JPS60201139A - Flywheel - Google Patents

Flywheel

Info

Publication number
JPS60201139A
JPS60201139A JP59058699A JP5869984A JPS60201139A JP S60201139 A JPS60201139 A JP S60201139A JP 59058699 A JP59058699 A JP 59058699A JP 5869984 A JP5869984 A JP 5869984A JP S60201139 A JPS60201139 A JP S60201139A
Authority
JP
Japan
Prior art keywords
flywheel
fiber
circumferential direction
radial direction
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59058699A
Other languages
Japanese (ja)
Inventor
Kenji Miyata
健治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59058699A priority Critical patent/JPS60201139A/en
Publication of JPS60201139A publication Critical patent/JPS60201139A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/305Flywheels made of plastics, e.g. fibre reinforced plastics [FRP], i.e. characterised by their special construction from such materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C15/00Construction of rotary bodies to resist centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To enhance the weight energy density and volumetric energy density of a flywheel made of fiber-reinforced resin, by building the flywheel so that the specific stress (ratio of strength to density) which is caused in the circumferential direction of the flywheel is uniform. CONSTITUTION:A flywheel is made of fiber-reinforced resin in such a manner that the specific modulus of elasticity (ratio of modulus of longitudinal elasticity to density) of a disk changes outwards in the radial direction. To radially alter the modulus of longitudinal elasticity in the circumferential direction of the disk, the content of fibers in the circumferential or radial direction is varied in the radial direction. To radially alter the density of the disk, fine powder of a metal is mixed in the matrix of the fiber-reinforced resin and the ratio of the mixing is varied. As a result, the specific stress (ratio of strength to density) which is caused in the circumferential direction of the flywheel is made uniform.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は蓄エネルギ用フライホイールに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an energy storage flywheel.

〔発明の背景〕[Background of the invention]

フライホイールをエネルギ貯蔵体として利用する場合、
フライホイールの最高回転外周速度で決まる餐エイ、ル
ギ密度の大小が重要なポイントになる。フライホイール
の蓄エネルギ密度は、構成材料およびその形状によシ大
きく左右される゛。
When using the flywheel as an energy storage device,
The important point is the size of the flywheel density, which is determined by the flywheel's maximum rotational peripheral speed. The energy storage density of a flywheel is highly dependent on the materials of construction and its shape.

材料に関しては、その比強度(強度/密度)が大きいほ
ど、フライホイールの蓄エネルギ密度を大きくとれる。
Regarding the material, the greater the specific strength (strength/density) of the material, the greater the energy storage density of the flywheel.

最近の高引張強度を有する繊維(炭素繊維、ガラス繊維
等々)を含有する繊維強化樹脂の繊維方向の比強度は、
高張力鋼の比強度に比べて数倍大きい。しかし、繊維強
化樹脂は、繊維と直角方向の比強度が、繊維方向の比強
度に比べて、2桁以上小さい欠点を有している。この強
度の異方性が、繊維強化樹脂製フライホイールの開発を
大きく阻害している。
The specific strength in the fiber direction of recent fiber-reinforced resins containing fibers with high tensile strength (carbon fibers, glass fibers, etc.) is
It is several times greater than the specific strength of high-strength steel. However, fiber-reinforced resins have a drawback that the specific strength in the direction perpendicular to the fibers is two or more orders of magnitude smaller than the specific strength in the fiber direction. This strength anisotropy greatly hinders the development of fiber-reinforced resin flywheels.

形状に関しては、繊維強化樹脂の繊維方向の絶大な比強
度を有効に利用したものがいくつかある。
Regarding the shape, there are several shapes that effectively utilize the tremendous specific strength of fiber-reinforced resin in the fiber direction.

それらのいくつかを第1図から第4図に示す。周方向に
繊維を配向したリング状の繊維強化樹脂を利用したもの
が、第1図のリング1.第3図および第4図のリング1
1,12.13である。第2図の複数本(図では3本)
のバー2は、長手方向に繊維を配向したものである。第
1図および第2図でのフライホイールは、それぞれ、リ
ング1の肉径を薄くすること、バー2の幅を小さくする
ことにより、繊維と直角方向に発生する応力を小さくし
ている。第3図および第4図のフライホイールは、いわ
ば第1図のフライホイールを同心円状に多重化したもの
であシ、ラバー状低剛性体リング31,32.33を繊
維強化樹脂リング間に内在させている。これらラバーリ
ングの柔軟性によシ、半径方向の束縛を緩和し、半径方
向すなわち繊維と直角方向の応力を小さくしている。な
お、4は回転軸である。
Some of them are shown in FIGS. 1 to 4. Ring 1 in Fig. 1 uses a ring-shaped fiber-reinforced resin with fibers oriented in the circumferential direction. Ring 1 in Figures 3 and 4
1, 12.13. Multiple pieces in Figure 2 (three pieces in the figure)
The bar 2 has fibers oriented in the longitudinal direction. In the flywheels shown in FIGS. 1 and 2, the stress generated in the direction perpendicular to the fibers is reduced by reducing the wall diameter of the ring 1 and the width of the bar 2, respectively. The flywheels shown in FIGS. 3 and 4 are, so to speak, the flywheels shown in FIG. I'm letting you do it. The flexibility of these rubber rings relieves radial constraints and reduces stress in the radial direction, ie, in the direction perpendicular to the fibers. Note that 4 is a rotation axis.

第3図および第4図のフライホイールは、形状は同じで
あるが、繊維強化樹脂の構成の仕方が異なる。第3図の
フライホイールでは、それぞれのリングの半径方向の密
度および弾性率は一様である。一方、第4図のフライホ
イールでは、それぞれのリングの半径方向の密度および
弾性率を式(1)のように変えておシ、半径方向に発生
する応力を完全に零にしている。
The flywheels in FIGS. 3 and 4 have the same shape, but differ in the way the fiber-reinforced resin is constructed. In the flywheel of FIG. 3, the radial density and elastic modulus of each ring are uniform. On the other hand, in the flywheel shown in FIG. 4, the radial density and elastic modulus of each ring are changed as shown in equation (1), so that the stress generated in the radial direction is completely zero.

ここに、γ:半径座標 Eθ(r)二層方向縦弾性率 ρ(r):密度 シθ:周方向ボアシソン比 r2 :各リングの外半径 以上述べた4種類のフライホイールの性能を第5図に定
量的に示す。これを見る限りでは、第4図のフライホイ
ールが、重量エネルギ密度および体積エネルギ密度とも
に優れた特性を有していることがわかる。しかし、第4
図の7ライホイールでは、ラバー状低剛性体31,32
.33を使っていることで、新たな問題が発生している
Here, γ: radial coordinate Eθ(r), longitudinal modulus of elasticity in the two-layer direction, ρ(r): density, θ: Boisison ratio in the circumferential direction, r2: outer radius of each ring. Quantitatively shown in the figure. From this, it can be seen that the flywheel shown in FIG. 4 has excellent characteristics in both gravimetric energy density and volumetric energy density. However, the fourth
In the 7 Rye wheel shown in the figure, the rubber-like low-rigidity bodies 31, 32
.. Using 33 has caused a new problem.

その問題は、ラバーリングの周方向強度が小さいため、
繊維強化樹脂よりも先に破壊することである。また、ラ
バーリングが破壊しないほどの低い回転数の回転状態に
おいても、ラバーの変形が比較的太きいため、回転体の
バランスが崩れ、回転振動の発生を招く。従って、この
問題を考慮すると、第3図および第4図のフライホイー
ルの蓄エネルギ密度は、第5図に示されているものに比
べて、実質的には数分の−になる。
The problem is that the circumferential strength of the rubber ring is small.
The goal is to destroy it before the fiber-reinforced resin. Further, even when the rubber ring is rotated at a low rotational speed such that the rubber ring does not break, the deformation of the rubber is relatively large, causing the rotating body to become unbalanced and causing rotational vibration. Therefore, taking this issue into consideration, the energy storage density of the flywheels of FIGS. 3 and 4 is substantially a fraction of that shown in FIG. 5.

第4図において、ラバーリング31,32゜33を設け
ないで、Eθ/ρを式(1)のごとく半径方向に変えて
いく手段が残されているかに考えらEθ/ρ値は、外周
に比べて内周の部分を3桁〜4桁程小さくしなければな
らない。このとき、周方向の強度も、外周から内周にか
けて、発生応力以上に強く変化するため、効率的な構造
とはいえない。
In Fig. 4, considering that there is a way to change Eθ/ρ in the radial direction as shown in equation (1) without providing the rubber rings 31, 32 and 33, the Eθ/ρ value is In comparison, the inner circumferential portion must be made three to four orders of magnitude smaller. At this time, the strength in the circumferential direction also changes more strongly than the generated stress from the outer circumference to the inner circumference, so it cannot be said to be an efficient structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、重量エネルギ密度および体積エネルギ
密度ともに優れたフライホイールヲ提供することにある
An object of the present invention is to provide a flywheel that is excellent in both gravimetric energy density and volumetric energy density.

〔発明の概要〕[Summary of the invention]

第4図のフライホイールは、各リングの半径方向応力を
完全に零にするという思想の下に、各リングのEθ/ρ
を半径方向にそって、式(1)のごとく強く変化させて
いる。このため、ラバーリングを数本同心円状に内在さ
せ、Eθ/ρの変化を緩和し、フライホイールとしての
構造の効率化をねらっている。
The flywheel shown in Fig. 4 is based on the idea that the radial stress in each ring is completely zero, and the Eθ/ρ of each ring is
is strongly changed along the radial direction as shown in equation (1). For this reason, several rubber rings are provided in concentric circles to alleviate the change in Eθ/ρ and to improve the efficiency of the structure as a flywheel.

従って、ラバーリングの問題を解消するには、式(1)
で示されろEa/ρの強い変化を緩和する必要がある。
Therefore, to solve the rubber ring problem, Equation (1)
It is necessary to alleviate the strong change in Ea/ρ, as shown by .

また、効率的な構造とするために、周方向に発生する応
力と密度の比、即ち比応力を一様にする構造である方が
良い。これらの条件を満足するEz/ρの半径方向の分
布式は以下に示す式(2)のようになる。
Furthermore, in order to have an efficient structure, it is better to have a structure that makes the ratio of stress and density, that is, the specific stress, generated in the circumferential direction uniform. The radial distribution equation of Ez/ρ that satisfies these conditions is as shown in equation (2) below.

ここに、ξ=− 2 r2:外半径 Q =1+λ+λ2 λ =内径/外径 シミ二〇方向のポアッソン比 E、(r):半径方向縦弾性率 し 3u2+b Ea/ρが式(2)の分布に従うときのその分布状況を
第6図に示す。また、このときの周方向および半径方向
の応力と密度の比、即ち比応力の分布を第7図に示す。
Here, ξ=-2 r2: Outer radius Q = 1 + λ + λ2 λ = Poisson's ratio E in the inner diameter/outer diameter stain 20 direction, (r): radial longitudinal elastic modulus, 3u2 + b Ea/ρ is the distribution of equation (2) Figure 6 shows the distribution situation when the following is applied. Further, the ratio of the stress to the density in the circumferential direction and the radial direction at this time, that is, the distribution of the specific stress is shown in FIG.

第6図には比較のために、式(1)によるEθ/ρ分布
を示しである。第7図において、σθ、σ。
For comparison, FIG. 6 shows the Eθ/ρ distribution according to equation (1). In FIG. 7, σθ, σ.

はそれぞれ周方向および半径方向の応力を表わし、ρは
密度を表わす。また■2は回転の最大限界外周速度を表
わす。
represent the circumferential and radial stress, respectively, and ρ represents the density. Also, ■2 represents the maximum limit outer circumferential speed of rotation.

周方向に発生する比応力を一様にしたことが、この発明
のポイントである。実際上は、Eθ/ρの分布は、厳密
に式(2)に従う必要性はなく、この分布にほぼ準する
分布、例えば階段上の分布でも、蓄エネルギ密度は同様
に向上させ得る。
The key point of this invention is to make the specific stress generated in the circumferential direction uniform. In reality, the distribution of Eθ/ρ does not need to strictly follow equation (2), and the energy storage density can be similarly improved with a distribution that is approximately similar to this distribution, for example, a staircase distribution.

ここで、比弾性率Eθ/ρが式(2)に従うときの蓄エ
ネルギ密度、とシわけ重量エネルギ密度を評価しておく
。一般に、重量エネルギ密度e、は用いる材料の最大比
強度(−/ρLagに比例するので、式(3)のように
表現できる。
Here, the energy storage density and the weight energy density when the specific elastic modulus Eθ/ρ follows equation (2) will be evaluated. Generally, the weight energy density e is proportional to the maximum specific strength (-/ρLag) of the material used, so it can be expressed as in equation (3).

e 、 ==K (−) am X ”’ ”・(3)
ρ ここに、σ傘=σ−十〇1#* σ、*二半後半径方向引張 強度*:周方向引張強度 ρ :密度 式(3)で示される比例定数にの大小によって、重量エ
ネルギ密度の相対的評価が可能である。本発明によるフ
ライホイールの場合の比例定数にと、−個のリングに関
する内径外径比λとの関係を第8図に示す。比較のため
に、第4図のフライホイールのものも示しておく。但し
、第8図に示した第4図のフライホイールの定数には、
第5図と同様、ラバーリング31,32.33の破壊が
なく、変形による回転体の振動の発生もなく安定に回転
できるという理想論での結果である。従って実際的には
、本発明によるフライホイールは、第4図に示したフラ
イホイールに比べて数倍の蓄エネルギ密度を確保するこ
とが可能である。
e, ==K (-) am X "'"・(3)
ρ Here, σ umbrella = σ − 101#* σ, *2-half radial tensile strength*: Circumferential tensile strength ρ: Depending on the magnitude of the proportionality constant shown by density formula (3), the weight energy density It is possible to make a relative evaluation of FIG. 8 shows the relationship between the proportionality constant for the flywheel according to the present invention and the inner/outer diameter ratio λ for - rings. For comparison, the flywheel shown in Figure 4 is also shown. However, the constant of the flywheel shown in Fig. 4 shown in Fig. 8 is as follows.
Similar to FIG. 5, this is an idealistic result that there is no destruction of the rubber rings 31, 32, 33, and that the rotary body can rotate stably without any vibrations caused by deformation. In practice, therefore, the flywheel according to the invention can ensure an energy storage density several times that of the flywheel shown in FIG.

ここで、第8図に示した本発明のフライホイールにおけ
る定数にと内外径比λとの関係の理論的根拠を明らかに
しておく。
Here, the theoretical basis of the relationship between the constant and the inner/outer diameter ratio λ in the flywheel of the present invention shown in FIG. 8 will be clarified.

ffi量エネルギ密度e、は一般に次のように表わされ
る。
The ffi quantity energy density e is generally expressed as follows.

ψ −1(ξ)ρ(ξ) ここに、t(ξ)は板の厚み、ρ(のけ密度、v2は許
容外周速度、λは内径外径比を表わす。周方向及び半径
方向の応力をそれぞれσθ、σ、とし、ここで、a e
=ρvzIIsa、 a、=pv2”Srとおけば、S
θ781は以下のように表わせる。
ψ −1 (ξ) ρ (ξ) Here, t (ξ) is the thickness of the plate, ρ (sheath density, v2 is the allowable peripheral speed, and λ is the inner diameter outer diameter ratio. Stress in the circumferential and radial directions are σθ and σ, respectively, where a e
=ρvzIIsa, a, = pv2”Sr, then S
θ781 can be expressed as follows.

・・・・・・(6) 式(6)よシ、Srの最大値SyIlImgをめると1
となる。Sθは一定なので、Sθの最大値Se4工はも
ちろん式(5)そのものである。回転体の破壊は、周方
向および半径方向で同時に起きた方が効率的である。そ
こで、周方向強度をσθ−半径方向強度のSrが最大に
なるξにおける値をσ、*とおくとなる。式(5)、 
(7)、 (s)よシまた、式(4)、(8)よシ 式(3)、 (5)、 (9)、 Cl0)よシれはψ
=1のときの値である。密度ρの変化が小さい限9、K
は式圓に示される上限に近づくことができる。
・・・・・・(6) According to equation (6), if we add the maximum value of Sr SyIlImg, we get 1
becomes. Since Sθ is constant, the maximum value Se4 of Sθ is of course the same as equation (5). It is more efficient for the rotating body to be destroyed simultaneously in the circumferential and radial directions. Therefore, the value at ξ where the circumferential strength is σθ−radial strength Sr is maximum is set as σ, *. Formula (5),
(7), (s) and equations (4), (8) and equations (3), (5), (9), Cl0) are ψ
This is the value when =1. Limit 9, K where the change in density ρ is small
can approach the upper limit shown in the equation circle.

〔発明の実施例〕[Embodiments of the invention]

第9図のごとくフライホイールを成形する場合、半径方
向の強度を向上させるには、繊維が半径方向にも配列し
た繊維強化樹脂を使う必要がある。
When molding a flywheel as shown in FIG. 9, in order to improve the strength in the radial direction, it is necessary to use a fiber-reinforced resin in which fibers are also arranged in the radial direction.

−例として、第10図に示すような積層板方式が考えら
れる。繊維が周方向に配列された円板状の繊維強化樹脂
製プリプレグ材51、および繊維が半径方向に放射状に
配列された円板状の繊維強化樹脂製プリプレグ材52を
j−次積層してゆく。
- As an example, a laminated plate system as shown in FIG. 10 can be considered. A disc-shaped fiber-reinforced resin prepreg material 51 in which fibers are arranged in the circumferential direction and a disc-shaped fiber-reinforced resin prepreg material 52 in which fibers are arranged radially in the radial direction are laminated in the j-th order. .

それぞれのプリプレグ材は、半硬化状態に成形され、最
後に積層板としてプレス加工して、1個の7ライホイー
ルを作り出す。
Each prepreg material is molded into a semi-cured state and finally pressed into a laminate to create one 7-lie wheel.

ここで、周方向の比弾性率Eθ/ρを式(2)に示すご
とく変えていく方法としては、いろいろの方法がある。
Here, there are various methods for changing the specific elastic modulus Eθ/ρ in the circumferential direction as shown in equation (2).

まず、周方向の縦弾性率Eθを半径方向に変えていく手
段として、周方向あるいは半径方向の繊維の含有率を半
径方向に変えていく方法がある。密度を半径方向に変え
ていく手段としては、繊維強化樹脂を形成する母体に金
属の微粉を混入し、その混入の度合を変えていく方法が
ある。
First, as a means of changing the longitudinal elastic modulus Eθ in the circumferential direction in the radial direction, there is a method of changing the fiber content in the circumferential direction or the radial direction in the radial direction. As a means of changing the density in the radial direction, there is a method of mixing fine metal powder into the matrix forming the fiber-reinforced resin and changing the degree of mixing.

繊維含有率を具体的にどのように変えていけば良いかに
ついて、2つの計算例を示す。但し、本発明は、これら
の例に限定されるものではない。
Two calculation examples will be shown to show how to specifically change the fiber content. However, the present invention is not limited to these examples.

第一の例と1.て、Vtθ= 0.7 。First example and 1. Therefore, Vtθ=0.7.

V t −=0.26・(0,1r/rz )と・した
ものである。ここに、V1θは、一枚のプリプレグ材5
1における周方向に配列された繊維の含有率を表わし、
V lrは、一枚のプリプレグ材52における半径方向
に配列された繊維の含有率を表わす。この例では、プリ
プレグ材51.52の数の比率は1:1である。iた、
リングの内径外径比はこの場合0.1とした。第12図
に、Vtθ、V、、の分布を示し、第13図にこのとき
の密度ρの分布を示す。
V t −=0.26·(0,1r/rz). Here, V1θ is one prepreg material 5
represents the content of fibers arranged in the circumferential direction in 1,
Vlr represents the content rate of fibers arranged in the radial direction in one sheet of prepreg material 52. In this example, the ratio of the number of prepreg materials 51 and 52 is 1:1. It was,
The inner/outer diameter ratio of the ring was set to 0.1 in this case. FIG. 12 shows the distribution of Vtθ, V, , and FIG. 13 shows the distribution of the density ρ at this time.

vfθHV1r)ρの分布はそれぞれ最大値と最小値の
起伏が小さく、充分に実現可能である。
The distribution of vfθHV1r)ρ has small ups and downs in the maximum value and minimum value, and is fully achievable.

第二の例として、Vtθ=0.7.Vt、=o、5ct
 e(0−1’/ ”z ) トL、7’)7’L#材
5□。
As a second example, Vtθ=0.7. Vt, = o, 5ct
e(0-1'/"z) L, 7') 7'L# material 5□.

52の数の比率は1.2:1にし、リングの内径外径比
はこの場合も0.1とした。このときの、Vfθ。
The ratio of the number 52 was set to 1.2:1, and the ratio of the inner diameter to the outer diameter of the ring was also set to 0.1 in this case. At this time, Vfθ.

V t rの分布およびρの分布をそれぞれ第14図お
よび第15図に示す。この場合も、第一の例と同様、充
分に実現可能である。
The distribution of V tr and the distribution of ρ are shown in FIGS. 14 and 15, respectively. This case is also fully achievable as in the first example.

この実施例における効果は、蓄エネルギ密度の向上はも
ちろんのこと、回転中にフライホイールの変形が少ない
ため、安定回転が可能なことである。また、積層板方式
であるために量産性に優れておシ、低コストのフライホ
イールを提供できる。
The effects of this embodiment include not only an improvement in energy storage density but also stable rotation because the flywheel is less deformed during rotation. In addition, since it is a laminated plate method, it is excellent in mass production and can provide a low-cost flywheel.

周方向および半径方向に繊維が配列したフライホイール
を形成する別の実施例として、第11図に示す円形らせ
ん巻のクロス53を用いた積層板で実施できる。この場
合の繊維含有率の分布状況は、第10図で示した実施例
と同様でおる。この実施例では、初めから最終状態の繊
維強化樹脂を成形加工ができるため、積層間の接着性は
第10図のプレス加工に比べ強靭である効果をもつ。
Another embodiment of forming a flywheel with fibers arranged in the circumferential and radial directions can be implemented with a laminate using a circular spiral wound cloth 53 as shown in FIG. The fiber content distribution in this case is similar to the example shown in FIG. In this embodiment, since the fiber-reinforced resin in its final state can be molded from the beginning, the adhesiveness between the laminated layers is stronger than that in the press process shown in FIG. 10.

また周方向の比弾性率を変える別の手段として、繊維強
化樹脂中の繊維に関して、繊維の弾性率の異なる複数種
の繊維を使い、半径方向にそれらの混入比率を変えてい
く方法もある。高エネルギ密度を確保するためには、一
般に炭素繊維が使われるが、この方法を用いると、比較
的安価なガラス繊維等の使用が可能なため、フライホイ
ールの製造コストが低く抑えられる効果がある。
Another method for changing the specific elastic modulus in the circumferential direction is to use multiple types of fibers with different elastic moduli in the fiber-reinforced resin and change their mixing ratio in the radial direction. Carbon fiber is generally used to ensure high energy density, but this method allows the use of relatively inexpensive materials such as glass fiber, which has the effect of keeping flywheel manufacturing costs low. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蓄エネルギ用フライホイールにおいて
、重量エネルギ密度を理論的限界近辺に高くとれるフラ
イホイールが得られる。また、フライホイールの内径外
径比を小さくする、即ち肉径を大きくできるから、体積
エネルギ密度も理論限界近辺に高くとれるフライホイー
ルが得られる。
According to the present invention, it is possible to obtain a flywheel for energy storage in which the weight energy density can be kept high near the theoretical limit. In addition, since the inner diameter outer diameter ratio of the flywheel can be reduced, that is, the wall diameter can be increased, a flywheel can be obtained that has a high volumetric energy density close to the theoretical limit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は主要な従来例を示す概略図、第5図
はこれら従来例の蓄エネルギ密度の比較図、第6図はに
=B a/E、=2の比弾性率Ea/ρについて半径r
方向の分布を従来例とともに示す分布図、第7図は本発
明によるフライホイールの周方向および半径方向の比応
力分布σ0/ρ。 σ、/ρを示す図、第8図は本発明によるフライホイー
ルの重量エネルギ密度の大小を表わす比例定数にと内径
外径比との関係を示す図、第9図は本発明によるフライ
ホイールの一実施例の外観を示す斜視図、第10図およ
び第11図は本発明によるフライホイールにおける積層
プリプレグおよび積層クロスの繊維配列の実施例を示す
斜視図、第12図および第13図は第10図および第1
1図の実施例における具体的な繊維含有率および密度分
布のひとつの実施例を示す図、第14図および第15図
はその第2の具体的実施例を示す図である。 1.11,12,13.14・・・リング、2・・・パ
ー31.32.33・・・ラバー状低剛性体リング、4
・・・回転軸、 51・・・周方向繊維配向プリプレグ、52・・・半径
方向繊維配向グリプレグ、53・・・円形らせん巻のク
ロス。 代理人 弁理士 鵜沼辰之 率1図 も2図 宅3図 f]t4−図 も5図 コうイ爪イー1しの押@(q+図〜名牟口外り瞬)千6
図 「 山′1図 率8図 嘱q図 4 率10図 來11区 不12図 宅14−図 ヒ(X12) 奄13図 r(xr2) 不15図 1−(xヒ2)
Figures 1 to 4 are schematic diagrams showing major conventional examples, Figure 5 is a comparison diagram of energy storage density of these conventional examples, and Figure 6 is a specific modulus of elasticity Ea where = B a / E, = 2 radius r about /ρ
FIG. 7 shows the specific stress distribution σ0/ρ in the circumferential direction and the radial direction of the flywheel according to the present invention. σ, /ρ, FIG. 8 is a diagram showing the relationship between the proportionality constant representing the magnitude of the weight energy density of the flywheel according to the present invention and the inner diameter/outer diameter ratio, and FIG. 9 is a diagram showing the relationship between the ratio of the inner diameter and outer diameter of the flywheel according to the present invention. FIGS. 10 and 11 are perspective views showing an example of the fiber arrangement of the laminated prepreg and laminated cloth in a flywheel according to the present invention, and FIGS. 12 and 13 are Figure and 1st
FIG. 1 is a diagram showing one example of specific fiber content and density distribution in the example, and FIGS. 14 and 15 are diagrams showing a second specific example thereof. 1.11, 12, 13.14...Ring, 2...Par 31.32.33...Rubber-like low rigidity ring, 4
...Rotating shaft, 51... Circumferential fiber oriented prepreg, 52... Radial fiber oriented prepreg, 53... Circular spiral wound cross. Agent Patent Attorney Tatsuyuki Unuma 1 figure 2 figure 3 figure f] t4 - figure 5 figure Koi Tsume E 1 Shino push @ (q + figure ~ Namuguchi outside Shun) 16
Figure ``Mountain '1 figure rate 8 figure q figure 4 rate 10 figure come 11 ward fu 12 figure home 14-figure hi (X12) 奄13 figure r (xr2) not 15 figure 1-(xhi 2)

Claims (1)

【特許請求の範囲】 1゜繊維強化樹脂からなるフライホイールにおいて、円
板の半径方向の内側から外側に向って比弾性率を変化さ
せ、フライホイールが回転したときに周方向に発生する
応力と密度との比すなわち周方向の比応力を一様にした
ことを特徴とするフライホイール。 2、特許請求の範囲第1項において、周方向の比応力を
一様にする手段として、繊維強化樹脂に内在する繊維を
周方向および半径方向に配列し、それぞれの繊維含有率
を円板の半径方向の内側から外側に向って変えたことを
特徴とするフライホイール。 3.4?許請求の範囲第1項において、周方向の比応力
を一様にする手段として、繊維強化樹脂中の母体内に金
属等の微粉を混入し、半径方向の内側から外側に向けて
その混入率を変えたことを特徴とするフライホイール。 本 特許請求の範囲第1項において、周方向の比応力を
一様にする手段として、繊維強化樹脂に内在する繊維を
周方向および半径方向に配列しそれぞれの繊維含有率を
円板の半径方向の内側から外側に向って変えるとともに
、繊維強化樹脂中の母体内に金属等の微粉を混入し半径
方向の内側から外側に向けてその混入率を変えたことを
特徴とするフライホイール。 5、特許請求の範囲第1項において、周方向の比応力を
一様にする手段として、繊維強化樹脂中に複数の種類の
繊維を配列し、それら繊維の混入比率を半径方向の内側
から外側に向けて変えたことを特徴とするフライホイー
ル。 6、特許請求の範囲第1項において、周方向の比応力を
一様にする手段として、周方向の比弾性率の半径方向の
分布を、 のように変えることを特徴とするフライホイール。
[Claims] In a flywheel made of 1° fiber-reinforced resin, the specific elastic modulus is changed from the inside to the outside in the radial direction of the disc, and the stress generated in the circumferential direction when the flywheel rotates is A flywheel characterized by having a uniform ratio to density, that is, specific stress in the circumferential direction. 2. In claim 1, as a means to make the specific stress in the circumferential direction uniform, the fibers inherent in the fiber-reinforced resin are arranged in the circumferential direction and the radial direction, and the fiber content of each is adjusted to A flywheel characterized by changing its radial direction from the inside to the outside. 3.4? In claim 1, as a means to make the specific stress uniform in the circumferential direction, fine powder such as metal is mixed into the matrix of the fiber-reinforced resin, and the mixing rate is from the inside to the outside in the radial direction. A flywheel characterized by a change in the . In claim 1, as a means to make the specific stress uniform in the circumferential direction, the fibers inherent in the fiber-reinforced resin are arranged in the circumferential direction and the radial direction, and the fiber content of each is adjusted in the radial direction of the disk. A flywheel characterized in that the rate of mixing is changed from the inside to the outside in the radial direction, and fine powder such as metal is mixed into the matrix in the fiber-reinforced resin, and the mixing rate is changed from the inside to the outside in the radial direction. 5. In claim 1, as means for making the specific stress uniform in the circumferential direction, a plurality of types of fibers are arranged in a fiber-reinforced resin, and the mixing ratio of these fibers is changed from the inside to the outside in the radial direction. A flywheel that is characterized by changes towards. 6. A flywheel according to claim 1, characterized in that the radial distribution of the specific modulus of elasticity in the circumferential direction is changed as follows as means for making the specific stress in the circumferential direction uniform.
JP59058699A 1984-03-26 1984-03-26 Flywheel Pending JPS60201139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59058699A JPS60201139A (en) 1984-03-26 1984-03-26 Flywheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59058699A JPS60201139A (en) 1984-03-26 1984-03-26 Flywheel

Publications (1)

Publication Number Publication Date
JPS60201139A true JPS60201139A (en) 1985-10-11

Family

ID=13091771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59058699A Pending JPS60201139A (en) 1984-03-26 1984-03-26 Flywheel

Country Status (1)

Country Link
JP (1) JPS60201139A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778736A (en) * 1996-06-12 1998-07-14 Dow-United Technologies Composite Products, Inc. Spiral woven composite flywheel rim
JP2014088044A (en) * 2001-09-13 2014-05-15 Beacon Power Llc Fly wheel rim made of composite equipped with plurality of co-mingled fiber layers, and method for manufacturing the same
JP2016525335A (en) * 2013-07-19 2016-08-22 ジーケーエヌ ハイブリッド パワー リミテッド Energy storage flywheel and method of manufacturing the same
CN106523595A (en) * 2015-09-11 2017-03-22 熵零股份有限公司 Full-load flywheel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778736A (en) * 1996-06-12 1998-07-14 Dow-United Technologies Composite Products, Inc. Spiral woven composite flywheel rim
US6029350A (en) * 1996-06-12 2000-02-29 Gkn Westland Aerospace Inc. Spiral woven composite flywheel rim
JP2014088044A (en) * 2001-09-13 2014-05-15 Beacon Power Llc Fly wheel rim made of composite equipped with plurality of co-mingled fiber layers, and method for manufacturing the same
JP2016525335A (en) * 2013-07-19 2016-08-22 ジーケーエヌ ハイブリッド パワー リミテッド Energy storage flywheel and method of manufacturing the same
CN106523595A (en) * 2015-09-11 2017-03-22 熵零股份有限公司 Full-load flywheel

Similar Documents

Publication Publication Date Title
US4370899A (en) Flywheel for kinetic energy storage
US4207778A (en) Reinforced cross-ply composite flywheel and method for making same
US3296886A (en) Laminated rotary structures
US3602067A (en) Flywheel
US4198878A (en) Rotary energy storage device
CA1179168A (en) Fiber composite flywheel rim
US4089190A (en) Carbon fiber drive shaft
JPS5952307B2 (en) flywheel
US4123949A (en) Inertial energy storage device
US5816114A (en) High speed flywheel
US3737694A (en) Fanned circular filament rotor
EP0719392A1 (en) Energy storage flywheel device
JPS60201139A (en) Flywheel
Bert et al. On vibration of a thick flexible ring rotating at high speed
EP0026570B1 (en) Centre assemblies for flywheels, and flywheels incorporating such assemblies
EP0642635B1 (en) A fly wheel arrangement
CN207835269U (en) One kind dividing valve circular ring shell alloy wheel hub combined accumulation energy flywheel
JP3124984B2 (en) Rotating body made of fiber-reinforced composite material and manufacturing method thereof
Lee et al. Vibration and critical speeds of a spinning annular disk of varying thickness
JPS58217843A (en) Fly wheel
WO2022204972A1 (en) Energy storage flywheel and design method therefor
MIYATA Optimal structure of fiber-reinforced flywheels with maximized energy density
JPS6131739A (en) Flywheel
CA1270665A (en) Composite ultracentrifuge rotor
JPH01294985A (en) Roots type blower plastic rotor