JPS60198885A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS60198885A
JPS60198885A JP5581484A JP5581484A JPS60198885A JP S60198885 A JPS60198885 A JP S60198885A JP 5581484 A JP5581484 A JP 5581484A JP 5581484 A JP5581484 A JP 5581484A JP S60198885 A JPS60198885 A JP S60198885A
Authority
JP
Japan
Prior art keywords
laser
semiconductor
semiconductor laser
integrated
integrated semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5581484A
Other languages
Japanese (ja)
Inventor
Yukio Watanabe
幸雄 渡辺
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5581484A priority Critical patent/JPS60198885A/en
Publication of JPS60198885A publication Critical patent/JPS60198885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To independently monitor laser beams, which are emitted from each semiconductor laser element, and at the same time, to suppress the mutual intervention effect of heat between the elements by a method wherein plural laser elements are integrated on the same chip and a semiconductor light detecting element having a response speed faster than a speed, during the time of which the mutual intervention effect of heat between the elements arises, is provided. CONSTITUTION:An integrated semiconductor light detecting element 20 is mounted on a stem 10 and an integrated semiconductor laser element 30 is mounted thereon. The light detecting element 20 consists of an n type substrate 21, an I-type layer 22, a p type layer 23, a common electrode 25 and independent electrodes 26 and has a high frequency response characteristic of more than 10MHz. The laser element 30 consists of an n type GaAs substrate 31, an n type GaAlAs clad layer 32, a GaAs active layer 33, a p type GaAlAs clad layer 34, a p type GaAs contact layer 35, a common electrode 36 and an independent electrode 37. The laser element 30 is driven in a pulse width shorter than a time, during which the mutual intervention of heat between laser elements arises, and light is received by the light detecting element 20. As a result, laser beams, which are emitted from each semiconductor laser element, are independently monitored.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、集積化半導体レーザ装置に係わり、特に集積
化半導体レーザ素子からの各レーザ光を監視するための
集積化半導体光検出素子を備えた集積化半導体レーザ装
置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an integrated semiconductor laser device, and more particularly, to an integrated semiconductor laser device equipped with an integrated semiconductor photodetection element for monitoring each laser beam from an integrated semiconductor laser element. The present invention relates to an integrated semiconductor laser device.

(発明の技術的背景とその問題点) 種々の発振波長若しくは本質的には同一波長の半導体レ
ーザ素子を同一基板上に形成した集積化半導体レーザH
Hは、光フアイバ通信における通信の多重化、或いはビ
ットパラレル伝送を実現する上で非常に有用なデバイス
である。また、半導体レーザを用いたレーザど−ムプリ
ンタに集積化半導体レーザ装置を用いれば、同時に数行
の掃引ができ高速化が実現可能となり、更には集積化半
導体レーザ装置を光デイスク用ピックアップの光源とし
て用いれば、やはり数行の書込みと読出しとを殆ど同時
に行うことも可能となる。この点で集積化半導体レーザ
装置は、光情報処理・光情報伝送の分野で今後非常に有
用なものと見なされている。
(Technical background of the invention and its problems) Integrated semiconductor laser H in which semiconductor laser elements with various oscillation wavelengths or essentially the same wavelength are formed on the same substrate
H is a very useful device for realizing communication multiplexing or bit parallel transmission in optical fiber communications. Furthermore, if an integrated semiconductor laser device is used in a laser beam printer that uses a semiconductor laser, it will be possible to sweep several lines at the same time, increasing the speed. If used as a buffer, it is also possible to write and read several lines almost simultaneously. In this respect, integrated semiconductor laser devices are considered to be extremely useful in the fields of optical information processing and optical information transmission.

ところで、この種の集積化半導体レーザ装置では個々の
半導体レーザ素子の先出ノjをいかに監視するのかが非
常に重要な問題となる。一般に、半導体レーザ素子の電
流−光出力特性は温度に敏感であるため、各素子の光出
力を一定に保つためには各素子の光出力を監視し、一定
の光出力になるよう各素子に流す電流を111節するこ
とが必要となる。また、長期の使用によっても各素子の
電流−光出力特性は変化するため、これを補償するため
にも光出力の監視は是非とも必要とされる。ところが多
くの場合、集積化半導体レーザ装置における各素子が5
0[μm]〜500[μTrL]前後と近接して形成さ
れる点と、半導体レーザ素子から放射されるレーザ光の
ビーム広がり角が数10度と広いために、集積化半導体
レーザ装置から少し離れた場所で光出力を検出しようと
すると、隣り同志のレーザ光が混ざり合い、結果として
半導体レーザ素子の各光出力を正しく監視することがで
きない自体となる。
By the way, in this type of integrated semiconductor laser device, how to monitor the first output of each semiconductor laser element is a very important problem. Generally, the current-optical output characteristics of semiconductor laser devices are sensitive to temperature, so in order to keep the optical output of each device constant, the optical output of each device must be monitored, and each device must be adjusted to maintain a constant optical output. It is necessary to divide the current through 111 nodes. Furthermore, since the current-light output characteristics of each element change due to long-term use, it is absolutely necessary to monitor the light output to compensate for this. However, in many cases, each element in an integrated semiconductor laser device is
Because the points are formed close to each other (approximately 0 [μm] to 500 [μTrL]) and the beam divergence angle of the laser light emitted from the semiconductor laser element is as wide as several tens of degrees, the laser beam is formed a little far from the integrated semiconductor laser device. If an attempt is made to detect the optical output at a location where the semiconductor laser device is located, the laser beams of adjacent laser beams will mix, and as a result, it will not be possible to correctly monitor each optical output of the semiconductor laser element.

半導体レーザ素子の光出力の監視には、例えばGaA 
I Asレーザの場合にはシリコンフォトダイオードが
用いられる。これを用いて集積化GaAIASレーザの
光出力を監視をしようとする場合、シリコンフォトダイ
オードをアレイ状に集積し、これを集積化GaA I 
Asレーザに十分近付けて装着することになるが、各半
導体レーザ素子の光出力を互いの干渉なく独立に監視す
るためには、シリコンフォトダイオードアレイを各し〜
ザ素子の間隔と同程度かそれ以下に取付けることが必要
となるが、多くの場合半導体レーザ素子のマウントの制
約条件のために、近接して取付けることはできない。
For monitoring the optical output of a semiconductor laser device, for example, GaA
In the case of IAs lasers, silicon photodiodes are used. When trying to use this to monitor the optical output of an integrated GaAIAS laser, silicon photodiodes are integrated in an array, and this is then used to monitor the optical output of an integrated GaAIAS laser.
The silicon photodiode array must be mounted sufficiently close to the As laser, but in order to monitor the optical output of each semiconductor laser element independently without interference with each other, a silicon photodiode array must be mounted on each semiconductor laser element.
Although it is necessary to mount the semiconductor laser elements at a spacing comparable to or less than that of the semiconductor laser elements, in many cases it is not possible to mount them close to each other due to mounting constraints of the semiconductor laser elements.

このような問題を解決する手段として本発明者等は、半
導体レーザ素子と半導体光検出素子とを層状に重ねてマ
ウントし、レーザ素子から放射される光をレーザ素子の
結晶面と平行な受光面で受光する方法を考えた(特願昭
51−83872号)。しかしながらこの方法は、単一
のレーザ素子からのレーザ光を監視するには有効で、あ
るが、集積化された半導体レーザ装置に適用した場合、
次のような問題がある。即ち、前述したように集積化半
導体レーザ装置における各素子の間隔は50〜500[
μm ]前後であるから、当然モノリシックな構成とな
る。この場合、レーザ各素子の間隔が非常に近接してい
るため、一つの素子で発生した熱が隣接した素子の温度
を上昇させ、レーザ素子の電流−光出力特性に温度依存
性が存在することから、隣接した素子の光出力が変動す
ると云う、各レーザ素子間の熱の相互干渉が生じる。そ
して、熱の相互干渉効果は、モノリシックなレーザアレ
イにおいては避けがたい問題であることが判明した。従
って、上述した方法でレーザ素子からの光を監視してこ
の情報をフィードバック制御してもレーザ光を一定の出
力に保つことはできないのである。
As a means to solve such problems, the present inventors mounted a semiconductor laser element and a semiconductor photodetector element in a layered manner, and the light emitted from the laser element is directed to a light-receiving surface parallel to the crystal plane of the laser element. (Japanese Patent Application No. 51-83872). However, although this method is effective for monitoring laser light from a single laser element, when applied to an integrated semiconductor laser device,
There are the following problems. That is, as mentioned above, the distance between each element in the integrated semiconductor laser device is 50 to 500 [
[μm], so it naturally has a monolithic configuration. In this case, because the distance between each laser element is very close, the heat generated in one element increases the temperature of the adjacent element, causing a temperature dependence in the current-light output characteristics of the laser element. This causes mutual thermal interference between the laser elements, which causes the optical output of adjacent elements to fluctuate. It has been found that mutual thermal interference effects are an unavoidable problem in monolithic laser arrays. Therefore, even if the light from the laser element is monitored using the method described above and feedback control is performed using this information, it is not possible to maintain the laser light at a constant output.

(発明の目的) 本発明の目的は、集積化半導体レーザ素子からの各レー
ザ光を独立に監視することができ、且つレーザ素子間の
熱の相互干渉効果を抑えることが可能な集積化半導体レ
ーザ装置を提供することにある。
(Objective of the Invention) An object of the present invention is to provide an integrated semiconductor laser capable of independently monitoring each laser beam from an integrated semiconductor laser element and suppressing mutual thermal interference effects between laser elements. The goal is to provide equipment.

〔発明の概要〕[Summary of the invention]

前述したレーザ素子間の熱の相互干渉効果を抑えるため
に本発明者等は、該干渉が生じない程度の繰返し及びパ
ルス幅でレーザ素子を駆動することを考えた。例えば、
レーザ素子の平均間隔が50[μ77L1の場合、熱は
10−7程度度で隣接したレーザ素子に到達するので、
上記熱の相互干渉効果を抑えるためにはこれ以下のパル
ス幅でレーザ素子を駆動すればよい。但し、この場合通
常の光検出素子では十分な検出出力が得られないので、
光検出素子として応答性の高いものが必要となる。
In order to suppress the above-described mutual thermal interference effect between the laser elements, the inventors of the present invention have considered driving the laser element with repetition and pulse width such that such interference does not occur. for example,
When the average spacing between laser elements is 50[μ77L1, heat reaches adjacent laser elements at about 10-7 degrees, so
In order to suppress the thermal mutual interference effect described above, the laser element may be driven with a pulse width less than this. However, in this case, a normal photodetector cannot provide sufficient detection output, so
A photodetecting element with high responsiveness is required.

このような点に着目して本発明者等が種々の実験を重ね
た結果、繰返し周期10[K1−1z]、パルス幅〜1
0 [n5ec]程度でレーザ素子を駆動したところ、
レーザ素子間の熱的干渉が殆ど抑えられることが判った
。また、光検出素子としてAPDやPINフォトダイオ
ード(周波数応答特性10MH2程度)を用いることに
より、上記駆動条件でも十分な受光特性が得られること
が判明した。
Focusing on these points, the inventors conducted various experiments and found that the repetition period was 10 [K1-1z] and the pulse width was ~1.
When the laser element was driven at about 0 [n5ec],
It was found that thermal interference between laser elements was almost suppressed. Furthermore, it has been found that by using an APD or a PIN photodiode (frequency response characteristic of about 10 MH2) as a photodetecting element, sufficient light receiving characteristics can be obtained even under the above driving conditions.

本発明はこのような事情を考慮してなされたもので、同
一チップ上に複数のレーザ素子を集積してなる集積化半
導体レーザ素子と、同一チップ上に複数の光検出素子を
集積してなり上記半導体レーザ素子の結晶面と平行な一
生面にその受光面側が該主面と接するように、且つその
受光面が上記半導体レーザ素子の結晶面と略平行に出射
されるレーザ光の出側端面より外側に突出するように固
定され、上記半導体レーザ素子からの各レーザ光をそれ
ぞれ監視する集積化半導体光検出素子と、上記半導体レ
ーザ素子酸いは半導体光検出素子の一方をマウントする
ステムとを具備してなる半導体集積化レーザ装置におい
て、前記半導体光検出素子として、前記半導体レーザ素
子相互間の熱的干渉を生じる発光パルスよりも速い応答
速度を持つAPDやPINフォトダイオード等を用いる
ようにしたものである。
The present invention has been made in consideration of these circumstances, and includes an integrated semiconductor laser device that is formed by integrating a plurality of laser elements on the same chip, and an integrated semiconductor laser device that is formed by integrating a plurality of photodetector elements on the same chip. An emission side end face of laser light emitted such that the light-receiving surface side is in contact with the main surface of the semiconductor laser element, and the light-receiving surface is substantially parallel to the crystal plane of the semiconductor laser element. an integrated semiconductor photodetector element that is fixed to protrude further outward and monitors each laser beam from the semiconductor laser element; and a stem that mounts either the semiconductor laser element or the semiconductor photodetector element. In the semiconductor integrated laser device, an APD, a PIN photodiode, or the like having a response speed faster than a light emission pulse that causes thermal interference between the semiconductor laser elements is used as the semiconductor photodetection element. It is something.

(発明の効果〕 本発明によれば、集積化半導体レーザ素子を熱の相互干
渉効果が生じない程度のパルス幅(10nsθC程度の
パルス幅)で駆動することにより、該レーザ素子の熱の
相互干渉効果を未然に防止することができる。しかも、
上記パルス幅より十分高い応答特性を有する光検出素子
を用いているので、レーザ素子からのレーザ光を十分検
出することができ、この検出情報をフィードバックする
ことによりレーザ素子の各レーザ出力を一定に保持する
ことができる。即ち、半導体光検出素子としてAPDや
PINフォトダイオード等を用いることにより10[M
Hz]以上の周波数応答特性を持たせることができるの
で、レーザ素子を10−7秒以下のパルス幅で(動させ
た場合でも、その間における隣接したレーザ素子の熱的
影響に基づく光出力の変動を動作電流を高速で調整する
ことにより補償でき、熱の相互干渉を数E%]以下に抑
えることができる。このため、将来の光フアイバ多重通
信及びビットパラレル伝送等に極めて有効である。
(Effects of the Invention) According to the present invention, by driving an integrated semiconductor laser element with a pulse width (pulse width of about 10 nsθC) that does not cause mutual thermal interference, mutual thermal interference of the laser element is achieved. The effects can be prevented.Moreover,
Since a photodetector element with a response characteristic sufficiently higher than the above pulse width is used, it is possible to sufficiently detect the laser light from the laser element, and by feeding back this detection information, the laser output of each laser element can be kept constant. can be retained. That is, by using APD, PIN photodiode, etc. as a semiconductor photodetection element, 10 [M
Hz] or more, even if the laser element is moved with a pulse width of 10-7 seconds or less, the optical output fluctuation due to the thermal influence of adjacent laser elements during that time can be achieved. can be compensated for by adjusting the operating current at high speed, and mutual thermal interference can be suppressed to less than several E%.Therefore, it is extremely effective for future optical fiber multiplex communications and bit parallel transmission.

(発明の実施例) 第1図は本発明の一実施例に係わる集積化半導体レーザ
装置の概略構成を示す斜視図である。この実施例装置は
、集積化半導体レーザ素子としてGaAlAsレーザア
レイを、集積化半導体光検出素子としてシリコンPIN
フォトダイオードアレイを用いた例である。図中10は
銅製のステムで、このステム10上には集積化半導体光
検出素子20がマウントされ、該検出素子20上には集
積化半導体レーザ素子30がマウントされている。
(Embodiment of the Invention) FIG. 1 is a perspective view showing a schematic configuration of an integrated semiconductor laser device according to an embodiment of the invention. This embodiment device uses a GaAlAs laser array as an integrated semiconductor laser element and a silicon PIN as an integrated semiconductor photodetector element.
This is an example using a photodiode array. In the figure, reference numeral 10 denotes a stem made of copper; an integrated semiconductor photodetecting element 20 is mounted on the stem 10, and an integrated semiconductor laser element 30 is mounted on the detecting element 20.

ここで、半導体レーザ素子江は、第2図に示す如くN型
基板21.エピタキシャル成長による1層22及び拡散
によるP層23等からなるPINフAトダイオードをア
レイ状に集積してなるもので、その受光部24は300
[μm]間隔で形成されており、各受光部24の面積は
150[μm]x150 [μm]である。各ダイオー
ドのN側電極25は基板21を通して共通電極となって
おり、P側電極26が独立電極となっている。そして、
このシリコンPINフォトダイオードアレイ(集積化半
導体光検出素子>20は、N側電極25を下にして前記
銅製ステム10上に金−錫合金40を融着金属としてマ
ウントされている。なお、上記集積化半導体光検出素子
り史は、10[MHz]以上の極めて高い周波数応答特
性を有するものとなっている。
Here, the semiconductor laser element is connected to an N-type substrate 21. as shown in FIG. It is formed by integrating PIN photodiodes in an array, consisting of a single layer 22 formed by epitaxial growth and a P layer 23 formed by diffusion, and its light receiving section 24 consists of 300 PIN photodiodes.
They are formed at intervals of [μm], and the area of each light receiving section 24 is 150 [μm] x 150 [μm]. The N-side electrode 25 of each diode serves as a common electrode through the substrate 21, and the P-side electrode 26 serves as an independent electrode. and,
This silicon PIN photodiode array (integrated semiconductor photodetecting element>20 is mounted on the copper stem 10 with the N-side electrode 25 facing down using a gold-tin alloy 40 as a fusion metal. Chemical semiconductor photodetecting elements have extremely high frequency response characteristics of 10 [MHz] or more.

一方、前記半導体レーザ素子30はN型GaAS基板3
1.N−GaAlAsクラッド層32゜GaAs活性層
33.P−GaAlAsクラッド層34及びP−GaA
Sコンタクト層35等からなるヘテロ接合構造のレーザ
を集積してなるもので、各レーザ素子間の間隔は300
[μTrL]である。このレーザのN側電極36は共通
電極となっており、P側電極37は独立電極となってい
る。
On the other hand, the semiconductor laser device 30 has an N-type GaAS substrate 3
1. N-GaAlAs cladding layer 32°GaAs active layer 33. P-GaAlAs cladding layer 34 and P-GaA
It is made by integrating lasers with a heterojunction structure consisting of an S contact layer 35, etc., and the spacing between each laser element is 300 mm.
[μTrL]. The N-side electrode 36 of this laser is a common electrode, and the P-side electrode 37 is an independent electrode.

そして、このGaA I Asレーザアレイ(集積化半
導体レーザ素子)LLは、上記P側電極37側を下にし
て前記集積化半導体光検出素子20上に金−錫合金50
を介してマウン1〜されている。即ち、同一チップ上に
複数のレーザ素子を集積してなる集積化半導体レーザ素
子1史と、同一チップ上に複数の光検出素子を集積して
なる集積化半導体光検出素子IQ−とが、半導体レーザ
素子圧の結晶面と平行な一生面に半導体光検出素子20
の受光面側が接するように積層され、且つ半導体光検出
素子Uの受光面24が半導体レーザ素子1、Q−の結晶
面と略平行に出射されるレーザ光の出射端面より外側に
突出するように固定され、半導体レーザ素子1艶からの
各レーザ光が半導体光検出素子20によりそれぞれ監視
されるものとなっている。
This GaA I As laser array (integrated semiconductor laser device) LL includes a gold-tin alloy 50 placed on the integrated semiconductor photodetector device 20 with the P-side electrode 37 side facing down.
Mound 1 has been through. In other words, an integrated semiconductor laser device 1 which is formed by integrating a plurality of laser devices on the same chip, and an integrated semiconductor photodetector device IQ- which is formed by integrating a plurality of photodetectors on the same chip are semiconductors. Semiconductor photodetector element 20 is placed on the life plane parallel to the crystal plane of the laser element pressure.
are stacked so that the light-receiving surfaces of the semiconductor photodetecting elements U are in contact with each other, and the light-receiving surface 24 of the semiconductor photodetecting element U protrudes outward from the emitting end surface of the laser beam emitted substantially parallel to the crystal plane of the semiconductor laser element 1, Q-. The semiconductor laser element 1 is fixed and each laser beam from the semiconductor laser element 1 is monitored by the semiconductor light detection element 20, respectively.

なお、上記レーザ素子旦をマウントする前記PINフォ
トダイオードアレイL史の1層上にはIti層60が設
けられており、この電極1160はレーザ素子30のレ
ーザ光出射端面から突出したPINフォトダイオードア
レイIQ−の1層22上に延在されている。そして、上
記電極60とN側電極36との間に電圧が印加されレー
ザ素子30が駆動されるものとなっている。さらに、前
記N側電極21及びP側電極26間にバイアス電圧が印
加され、これによりPINフォトダイオードアレイL史
が駆動されるものとなっている。
Note that an Iti layer 60 is provided on one layer of the PIN photodiode array L on which the laser element 30 is mounted, and this electrode 1160 is connected to the PIN photodiode array protruding from the laser beam emitting end face of the laser element 30. It extends over one layer 22 of IQ-. A voltage is applied between the electrode 60 and the N-side electrode 36 to drive the laser element 30. Furthermore, a bias voltage is applied between the N-side electrode 21 and the P-side electrode 26, thereby driving the PIN photodiode array L.

このような構成において、前記レーザ素子1史のレーザ
光ビーム広がり角が半値全幅で、接合面に垂直方向40
度、同じく水平方向20度で、レーザ光出射点があるP
N接合面はシリコンPINフォトダイオード受光面から
5[μTrL]の高さにあるようなものを用いた時、各
レーザ素子の出射端面から放射されるレーザ光の内おお
よそ20[%]がフォトダイオードにより受光されるこ
とが確認できた。さらに、各フォトダイオード間の干渉
も無視し得る程度に小さいことが確認できた。
In such a configuration, the laser beam divergence angle of the laser element 1 is the full width at half maximum, and is 40 mm in the direction perpendicular to the bonding surface.
degree, also at 20 degrees in the horizontal direction, P where the laser beam emission point is
When using an N-junction surface with a height of 5 [μTrL] from the light-receiving surface of a silicon PIN photodiode, approximately 20[%] of the laser light emitted from the output end face of each laser element is from the photodiode. It was confirmed that light was received by Furthermore, it was confirmed that the interference between each photodiode was negligible.

また、数[KH2]の繰返し周期、10−”程度度のパ
ルス時間幅でレーザ素子を駆動して、この時のレーザ出
力をフォトダイオードで受光したところ、十分なる検出
出力が得られた。即ち、レーザ素子の通電による発熱効
果によって隣接するレーザ素子の光出力が変化する熱的
問題に起因したクロストークはPINフォトダイオード
を用い光監視を〜10 [n5eclで行うことができ
たため、ダイオード出力により動作電流に帰還をかけ、
各レーザ素子の光出力を一定に保持すると云う当初の目
的が実現したことが確認できた。また、熱的なりロスト
ークは数[%]以下に抑えることができた。
Furthermore, when the laser element was driven with a repetition period of several [KH2] and a pulse duration of about 10-'' degrees, and the laser output at this time was received by a photodiode, a sufficient detection output was obtained. , crosstalk caused by a thermal problem in which the optical output of an adjacent laser element changes due to the heat generation effect caused by energization of a laser element can be optically monitored using a PIN photodiode. Applying feedback to the operating current,
It was confirmed that the original purpose of keeping the optical output of each laser element constant was achieved. In addition, thermal losstalk could be suppressed to a few [%] or less.

かくして本実施例によれば、集積化半導体レーザ素子1
止からのレーザ光をPINフォトダイオードアレイから
なる集積化半導体光検出素子20により独立して検出す
ることができ、且つ各レーザ素子間の熱的干渉を抑える
に十分なパルス幅でレーザ素子30を駆動することがで
きる。このため、半導体光検出素子20の検出出力を基
にフィードバック制御することにより、レーザ出力を一
定に保持することができる。また、PINフオトタイオ
ードアレイユを用いているので、PINの1層22を各
レーザ素子の電極分離に利用することができる等の利点
がある。
Thus, according to this embodiment, the integrated semiconductor laser device 1
The integrated semiconductor photodetector element 20 consisting of a PIN photodiode array can independently detect the laser beam from the laser beam, and the laser element 30 can be detected with a pulse width sufficient to suppress thermal interference between each laser element. Can be driven. Therefore, by performing feedback control based on the detection output of the semiconductor photodetector element 20, the laser output can be held constant. Furthermore, since a PIN photodiode array is used, there are advantages such as one layer 22 of PIN can be used to separate the electrodes of each laser element.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記集積化半導体光検出素子としては、P
INフォトダイオードに限るものではなく、周波数応答
特性の十分速い、具体的にはレーザ素子相互間の熱干渉
を生じる時間よりも速い応答特性(10MHz程度以上
)を持つ素子であればよ<、APD (アバランシェフ
ォトダイオード)を用いるようにしてもよい。また、レ
ーザ素子の構成材料はGaAlAs系に限るものではな
く、各種の■−v族半導体を用いることができる。さら
に、レーザ素子の構造は前記第2図に何等限定されるも
のではなく、適宜変更可能であるのは勿論のことである
。また、前記ステム上に集積化半導体光検出素子をマウ
ン1−する代りに集積化半導体レーザ素子をマウントし
、このレーザ素子の上に光検出素子をマウントするよう
にしてもよい。その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, as the integrated semiconductor photodetecting element, P
It is not limited to IN photodiodes, but any element with sufficiently fast frequency response characteristics, specifically, a response characteristic (about 10 MHz or more) that is faster than the time at which thermal interference occurs between laser elements. (avalanche photodiode) may also be used. Further, the constituent material of the laser element is not limited to GaAlAs, and various 1-v group semiconductors can be used. Furthermore, the structure of the laser element is not limited to that shown in FIG. 2, and can of course be modified as appropriate. Furthermore, instead of mounting an integrated semiconductor photodetector element on the stem, an integrated semiconductor laser element may be mounted, and the photodetector element may be mounted on this laser element. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる集積化半導体レーザ
装置の概略構成を示す斜視図、第2図は上記i置の要部
構成を拡大して示す断面図である。 10・・・ステム、20 ・P I Nフォトダイオー
ドアレイ(集積化半導体光検出素子)、21・・・N型
シリコン基板、22・・・Ill、23−P層、24・
・・受光面、25.36・・・N側電極、26.37・
・・P側電極、ユ”・GaAIASレーザアレイ〈集積
化半導体レーザ素子)、31・・・N型G、aAs基板
、32.34・・・クラッド層、33・・・活性層、3
5・・・コンタクト層、40.50・・・金−錫合金(
融着金属)、60・・・電極層。 出願人代理人 弁理士 鈴江武彦 第1 図 第2 図
FIG. 1 is a perspective view showing a schematic structure of an integrated semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view showing the main structure of the i-position. DESCRIPTION OF SYMBOLS 10... Stem, 20 PIN photodiode array (integrated semiconductor photodetection element), 21... N-type silicon substrate, 22... Ill, 23-P layer, 24...
... Light receiving surface, 25.36 ... N side electrode, 26.37.
...P-side electrode, U''-GaAIAS laser array (integrated semiconductor laser device), 31...N-type G, aAs substrate, 32.34...cladding layer, 33...active layer, 3
5... Contact layer, 40.50... Gold-tin alloy (
fused metal), 60...electrode layer. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)同一チップ上に複数のレーザ素子を集積してなる
集積化半導体レーザ素子と、同一チップ上に複数の光検
出素子を集積してなり上記半導体レーザ素子の結晶面と
平行な一主面にその受光面側が該主面と接するように、
且つその受光面が上記半導体レーザ素子の結晶面と略平
行に出射されるレーザ光の出側端面より外側に突出する
ように固定され、上記半導体レーザ素子からの各レーザ
光をそれぞれ監視する集積化半導体光検出素子と、上記
半導体レーザ素子酸いは半導体光検出素子の一方をマウ
ントするステムとを具備し、前記半導体光検出素子は前
記半導体Lノーザ素子相互間の熱的干渉を生じる発光パ
ルスよりも速い応答速度を持つものであることを特徴と
する集積化半導体レー+f装置。
(1) An integrated semiconductor laser device formed by integrating a plurality of laser elements on the same chip, and one main surface parallel to the crystal plane of the semiconductor laser device formed by integrating a plurality of photodetecting elements on the same chip. so that its light-receiving surface side is in contact with the main surface,
and an integrated device whose light-receiving surface is fixed so as to protrude outward from the output end face of the laser beam emitted substantially parallel to the crystal plane of the semiconductor laser element, and which monitors each laser beam from the semiconductor laser element. The semiconductor photodetector includes a semiconductor photodetector and a stem for mounting one of the semiconductor laser device and the semiconductor photodetector, and the semiconductor photodetector is configured to detect light emitting pulses that cause thermal interference between the semiconductor L laser devices. An integrated semiconductor Ray +f device characterized by having a fast response speed.
(2) 前記半導体光検出素子は、APD或いはPIN
フォトダイオードからなるものであることを特徴とする
特許請求の範囲第1項記載の集積化半導体レーザ装置。 (a 前記半導体光検出素子は、10[MHz1以上の
周波数応答特性を有するものであることを特徴とする特
許請求の範囲第1項又は第2項記載の集積化半導体レー
ザ装置。
(2) The semiconductor photodetector element is an APD or a PIN
2. The integrated semiconductor laser device according to claim 1, wherein the integrated semiconductor laser device comprises a photodiode. (a) The integrated semiconductor laser device according to claim 1 or 2, wherein the semiconductor photodetecting element has a frequency response characteristic of 10 [MHz1 or more].
JP5581484A 1984-03-23 1984-03-23 Integrated semiconductor laser Pending JPS60198885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5581484A JPS60198885A (en) 1984-03-23 1984-03-23 Integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5581484A JPS60198885A (en) 1984-03-23 1984-03-23 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60198885A true JPS60198885A (en) 1985-10-08

Family

ID=13009399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5581484A Pending JPS60198885A (en) 1984-03-23 1984-03-23 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60198885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109383A (en) * 1985-11-07 1987-05-20 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPS6344467U (en) * 1986-09-09 1988-03-25
EP0284212A2 (en) * 1987-03-25 1988-09-28 Sony Corporation Semiconductor lasers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257790A (en) * 1975-11-06 1977-05-12 Sharp Corp Semiconductor scanner
JPS56150888A (en) * 1980-04-23 1981-11-21 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS57160189A (en) * 1981-03-30 1982-10-02 Hitachi Ltd Semiconductor luminous device incorporated with photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257790A (en) * 1975-11-06 1977-05-12 Sharp Corp Semiconductor scanner
JPS56150888A (en) * 1980-04-23 1981-11-21 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS57160189A (en) * 1981-03-30 1982-10-02 Hitachi Ltd Semiconductor luminous device incorporated with photodetector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109383A (en) * 1985-11-07 1987-05-20 Matsushita Electric Ind Co Ltd Optical integrated circuit device
JPS6344467U (en) * 1986-09-09 1988-03-25
EP0284212A2 (en) * 1987-03-25 1988-09-28 Sony Corporation Semiconductor lasers
US4847846A (en) * 1987-03-25 1989-07-11 Sony Corporation Semiconductor laser chip

Similar Documents

Publication Publication Date Title
US6597713B2 (en) Apparatus with an optical functional device having a special wiring electrode and method for fabricating the same
US4284884A (en) Electro-optic devices
US6449296B1 (en) Semiconductor laser device
US6301279B1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
EP0204725B1 (en) Asymmetric chip design for leds
EP0560358B1 (en) Laser system
US6633598B1 (en) Semiconductor laser device, and image forming apparatus
EP0583128B1 (en) Semiconductor laser with integrated phototransistor for dynamic power stabilization
EP1513235B1 (en) VCSEL with monolithically integrated photodetector and hybrid mirrors
JP3610235B2 (en) Surface light emitting device
JP4058633B2 (en) Surface-emitting light emitting device, optical module, optical transmission device
JPS60198885A (en) Integrated semiconductor laser
US6115398A (en) Automatic power control of a semiconductor laser array
EP0556639B1 (en) Semiconductor laser device
JPS6395690A (en) Surface emission type semiconductor laser
JPH03241879A (en) Chaos light emitting self-exciting laser device
JP2000277850A (en) Semiconductor laser element, semiconductor laser system, and manufacturing method of them
JPS61159788A (en) Semiconductor laser array device
JPS61182291A (en) Integrated semiconductor laser device
JP2003347646A (en) Semiconductor light emitting device and its optical output stabilizing method
JPH09312441A (en) Optical transmitter
JP2538451Y2 (en) Semiconductor laser device
JPS62143492A (en) Submount and photoelectron device provided with this submount
KR100219593B1 (en) Surface emitting laser
JPS6184086A (en) Semiconductor laser device