JPS60200914A - Manufacture of steel superior in hydrogen corrosion cracking resistance - Google Patents

Manufacture of steel superior in hydrogen corrosion cracking resistance

Info

Publication number
JPS60200914A
JPS60200914A JP5644984A JP5644984A JPS60200914A JP S60200914 A JPS60200914 A JP S60200914A JP 5644984 A JP5644984 A JP 5644984A JP 5644984 A JP5644984 A JP 5644984A JP S60200914 A JPS60200914 A JP S60200914A
Authority
JP
Japan
Prior art keywords
steel
hydrogen
hydrogen corrosion
cracking resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5644984A
Other languages
Japanese (ja)
Inventor
Shigeharu Hinotani
日野谷 重晴
Seiya Omori
大森 靖也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5644984A priority Critical patent/JPS60200914A/en
Publication of JPS60200914A publication Critical patent/JPS60200914A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To refine the steel structure to improve the strength and to improve the hydrogen corrosion cracking resistance by performing working heat treatment to an Mo steel or a Cr-Mo steel under a specified condition. CONSTITUTION:The Mo steel or the Cr-Mo steel containing 0.01-0.30% C, 0.01- 1.0% Si, 0.01-2.0% Mn, 0.1-2.0% Mo, or further if necessary <3.5% Cr and <0.2% of >=one or 2 kinds among Al, Ti, Nb, V is heated to the temp. range of Ac3 transformation point + or -70 deg.C. In the cooling process of the steel, roll working of >=10% reduction ratio is performed at >=600 deg.C temp., then said steel is cooled slowly up to 400 deg.C at <=1 deg.C/sec cooling rate, and the fine pearlite due to eutectoid transformation is generated. The strength is improved by refining the structure, and the hydrogen corrosion resistance is improved by the pearlite structure dispersed finely. The steel is favorable as steel material for equipment such as oil refining equipment in which trouble is caused by hydrogen corrosion.

Description

【発明の詳細な説明】 本発明は耐水素侵食割れ性にすぐれた鋼の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing steel with excellent hydrogen corrosion cracking resistance.

背景技術 一般に室温近傍の温度域では鋼への水素の固溶量は水素
圧が数百気圧でも微/J%であり、鋼の脆化をきたすこ
とは稀であるが、石油M製などの200〜600Cの温
度域で、水素を多量に含むガス体などの環境で使用され
る圧力容器などに使用する鋼には水床侵食と呼ばれる内
部損傷を生ずることがある。この損傷は鋼中に拡散侵入
した水素原子が鋼中の炭化物と反応して生成するメタン
ガスが鋼中に容易に拡散しないために炭化物の析出位置
でメタンガスによる圧力を生じ、この位置で空調を生ず
ることが知られている。この対策としては、従来よりO
rやM。
Background Art Generally, in the temperature range near room temperature, the amount of solid solution of hydrogen in steel is only a small amount per J% even if the hydrogen pressure is several hundred atmospheres, and it is rare that steel becomes embrittled. In the temperature range of 200 to 600 C, internal damage called water bed erosion may occur in steel used in pressure vessels and the like used in environments such as gas containing a large amount of hydrogen. This damage occurs when the hydrogen atoms that have diffused into the steel react with the carbides in the steel, producing methane gas that does not easily diffuse into the steel. This creates pressure from the methane gas at the location where the carbides are deposited, causing air conditioning at this location. It is known. As a countermeasure for this, conventional
r and M.

などの合金元素を添加して銅の強度を上げるとともに水
素に対して、より安定な炭化物を形成させる方法が開発
されているが、未だこのような水素侵食による損傷を十
分に免かれることができないのが現状でおる。
A method has been developed to increase the strength of copper by adding alloying elements such as , and to form carbides that are more stable against hydrogen, but it is still not possible to sufficiently avoid damage caused by hydrogen attack. This is the current situation.

発明の概要 本発明はこのような現状に鑑み、石油精製装置などの水
素侵食が問題となる装置に使用される鋼として必要な強
度を維持しつ又耐水嵩侵食割れ性において従来の#をは
るかに凌ぐ鋼の製造方法を提供するもので、重量%でC
: 0,01〜OjO%、Si : 0.01〜1.0
%、Mn :0,01〜2.0%、Mo : f]、l
 〜2.Q%を含み、さらに必要に応じてOr : 5
.5%以下、Aj?、Ti、Nb、Vの1種又は2種以
上=0.2%以下を添加し、残部は実質的にFe より
成る鋼をAC3変態点の±70Cの温度範囲に加熱した
後、冷却過程の60DC以上の温度で圧下率10%以上
の加工を行ない、続いてI C/ sec以下の冷却速
度で400Cまで冷却し共析変態を行なわせることを特
徴とする耐水素侵食割れ性にすぐれた鋼の製造方法全要
旨とするものである。
Summary of the Invention In view of the current situation, the present invention has been developed to maintain the strength necessary for steel used in equipment where hydrogen corrosion is a problem, such as oil refineries, and to improve water bulk erosion and cracking resistance far superior to conventional steel. This method provides a method for manufacturing steel that surpasses C in weight percent.
: 0.01~OjO%, Si: 0.01~1.0
%, Mn: 0.01-2.0%, Mo: f], l
~2. Including Q%, and if necessary, Or: 5
.. Less than 5%, Aj? , Ti, Nb, and V (one or more types = 0.2% or less), and the remainder is essentially Fe. After heating the steel to a temperature range of ±70C of the AC3 transformation point, the cooling process is performed. Steel with excellent hydrogen erosion cracking resistance characterized by processing at a reduction rate of 10% or more at a temperature of 60DC or higher, and then cooling to 400C at a cooling rate of IC/sec or lower to cause eutectoid transformation. This is a complete summary of the manufacturing method.

詳細な説明 一般にこの釉のMO鋼、Or−Mo鋼は焼入れ焼もどし
JP規準焼もどしの熱処理ヲ経て使用されるが、この場
合鋼の組織は低温変態生成物であるマルテンサイトやベ
イナイトが焼戻され、主に結晶粒界に炭化物が連結して
析出した状態にある。このような組織では水素侵食によ
り結晶粒シ目 界に沿って連結した9訳が形成され、鋼の著しい劣化を
招く。一方、熱処理によって共析変態とが研究の結果見
い出された。この結果に基き/< 5イ14−微細に分
散析出させる加工熱処理法を行なったところ耐水素侵食
性にすぐれた鋼を製造し得ることが明らかになり、本発
明法に成功するに到ったものである。即ちオーステナイ
ト化温度であるAC3変態点の近傍(±70c)に加熱
することにより初期オーステナイト結晶粒の粗大化警防
ぐとともにオーステナイトとフェライトの2相混合域に
おいて加工を加えることにより続いて生ずるオーステナ
イト相の共析変態にか又わる結晶粒を微細となしかつ分
散させることができる。このような加工熱処理を経た組
織は微細なフェライトとパーライトの混合組織であり、
而も、パーライトが分散している剥 ため水素侵食による9論の連結が抑制され、鋼の劣化を
軽減させるものである。
Detailed Description Generally, this glazed MO steel and Or-Mo steel are used after undergoing heat treatment of quenching, tempering, and JP standard tempering. The carbides are mainly connected and precipitated at grain boundaries. In such a structure, hydrogen erosion causes formation of crystals connected along the grain boundaries, leading to significant deterioration of the steel. On the other hand, research has revealed that heat treatment causes eutectoid transformation. Based on this result, it became clear that steel with excellent hydrogen corrosion resistance could be produced by carrying out a processing heat treatment method that causes finely dispersed precipitation, and the method of the present invention was successful. It is something. That is, by heating to a temperature close to the AC3 transformation point (±70c), which is the austenitizing temperature, coarsening of the initial austenite crystal grains is prevented, and by processing in the two-phase mixing region of austenite and ferrite, the subsequent austenite phase is prevented. Crystal grains related to eutectoid transformation can be made fine and dispersed. The structure that has undergone such processing heat treatment is a mixed structure of fine ferrite and pearlite.
Moreover, the connection of theory 9 due to hydrogen erosion due to the dispersion of pearlite is suppressed, thereby reducing the deterioration of the steel.

一般に共析変態によって生ずるフェライト、パーライト
の混合組織を有する鋼では、マルテンサイトやペイナイ
トヲ焼戻しだ組織に較べて強度が低くなるが、本発明の
加工熱処理では結晶粒の微細化VCよってこの強度低下
全抑制している。従ってMn、Or、Mo などの合金
元素の少ない鋼では2相混合域での圧下率を太きくしな
ければならないので、本発明のような合金成分を有する
鋼では所定の強度と耐水素侵食性の見地から10%以上
の圧下率が必要である。圧下率は上限を特に限定しない
が、圧延設備の能力や圧延スケジュールなどによりきめ
られる。同様にオーステナイト化温度が高くなると初期
のオーステナイト結晶粒を粗大化して、これに続く加工
によっても微細な結晶粒を得ることが困難なため初期の
加熱温度の上限奮オーステナイト変態点AC3より上の
70Cに制限するが、一方この加熱温度が低すぎると炭
素のオーステナイトへの充分な固溶が得られなくなり、
2相温度域加工後の炭化物析出が期待できなくなるので
、加熱温度の下限1Ac3変態点以下の70cとする。
In general, steel with a mixed structure of ferrite and pearlite produced by eutectoid transformation has lower strength than a structure in which martensite or paynite is tempered, but in the heat treatment of the present invention, this strength reduction is completely eliminated by the grain refinement VC. It's suppressed. Therefore, in steels with few alloying elements such as Mn, Or, Mo, etc., the reduction ratio in the two-phase mixing region must be increased, so in steels with alloying elements such as those of the present invention, it is necessary to achieve the specified strength and hydrogen corrosion resistance. From this point of view, a reduction ratio of 10% or more is required. The upper limit of the rolling reduction rate is not particularly limited, but is determined depending on the capacity of the rolling equipment, rolling schedule, etc. Similarly, when the austenitizing temperature becomes high, the initial austenite crystal grains become coarse, and it is difficult to obtain fine crystal grains by subsequent processing. However, if this heating temperature is too low, sufficient solid solution of carbon into austenite will not be obtained.
Since carbide precipitation cannot be expected after two-phase temperature range processing, the lower limit of the heating temperature is set to 70c, which is below the 1Ac3 transformation point.

又2相温度域での加工後、I C/ Sec以下の冷却
速度で400i、’Jで冷却させるのは、炭化物の析出
をこの温度域まで抑え微細な共析変態によるパーライト
【化成させるためである。冷却速度は特に下限を限定し
ないが、あまり速度を遅くすると生産性が低下する。ま
た400C以下にまでこの冷却速度で冷却させるとマル
テンサイトやベイナイトなどの低温変態生成物が形成さ
れるため、この冷却速度で冷却する温度の下限を400
Cとした。
In addition, after processing in the two-phase temperature range, the reason for cooling at 400 i, J at a cooling rate of less than I C/Sec is to suppress the precipitation of carbides to this temperature range and to form pearlite through fine eutectoid transformation. be. There is no particular lower limit to the cooling rate, but if the cooling rate is too slow, productivity will decrease. In addition, if the temperature is cooled to 400C or less at this cooling rate, low-temperature transformation products such as martensite and bainite will be formed, so the lower limit of the temperature for cooling at this cooling rate should be set to 400C or lower.
It was set as C.

本発明はこのように鋼の組織を加工熱処理によって微細
化することによって強度の向上と微細分散したパーライ
ト組織によって耐水素侵食性の改善全図ったものである
In this way, the present invention aims to improve the strength of the steel by making the structure of the steel finer through processing and heat treatment, and to improve the hydrogen corrosion resistance due to the finely dispersed pearlite structure.

次に本発明における鋼の成分範囲限定の理由について説
明する。
Next, the reason for limiting the range of steel components in the present invention will be explained.

Cooは安価な強化元素として鋼の強度を保つためには
0.・01%以上が必要である。しかし0.60%を超
えると靭性、溶接性を劣化さぜる。
Coo is an inexpensive reinforcing element that is required to maintain the strength of steel.・More than 0.01% is required. However, if it exceeds 0.60%, toughness and weldability deteriorate.

Si: Siは脱酸のためには0.01%以上が必要で
あるが、1%を超えると靭性、溶接性全劣化させる。
Si: 0.01% or more of Si is required for deoxidation, but if it exceeds 1%, toughness and weldability are completely degraded.

Mn”、 MnはSの固定及び鋼の強化に必要な元素で
あり、この目的には0.01%以上を必要とするが、2
%を超えると靭性、溶接性全劣化させる。
Mn", Mn is an element necessary for fixing S and strengthening steel, and for this purpose requires 0.01% or more, but 2.
%, the toughness and weldability will deteriorate completely.

Mo : Moは耐クリープ特性に必要な元素であり、
この目的には0.1%以上が必要である。しかし2%を
超えると加工熱処理後の冷却過程でマルテンザイト組織
となって微細なパーライトを分散させることができない
ため本発明の目的を辻成することができない。
Mo: Mo is an element necessary for creep resistance,
For this purpose, 0.1% or more is required. However, if it exceeds 2%, a martenzite structure forms during the cooling process after processing and heat treatment, making it impossible to disperse fine pearlite, making it impossible to achieve the object of the present invention.

Or : Orは耐クリープ特性に必要であるが6.5
%を超えると加工熱処理後の冷却過程でマルテンザイト
組織となってMO同様、微細なパーライトを分散させる
ことができなくなる。
Or: Or is necessary for creep resistance, but is 6.5
If it exceeds %, a martenzite structure will be formed in the cooling process after processing heat treatment, and like MO, fine pearlite cannot be dispersed.

he : heは脱酸に必要な元素であるか、0,2%
以上を超えると溶接性を劣化させる。
he: He is an element necessary for deoxidation, or 0.2%
Exceeding the above results in deterioration of weldability.

Ti、Nb、V :これらの元素は炭化物の安定に有効
であるが、総量で0.2%を超えるとパーライトの分散
形態をそこない、微細なパーライトを分散させることが
できなくなる。
Ti, Nb, V: These elements are effective in stabilizing carbides, but if the total amount exceeds 0.2%, the dispersion form of pearlite will be impaired, making it impossible to disperse fine pearlite.

以下、本発明を実施例を示して説明する。Hereinafter, the present invention will be explained by showing examples.

実施例 下記第1表に示す4種の鋼を溶製し、20訪厚の銅板に
熱間圧延し、これに第1表に併記した熱処理を与えた後
試験片に加工し、オートクレーブ中にて応力を加えずに
設置し温度と水素圧との条件全(/J 500 C12
00峙/crrr’ (B〕400c、200kg/d
、(C)500C,200ky / cm’としてI 
O,000時間保持した。次いで、この試験片をオート
クレーブより取り出し、実験温度と同じ温度で引張試験
全行ない、オートクレーブ中で水素侵食試験全行なった
ものと同−鋼で水素侵食試験を行なわない試験片との引
張伸びを比較することにより水素侵食による鋼の劣化を
評価した。即ち、水素侵食感受性因子全水素侵食試験後
の引張伸び/水素侵食試験前の引張伸びと定義して、そ
の因子が0.7以下のものを×、0.7〜0.9を△、
0.9以上のものを○として、その結果を同じ第1表に
併記する。
Examples Four types of steel shown in Table 1 below were melted and hot-rolled into a copper plate with a thickness of 20 mm.After being subjected to the heat treatment listed in Table 1, it was processed into a test piece and placed in an autoclave. Installed without applying stress, and under all conditions of temperature and hydrogen pressure (/J 500 C12
00/crrr' (B) 400c, 200kg/d
, (C) 500C, 200ky/cm' as I
It was held for 0,000 hours. Next, this test piece was taken out of the autoclave and subjected to a full tensile test at the same temperature as the experimental temperature, and the tensile elongation was compared between a test piece that underwent all hydrogen attack tests in the autoclave and a test piece made of the same steel but not subjected to a hydrogen attack test. The deterioration of steel due to hydrogen attack was evaluated by this method. That is, the hydrogen attack susceptibility factor is defined as the tensile elongation after the total hydrogen attack test/the tensile elongation before the hydrogen attack test, and the factor is 0.7 or less as ×, 0.7 to 0.9 as △,
Those of 0.9 or more are marked as ○, and the results are also listed in the same Table 1.

上記第1表に示した実験結果はM、鋼、Or−MO鋼の
いずれも従来の熱処理に比較し、本発明による加工熱処
理法が耐水素侵食割れ性にすぐれたものであることを示
している。
The experimental results shown in Table 1 above show that the processing heat treatment method of the present invention has excellent hydrogen corrosion cracking resistance compared to conventional heat treatment for M, steel, and Or-MO steel. There is.

Claims (1)

【特許請求の範囲】 10でCO,O+〜0,30%、Si 0101〜1.
0%、Mn 11.01〜2−0%、MOOj〜2.0
%を含有し、さらに必要に応じCr 5.5%以下、A
J。 Ti、Nb、Vの1種又は2ね以上J2%以下を含有し
、残部は実質的にFe より成る鋼をAO3変態点の±
70C(D温度範囲に加熱した後、冷却過程の6000
以上の温度で圧下率で10%以上の加工を行ない、続い
てI i:l’ / Sec以下の冷却速度で4000
まで冷却して共析変態を行なわせることを特徴とする耐
水素侵食割れ性にすぐれた鋼の製造方法。
[Claims] 10 with CO, O+~0.30%, Si 0101~1.
0%, Mn 11.01~2-0%, MOOj~2.0
%, and if necessary Cr 5.5% or less, A
J. A steel containing one or more of Ti, Nb, and V and J2% or less, with the remainder substantially consisting of Fe, is heated to
After heating to 70C (D temperature range, 6000C in the cooling process)
Processing is carried out at a reduction rate of 10% or more at a temperature above, and then a cooling rate of 4000
A method for producing steel with excellent hydrogen erosion cracking resistance, which is characterized by cooling to a temperature of 100°C to cause eutectoid transformation.
JP5644984A 1984-03-24 1984-03-24 Manufacture of steel superior in hydrogen corrosion cracking resistance Pending JPS60200914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5644984A JPS60200914A (en) 1984-03-24 1984-03-24 Manufacture of steel superior in hydrogen corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5644984A JPS60200914A (en) 1984-03-24 1984-03-24 Manufacture of steel superior in hydrogen corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPS60200914A true JPS60200914A (en) 1985-10-11

Family

ID=13027403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5644984A Pending JPS60200914A (en) 1984-03-24 1984-03-24 Manufacture of steel superior in hydrogen corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS60200914A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852242A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-temperature high-pressure hydrogen corrosion resistant thick steel plate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852242A (en) * 2021-09-24 2023-03-28 宝山钢铁股份有限公司 High-temperature high-pressure hydrogen corrosion resistant thick steel plate and manufacturing method thereof
CN115852242B (en) * 2021-09-24 2024-03-08 宝山钢铁股份有限公司 High-temperature high-pressure hydrogen corrosion-resistant thick steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
EP0796352B1 (en) Ultra-high strength steels and method thereof
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
EP1118687B1 (en) High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet
EP0649915A1 (en) High-strength martensitic stainless steel and method for making the same
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
WO1999002747A1 (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
JP2000345281A (en) Low alloy heat resistant steel excellent in weldability and low temperature toughness, and its production
US4316753A (en) Method for producing low alloy hot rolled steel strip or sheet having high tensile strength, low yield ratio and excellent total elongation
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPS6160892B2 (en)
US5314549A (en) High strength and high toughness stainless steel sheet and method for producing thereof
JP2588421B2 (en) Method for producing ultra-high strength steel with excellent ductility
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPS625986B2 (en)
JPS647138B2 (en)
JP2680350B2 (en) Method for producing Cr-Mo steel sheet having excellent toughness
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH06184630A (en) Production of thick 9% ni steel excellent in low temperature toughness
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPS60200914A (en) Manufacture of steel superior in hydrogen corrosion cracking resistance
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness