはエンドミル工具の切
刃の断続切削周波数に対応した10b前後の周期的変動
が顕著に現れている。
FIG. 3 shows an example of fluctuating waveforms during cutting. Speed command VC-4
This figure shows a process in which a step input of 00 .mu./sin is applied, and after idle cutting, contact with the workpiece (marked with a circle in the figure) leads to steady cutting. Vibration acceleration of machine tool spindle head from above (
Acc, ), speed fluctuation (F/V) after converting the square wave output from the linear scale (2) with the F/V converter
, and shows the rotational speed fluctuation (T O) from a tacho generator (not shown) directly connected to the feed servo motor (4). As a result, periodic fluctuations around 10b, which correspond to the intermittent cutting frequency of the cutting edge of the end mill tool, appear prominently in the output (F/V) and acceleration waveform from the linear scale.

第3図から、送りサーボモータ(4)のIIk速度変動
(T G)には遅れ(D>が生じ、リニア・スケール(
2)の出力よりも感度が低くなっていることがわかる。
From Fig. 3, there is a delay (D>) in the IIk speed fluctuation (TG) of the feed servo motor (4), and the linear scale (
It can be seen that the sensitivity is lower than the output of 2).

このことは、ボール・スクリュー(5)と該ボール・ス
クリューと係合するナツトの間の弾性変位が送り系の速
度変動に大きな影響を与えることを示している。
This shows that the elastic displacement between the ball screw (5) and the nut that engages with the ball screw has a significant influence on the speed fluctuations of the feed system.

また第3図から工具とワークとの接触時期の検出が可能
であり、空切削速度を通常の送り速度より高めに設定し
ておき、工具とワークとの接触が検出された後に所定の
送り速度に減速する方法が採用可能となる。この結果、
加工時間の短縮が図られ、能率向上に寄与することがで
きる。
Also, from Fig. 3, it is possible to detect the timing of contact between the tool and the workpiece, and by setting the idle cutting speed higher than the normal feedrate, the predetermined feedrate can be set after contact between the tool and the workpiece is detected. It becomes possible to adopt a method of decelerating the speed. As a result,
Processing time can be shortened, contributing to improved efficiency.

以上の説明から明らかなように、工作機械の各送り軸に
本発明に係る直線位置検出装置を付設することにより、
二輪同時もしくは三軸同時切削に於いても送り速度を適
応制御することが可能となる。また、本発明の応用例と
して、第3図に例示する如く、送りサーボモータ(4)
に図示しないタコ・ジェネレータを直結し、サーボモー
タの回転速度の変動を検出することによって送り速度を
適応制御することも可能である。
As is clear from the above explanation, by attaching the linear position detection device according to the present invention to each feed axis of a machine tool,
It is possible to adaptively control the feed rate even when cutting two wheels or three axes simultaneously. Further, as an application example of the present invention, as illustrated in FIG. 3, a feed servo motor (4)
It is also possible to adaptively control the feed rate by directly connecting a tacho generator (not shown) to the servo motor and detecting fluctuations in the rotation speed of the servo motor.

ホ6発明の効果 以上の説明に明らかな如く、本発明は工作機械構成要素
の一つであるリニア・スケールの矩形波出力を利用して
送り系の送り速度を自動制御し得るように構成されてい
るため、その全体的な構成が極めて簡易であり、且つ送
り速度品変動の検出精度も高い。本発明によれば在来の
主軸駆動電流の変化によっては検出不能であった切削抵
抗の送り方向分力の変動を正確に測定することが可能で
ある。更に、応用例として工具摩耗によるスラスト力の
変化が著しいドリル加工に於いて、主軸頭の送り方向の
速度変動を発明方法により演算処理することにより、ド
リルの摩耗量を容易に検出することができる。
6. Effects of the Invention As is clear from the above explanation, the present invention is configured to automatically control the feed speed of the feed system using the rectangular wave output of the linear scale, which is one of the components of the machine tool. Therefore, the overall configuration is extremely simple, and the detection accuracy of feed rate fluctuations is also high. According to the present invention, it is possible to accurately measure fluctuations in the feed direction component of the cutting resistance, which could not be detected by conventional changes in the spindle drive current. Furthermore, as an application example, in drilling where the thrust force changes significantly due to tool wear, the amount of wear on the drill can be easily detected by calculating the speed fluctuation in the feed direction of the spindle head using the invented method. .

本発明はまた、工具とワークとの接触開始時期の検出が
可能であるから、これにより空切削時の送り速度を上げ
ることにより加工時間の短縮、加工能率の向上を図るこ
とができる。
The present invention also makes it possible to detect the timing at which contact between the tool and the workpiece begins, so that by increasing the feed rate during idle cutting, machining time can be shortened and machining efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体的な構成を朱すブロック線図であ
り、第2図はAGC回路に於ける減速機能を説明する直
交座標線図である。また第3図はエンドミル加工時に工
作機械主軸頭ならびに各変換器に記録された振動波形の
例示である。 (1)・−リニア・スケール&出器、(2)・・−・リ
ニア・スケール、(3)・−テーブル、(4)。 −送りサーボモータ、(5) −ボール・スクリ第2図 第3図 1/1)t)門鍼
FIG. 1 is a block diagram showing the overall configuration of the present invention in red, and FIG. 2 is an orthogonal coordinate diagram illustrating the deceleration function in the AGC circuit. FIG. 3 is an example of vibration waveforms recorded on the machine tool spindle head and each transducer during end mill processing. (1) - Linear scale & output device, (2) - Linear scale, (3) - Table, (4). - Feed servo motor, (5) - Ball screw Figure 2 Figure 3 1/1) t) Gate acupuncture

Claims (1)

【特許請求の範囲】 (l)切削負荷による工作機械の送り系の速度変動を直
線位置検出器によって検出し、この検出値から変換され
た速度変動の実効値を予かしめ設定されている速度指令
と比較演算し、この比較演算結果を修正速度指令として
前記送り系の送り速度を適応制御することを特徴とする
工作機械に於ける送り速度の適応制御方法。 伏)工作機械のテーブル駆動装置と、該テーブルに配設
された直線位置検出器と、該検出器による検出値を実効
値に変換して自動ゲイン調整回路に伝達するため前記検
出器と自動ゲイン調整回路の間に順次配設された周波数
/電圧変換器、直流/交流変換器、全波整流回路、なら
びに実効値/直流電圧変換器からなる工作機械に於ける
送り速度の適応制御装置。
[Claims] (l) Speed fluctuations in the feed system of the machine tool due to cutting load are detected by a linear position detector, and the effective value of the speed fluctuations converted from this detected value is preset as a speed command. A method for adaptively controlling a feed rate in a machine tool, characterized in that the feed rate of the feed system is adaptively controlled using the result of the comparison operation as a modified speed command. (b) A table drive device of a machine tool, a linear position detector disposed on the table, and a combination of the detector and automatic gain in order to convert the detected value by the detector into an effective value and transmit it to the automatic gain adjustment circuit. Adaptive control device for feed rate in a machine tool, comprising a frequency/voltage converter, a DC/AC converter, a full-wave rectifier circuit, and an effective value/DC voltage converter, arranged in sequence between adjustment circuits.
JP5554784A 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool Granted JPS60201858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5554784A JPS60201858A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5554784A JPS60201858A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Publications (2)

Publication Number Publication Date
JPS60201858A true JPS60201858A (en) 1985-10-12
JPH0375297B2 JPH0375297B2 (en) 1991-11-29

Family

ID=13001728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5554784A Granted JPS60201858A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Country Status (1)

Country Link
JP (1) JPS60201858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497989U (en) * 1991-01-16 1992-08-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205013A (en) * 1981-06-11 1982-12-16 Nippei Toyama Corp Feed controller for cutting tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205013A (en) * 1981-06-11 1982-12-16 Nippei Toyama Corp Feed controller for cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497989U (en) * 1991-01-16 1992-08-25

Also Published As

Publication number Publication date
JPH0375297B2 (en) 1991-11-29

Similar Documents

Publication Publication Date Title
US4879660A (en) Thread cutting machine with synchronized feed and rotation motors
JP3389417B2 (en) How to compensate for lost motion
US3573588A (en) Automatic feed control system for a machine
KR101218047B1 (en) Grinding machine with a concentricity correction system
US5105135A (en) Feedback controller for NC controlled machine tools
US5936369A (en) Method of estimating disturbance load on servomotor
KR920007639B1 (en) Position control system
JPH0833763B2 (en) Numerical control unit
JPH06182637A (en) Thread fastening device
JPS6219986B2 (en)
JPS61214002A (en) Control system for follow-up error
US4803409A (en) Acceleration signal corrected motor speed control system
JPS60201858A (en) Adaptive control of feeding speed of machine tool
JPS63156639A (en) Position control method and device for motor drive element of nc and cnc machine tool
JP3405744B2 (en) Measuring method of workpiece and time-dependent change in machine tool
JPH0424198B2 (en)
JPS60201859A (en) Adaptive control of feeding speed of machine tool
JP2002328707A (en) Numerical controller
JP2555593B2 (en) Screw processing equipment
JPH03161248A (en) Indexing control device for tool rest of nc lathe
EP0386251A1 (en) Profile control method
JP3097182B2 (en) Screw processing equipment
JP3097181B2 (en) Screw processing equipment
JP4595227B2 (en) Tool abnormality detection device and tool abnormality detection method
JP2535598B2 (en) Machining load monitoring device considering the tool feed direction