JPS60198870A - Photosensor element - Google Patents

Photosensor element

Info

Publication number
JPS60198870A
JPS60198870A JP59055768A JP5576884A JPS60198870A JP S60198870 A JPS60198870 A JP S60198870A JP 59055768 A JP59055768 A JP 59055768A JP 5576884 A JP5576884 A JP 5576884A JP S60198870 A JPS60198870 A JP S60198870A
Authority
JP
Japan
Prior art keywords
layer
region
upper electrode
photoelectric conversion
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055768A
Other languages
Japanese (ja)
Inventor
Akira Uchiyama
章 内山
Yuichi Masaki
裕一 正木
Toshiyuki Iwabuchi
岩渕 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59055768A priority Critical patent/JPS60198870A/en
Publication of JPS60198870A publication Critical patent/JPS60198870A/en
Priority to US07/204,942 priority patent/US4885622A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • H01L31/1055Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To increase the optical responding speed of the titled photosensor element by a method wherein the thickness of a part of the region, which does not come in contact with the upper electrode of the photoelectric conversion part located on the lower side of the upper electrode, is reduced. CONSTITUTION:A transparent conductive layer is formed on the transparent substrate part 11 located on a transparent substrate 10, the conductive layer is used as a lower electrode 12, and a pin diode consisting of a p type a (amorphous)- Si layer 14, an i-type a-Si layer 15 and an n type Si layer 16 is formed on the electrode 12 as a photoelectric conversion part 13. On the layer 16, an upper-side electrode layer 17 having the region smaller than the region of the conversion part 13 when viewed horizontally is provided. In this case, the shape of the region of the layer 16 when viewed horizontally is same as the shape of the region of the layer 17 on the entire region including the surface which comes in contact with the layer 17 and its thickness, and it is constituted in such a manner that it is narrower than the layers 14 and 15. According to this constitution, the entire electrons and holes generated by light run efficiently on electrodes 12 and 17, and they are turned into a current, thereby enabling to increase the optical responding speed to a high degree.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は光センサ素子に関する。[Detailed description of the invention] (Technical field of invention) The present invention relates to optical sensor elements.

(従来技術の説明) 従来から、ファクシミリの読取部等に使用される多くの
タイプの光センサ素子が提案されている。その−例を第
1図(A)及び(B)に示す。
(Description of Prior Art) Many types of optical sensor elements have been proposed for use in facsimile reading units and the like. An example thereof is shown in FIGS. 1(A) and 1(B).

第1図(A)は−個の光センサ素子、例えば、光電変換
部としてpinダイオードを構成する層を具えた素子及
び同図(B)は複数個のこのような光センサ素子を配列
した状態をそれぞれ示す断面図である。これら図におい
て、lは透明基板で、2はガラス等の透明基板部分、3
は基板の一部分として被着形成された透明の導電体層で
下部電極を形成している。4は光電変換部としてのpi
nlnタイオード〜7は、このpinダイオードを形成
している、例えば、アモルファスシリコン(a−3i)
等を用いて順次に形成されている光導電層で5はp型a
−Si層、6はi型(真性)a−8i層及び7はn5a
−9i層である。8はこの光電変換部4のny!!ia
 −5i層7上に設けられた上部電極であり、平面的に
見て、その電極領域は下側の各光導電層5〜7の領域よ
りも内側に引っ込んだ構造となっている。
Figure 1 (A) shows - photosensor elements, for example, an element comprising a layer constituting a pin diode as a photoelectric conversion part, and Figure 1 (B) shows a state in which a plurality of such photosensor elements are arranged. FIG. In these figures, l is a transparent substrate, 2 is a transparent substrate portion such as glass, and 3 is a transparent substrate.
The lower electrode is formed by a transparent conductive layer deposited as part of the substrate. 4 is pi as a photoelectric conversion section
nln diode~7 is made of, for example, amorphous silicon (a-3i) forming this pin diode.
5 is a p-type a photoconductive layer formed sequentially using
-Si layer, 6 is i type (intrinsic) a-8i layer and 7 is n5a
-9i layer. 8 is ny! of this photoelectric conversion section 4! ! ia
-5i This is an upper electrode provided on the layer 7, and when viewed in plan, the electrode region is recessed inward from the regions of the lower photoconductive layers 5 to 7.

次に、この従来例の動作につき説明する。Next, the operation of this conventional example will be explained.

今、透明基板l側から光電変換部4であるpinダイオ
ードに光りが照射されたとする。このダイオード4中に
入射光りの光強度に応じた電子−正孔対が発生し、これ
ら電子、正孔を上部電極8と下部電極3との間で電流と
して取り出すことが出来る。この場合、p1nダイオー
ド4は逆バイアスで用いられ、光照射のない場合は、電
極間に電流はほとんど流れないので、これら電極3及び
8間の電流により光りの照射を検出することが出来る。
Now, assume that light is irradiated onto the PIN diode, which is the photoelectric conversion unit 4, from the side of the transparent substrate l. Electron-hole pairs are generated in the diode 4 according to the intensity of the incident light, and these electrons and holes can be taken out as a current between the upper electrode 8 and the lower electrode 3. In this case, the p1n diode 4 is used with a reverse bias, and when there is no light irradiation, almost no current flows between the electrodes, so that the light irradiation can be detected by the current between the electrodes 3 and 8.

ところで、第1図(A)に示すように、上部電極8の領
域の周囲の側縁は、平面的に見て、pinダイオード4
の各光導電層の側縁よりも内側に距離文だけ後退してい
る。その理由は、これら光導電層5〜7をパターニング
した後、上部電極8のパターニングを行う時、この電極
8と光導電層5〜7との大きさが同じであると、マスク
ずれにより下部電極3に上部電極材料が接して短絡を起
してしまうので、この短絡の発生を回避する必要がある
からであり、また、その場合、マスクずれが生しないと
しても、光導電層5〜7の膜厚は合計して最大でもIg
m程度にすぎず、上部電極8の領域と、これら光導電層
5〜7の領域とが平面的に晃で同一の大きさであると、
これら光導電層の端面付近の欠陥部を通して両電極3及
び8との間の漏れ電流が増大してしまい、光センサ素子
としての特性が極めて悪くなるからである。
By the way, as shown in FIG. 1(A), the side edges around the area of the upper electrode 8 are similar to the pin diode 4 when viewed in plan.
is set back a distance inward from the side edges of each photoconductive layer. The reason for this is that when patterning the upper electrode 8 after patterning the photoconductive layers 5 to 7, if the electrode 8 and the photoconductive layers 5 to 7 have the same size, mask misalignment will cause the lower electrode to This is because the upper electrode material comes into contact with the photoconductive layers 5 to 7 and causes a short circuit, so it is necessary to avoid the occurrence of this short circuit. The maximum total film thickness is Ig
m, and if the area of the upper electrode 8 and the areas of these photoconductive layers 5 to 7 are the same size in plan view,
This is because the leakage current between the electrodes 3 and 8 increases through the defective portions near the end faces of the photoconductive layer, resulting in extremely poor characteristics as a photosensor element.

このような理由により、pinダイオードの周囲の側縁
と電極8とは距離文だけ離れた構造となっている。しか
し、側縁から文の距離の範囲内のPlnタイオードの領
域は上部電極8と接触していないので、この領域には両
電極3及び8間のバイアス電圧がほとんどかからず、こ
れがため、距離又の範囲の光導電層内で発生した電子や
正孔に対してバイアス電圧が印加されないため、これら
電子や止孔が両電極3及び8に達する時間が極めて長く
、従って、入射光りのオン・オフに対する両電極間電流
の応答速度(光応答)が遅いという欠点があった。
For this reason, the side edge around the pin diode and the electrode 8 are separated by a distance. However, since the region of the Pln diode within the distance from the side edge is not in contact with the upper electrode 8, this region receives almost no bias voltage between both electrodes 3 and 8, and this causes the distance Since no bias voltage is applied to the electrons and holes generated within the photoconductive layer in the range shown in FIG. There was a drawback that the response speed (photoresponse) of the current between both electrodes to OFF was slow.

(発明の目的) この発明の目的は光応答速度の速い光センサ素子を提供
することにある。
(Object of the Invention) An object of the present invention is to provide an optical sensor element with a fast optical response speed.

(発明の構成) この目的の達成を図るため、この発明は、一方の表面側
に下部電極用導電性部分を少なくとも有する基板と、こ
の基板の導電性表面上に形成した光電変換部と、この光
電変換部上に形成した上部電極用導電体層とを具え、平
面的に見て、この上部電極用導電体層の領域がこの光電
変換部の領域内に位置させて成る光センサ素子において
、この光電変換部の、この上部電極用導電体層の領域と
の接触面での領域を、この上部電極用導電体層の領域の
形状と同一形状とし、この光電変換部の、この上部電極
用導電体層の領域との接触面から厚さの少なくとも一部
分にわたる平面的に見た領域をこの光電変換部の残部の
領域よりも狭小としたことを特徴とする。
(Structure of the Invention) In order to achieve this object, the present invention provides a substrate having at least a conductive portion for a lower electrode on one surface side, a photoelectric conversion portion formed on the conductive surface of this substrate, and a photoelectric conversion portion formed on the conductive surface of this substrate. An optical sensor element comprising a conductor layer for an upper electrode formed on a photoelectric conversion part, and in which a region of the conductor layer for an upper electrode is located within a region of the photoelectric conversion part when viewed in plan, The region of this photoelectric conversion section at the contact surface with the region of this upper electrode conductor layer is made to have the same shape as the region of this upper electrode conductor layer, and the region of this photoelectric conversion section is The photoelectric converter is characterized in that a region extending from the contact surface with the conductive layer region to at least a portion of the thickness is narrower than the remaining region of the photoelectric conversion section.

(実施例の説明) 以下図面につきこの発明の詳細な説明する。(Explanation of Examples) The invention will now be described in detail with reference to the drawings.

第2図及び第3図はこの発明の実施例をそれぞれ示す略
図的断面図である。尚、これらの図において、断面を表
わすハツチング等について一部分を省略して示している
FIGS. 2 and 3 are schematic cross-sectional views showing embodiments of the present invention, respectively. Note that in these figures, hatchings and the like representing cross sections are partially omitted.

先ず、第2図の実施例から説明する。First, the embodiment shown in FIG. 2 will be explained.

この実施例では、上述した従来の光センサ素子と同様に
、透明基板10の透明基板部分11上にこの基板の一部
分を構成する透明導電体層を形成しこの導電体層を下部
電極12となし、この下部電極12の表面上に光電変換
部13として、p型a−3i層14、i型a−Si層1
5及びn型a−8i層16から成るpinダイオードを
、形成して設けである。
In this embodiment, similarly to the conventional optical sensor element described above, a transparent conductor layer constituting a part of the substrate is formed on the transparent substrate portion 11 of the transparent substrate 10, and this conductor layer is used as the lower electrode 12. , a p-type a-3i layer 14 and an i-type a-Si layer 1 are formed on the surface of this lower electrode 12 as a photoelectric conversion section 13.
A PIN diode consisting of 5 and n-type A-8i layers 16 is formed and provided.

このn型a−3i層18上には、平面的に見て光電変換
部13の領域よりも狭小の領域を有する上側電極用導電
体層I7を設けているが、この実施例の場合には、光電
変換部13を構成しているn型a −Si層16の平面
的に見た領域の形状は、上部電極用導電体層17の領域
と接触している接触面においてはもとより、上部電極用
導電体層1?との接触面からその厚さ全体にわたる領域
において上部電極用導電体層17の領域の形状と同一形
状となして、光電変換部13の残部のiy!1a−9i
層15及びp型a −9i層14の各領域よりも狭小と
なした構造となっている。
On this n-type a-3i layer 18, an upper electrode conductor layer I7 having an area narrower than the area of the photoelectric conversion section 13 in plan view is provided. The shape of the region of the n-type a-Si layer 16 constituting the photoelectric conversion section 13 when viewed in plan is not only the shape of the region in contact with the region of the upper electrode conductor layer 17 but also the upper electrode conductor layer 1? The remaining iy! of the photoelectric conversion section 13 is made to have the same shape as the region of the upper electrode conductor layer 17 in the region extending from the contact surface to the entire thickness thereof. 1a-9i
It has a structure that is narrower than each region of the layer 15 and the p-type a-9i layer 14.

このような構造を形成するには、一旦、従来と同様にし
て基板部分ll上に、下部電極用の導電性部分である導
電体層12、pinダイオード13の各a−9i@14
〜1B及びn型a −3i層18の領域の内側にこの領
域よりも狭小の領域を有する上部電極用導電体層17を
形成し、然る後、この実施例では、この導電体層17を
マスクとして、この導電体層17の領域外の露出してい
るn、la −5i層!6の領域の部分をエツチングに
より除去する。このエツチング処理を、例えば、CF4
ガス或いはその他の好適なガスを用いたプラズマエツチ
ングとすると容易に行うことが出来て好適である。
In order to form such a structure, the conductor layer 12, which is the conductive part for the lower electrode, and the pin diode 13, each a-9i@14, are first formed on the substrate part ll in the same manner as in the conventional method.
A conductor layer 17 for an upper electrode having a region narrower than this region is formed inside the region of the ~1B and n-type a-3i layers 18, and then, in this example, this conductor layer 17 is As a mask, the exposed n, la -5i layer outside the area of this conductor layer 17! 6 is removed by etching. This etching process is performed using, for example, CF4
Plasma etching using a gas or other suitable gas is preferred because it can be easily performed.

このようなエツチングに際して、上部電極用導電体層1
7自体をマスクとして使用しているので、従来のように
マスクずれ等が生じることがない。
During such etching, the upper electrode conductor layer 1
Since the mask 7 itself is used as a mask, there is no possibility of mask displacement as in the conventional case.

また、このエツチングにより、多少は下側のi型a−5
i層15までをエツチングしても差支えない。
Also, due to this etching, the lower i type a-5
There is no problem even if up to the i-layer 15 is etched.

第3図はこの発明の他の実施例を示す82図と同様な実
施例であり、第2図の構成成分と同様な構成成分につい
ては同一の符合を付して示す。この実施例の場合には、
基板18の一部分18をガラスとかアルミナとかで形成
し1表面側の下部電極用導電性部分20を、例えば、ニ
クロム、クロム、モリブデン、ステンレス、アルミニウ
ム及びその他の金属のうちのいずれか一種又は二種以上
の金属から成る導電体層とする。一方、上部電極用導電
体層21を透明導電体層とし、これを、例えば、酸化イ
ンジウムと酸化スズ(Sn02 )との混合物から成っ
ている、いわゆるITOと称されている導電性材ネ」及
び酸化スズ(Sn02 )の導電性材料の一方から成る
単独層又は両方の導電材料の各層から成る二層にして形
成することが出来る。
FIG. 3 shows an embodiment similar to FIG. 82 showing another embodiment of the present invention, and components similar to those in FIG. 2 are denoted by the same reference numerals. In this example,
A portion 18 of the substrate 18 is formed of glass or alumina, and the conductive portion 20 for the lower electrode on the surface side is made of, for example, one or two of nichrome, chromium, molybdenum, stainless steel, aluminum, and other metals. The conductive layer is made of the above metal. On the other hand, the conductive layer 21 for the upper electrode is a transparent conductive layer, which is made of a conductive material called ITO, which is made of a mixture of indium oxide and tin oxide (Sn02), for example. It can be formed as a single layer of one of the conductive materials, tin oxide (Sn02), or as a double layer of each layer of both conductive materials.

或いは又、図示せずも、この二層(19及び20)構造
の基板を用いる代わりに、基板全体をステンレスとかア
ルミニウムとか或いはその他好適な導電性材料で形成し
ても良い。
Alternatively, although not shown, instead of using this two-layer (19 and 20) structure substrate, the entire substrate may be made of stainless steel, aluminum, or other suitable conductive material.

上述した各実施例では、上部電極17または21と接触
しているnまたはP型a−9i層16を平面的に見た時
の領域の形状をその厚さ全体にわたり上部電極の形状と
同一となしているか、このa −5i層1Bの平面的に
見た領域の形状が、光等の放射の照射によって発生した
電子及び正孔に対してバイアス電圧が有効に作用出来る
ように、上部電極との接触面から基板側に向って連続的
に又は段階的に大きくなしていく構造であってもよい。
In each of the embodiments described above, the shape of the region of the n- or p-type a-9i layer 16 in contact with the upper electrode 17 or 21 when viewed in plan is the same as the shape of the upper electrode throughout its thickness. The shape of the region of the a-5i layer 1B in plan view is such that the bias voltage can effectively act on the electrons and holes generated by the irradiation of radiation such as light. The structure may be such that the size increases continuously or stepwise from the contact surface toward the substrate.

さらに、上述した各実施例において、pinタイオード
13を構成するp型及びn型a−Si層14及び16の
導電型を反転させた構造としても良い。
Furthermore, in each of the embodiments described above, the conductivity types of the p-type and n-type a-Si layers 14 and 16 constituting the pin diode 13 may be reversed.

さらに、上述した実施例では、光電変換部としてpin
ダイオードにつき説明したが、これに限定されないこと
勿論であり、外部からの放射を受けて電子−正孔対を形
成する別の光電変換層で形成しても良い。その場合、電
子及び正孔がバイアス電圧の作用を受けて急速に電流と
して取り出せるようにするため、光電変換層の、上部電
極用導電体層の領域との接触面での領域を、上部電極用
導電体層の領域の形状と同一形状とすると共に。
Furthermore, in the embodiment described above, a pin is used as a photoelectric conversion section.
Although the diode has been described, it is needless to say that the diode is not limited thereto, and may be formed of another photoelectric conversion layer that forms electron-hole pairs upon receiving radiation from the outside. In that case, in order to allow electrons and holes to be rapidly taken out as current under the action of a bias voltage, the area of the photoelectric conversion layer at the contact surface with the area of the conductor layer for the upper electrode is The shape is the same as the shape of the region of the conductor layer.

光電変換層の、上部電極用導電体層の領域との接触面か
ら厚さの少なくとも一部分にわたる平面的に見た領域を
光電変換層の基板側の残部の領域よりも狭小とする。
A region of the photoelectric conversion layer extending from the contact surface with the region of the conductor layer for the upper electrode and at least part of the thickness is made narrower than the remaining region of the photoelectric conversion layer on the substrate side.

さらに、上述したこの発明の光センサ素子の大気に露出
している部分に酸化シリコン、窒化シリコン、ワニス等
の表面保護膜を被着することが出来る。
Furthermore, a surface protective film of silicon oxide, silicon nitride, varnish, etc. can be applied to the portion of the above-described optical sensor element of the present invention that is exposed to the atmosphere.

尚、上述した光センサ素子は単体で使用することはもと
より、複数個配列させて用いても良い。
Note that the above-mentioned optical sensor elements may be used not only singly but also in a plurality of arrays.

次に、上述した実施例の光センサ素子と従来の光センサ
素子とにつき、光応答時間の比較実験を行ったところ、
次表1に示すような結果が得られた。この実験は、光源
として波長fi50 r++wの発光ダイオード(LE
D)を用い、10m5ec(7)オン及び10m5ec
のオフで発光させた繰り返しパルス食用いて行った。一
方、使用したセンサ素子のpinダイオードの形状は、
直径311Inの円形でかつ文= 0.25mraであ
った。
Next, an experiment was conducted to compare the optical response times of the optical sensor element of the above-mentioned example and the conventional optical sensor element.
The results shown in Table 1 below were obtained. In this experiment, a light emitting diode (LE) with wavelength fi50 r++w was used as a light source.
D), 10m5ec (7) on and 10m5ec
This was done using repeated pulsed food that was turned on and off. On the other hand, the shape of the pin diode of the sensor element used is
It was circular with a diameter of 311 inches and a length of 0.25 mra.

表I この表Iからも明らかなように、この発明の光センサ素
子の光応答速度は、バイアス電圧Ovでは従来の1/4
、また、バイアス電圧−3vでは従来の1/20となっ
ていることが分かる。
Table I As is clear from Table I, the optical response speed of the optical sensor element of the present invention is 1/4 that of the conventional one at bias voltage Ov.
, and it can be seen that at a bias voltage of -3V, it is 1/20 of the conventional one.

(発明の効果) 上述した説明からも明らかなように、この発明の光セン
サ素子の構造によれば、上部電極の下側の光電変換部の
部分のうち、平面的に見てこの上部電極と接触していな
い領域であってかつバイアス電圧が印加されない部分を
除去した構造となっているので、光によって発生した電
子及び正孔の全てが印加バイアス電圧によって効果的に
上部及び下部電極に流れて電流となり、これがため、従
来に比べて光応答速度が極めて速くなるという利点があ
る。
(Effects of the Invention) As is clear from the above description, according to the structure of the optical sensor element of the present invention, of the portion of the photoelectric conversion section below the upper electrode, the upper electrode and Since the structure is such that the areas that are not in contact and where no bias voltage is applied are removed, all electrons and holes generated by light can effectively flow to the upper and lower electrodes by the applied bias voltage. This has the advantage that the light response speed is extremely fast compared to the conventional method.

従って、この発明の光センサ素子はその光応答速度が著
しく速いので、高速度ファクシミリの読取部に適用して
頗る好適である。
Therefore, since the optical sensor element of the present invention has an extremely fast optical response speed, it is particularly suitable for application to the reading section of a high-speed facsimile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)及び(B)は従来の光センサ素子の説明に
供する断面図、 第2図及び第3図はこの発明の光センサ素子の実施例を
説明するための略図的断面図である。 1O118・・・基板、 11・・・透明基板部分12
・・・(透明な)下部電極用導電体層13・・・光電変
換部(例えば、pinダイオード)14・・・(第一導
電型の)a−9i層15・・・(真性型)a−9i層 16・・・(第二導電型の)a−9i層17.21・・
・上部電極用導電体層 18・・・基板の一部分 20・・・下部電極用導電体層。 第1図 1111 第2図 ム 第3図 ム 手続補正書 昭和60年1月10日 特許庁長官 志賀 学 殿 光センサ素子 3補正をする者 事件との関係 特許出願人 住所(〒−105) 東京都港区虎ノ門1丁目7番12号 名称(028)沖電気工業株式会社 代表者 橋本 南海男 4代理人 〒170 tx (88B)5583住所 
東京都豊島区東池袋1丁目20番地5池袋ホワイトハウ
スビル805号 明細書の発明の詳細な説明の欄 7補正の内容 (1)、明細書の第12頁第8行の「光応答速度は」を
「光応答時間はJと訂正する。
FIGS. 1(A) and (B) are cross-sectional views for explaining a conventional optical sensor element, and FIGS. 2 and 3 are schematic cross-sectional views for explaining an embodiment of the optical sensor element of the present invention. be. 1O118...Substrate, 11...Transparent substrate portion 12
... (transparent) lower electrode conductor layer 13 ... photoelectric conversion section (for example, pin diode) 14 ... (first conductivity type) a-9i layer 15 ... (intrinsic type) a -9i layer 16... (second conductivity type) a-9i layer 17.21...
- Upper electrode conductor layer 18...Part of the substrate 20...Lower electrode conductor layer. Figure 1 1111 Figure 2 Figure 3 Procedural amendment January 10, 1985 Manabu Shiga, Commissioner of the Patent Office Relationship with the case of the person making the optical sensor element 3 amendment Patent applicant address (〒-105) Tokyo 1-7-12 Toranomon, Miyakominato-ku Name (028) Oki Electric Industry Co., Ltd. Representative Nankai Hashimoto 4 Agent 170 TX (88B) 5583 Address
1-20-5 Higashiikebukuro, Toshima-ku, Tokyo Ikebukuro White House Building No. 805 Contents of amendment (1) in Column 7 of the detailed description of the invention, "The optical response speed is" on page 12, line 8 of the specification "The optical response time is corrected to J.

Claims (1)

【特許請求の範囲】 1、一方の表面側に下部電極用導電性部分を少なくとも
有する基板と、該基板の導電性表面上に形成した光電変
換部と、該光電変換部上に形成した上部電極用導電体層
とを具え、平面的に見て、前記上部電極用導電体層の領
域が前記光電変換部の領域内に位置させて成る光センサ
素子において、 該光電変換部の、前記上部電極用導電体層の領域との接
触面での領域を、前記上部電極用導電体層の領域の形状
と同一形状とし、該光電変換部の、前記」二部電極用導
電体層の領域との接触面から厚さの少なくとも一部分に
わたる平面的に見た領域を該光電変換部の残部の領域よ
りも狭小とした ことを特徴とする光センサ素子。 2、特許請求の範囲第1項記載の光センサ素子において
、前記下部電極用導電性部分を放射透過性導電体層とし
、前記基板の残部を放射透過性材料で構成したことを特
徴とする光センサ素子。 3、特許請求の範囲第1項記載の光センサ素子において
、前記上部電極用導電体層を放射透過性の導電体層とし
たことを特徴とする光センサ素子。 4、特許請求の範囲第1項記載の光センサ素子において
、前記基板の全体を導電性基板としたことを特徴とする
光センサ素子。 5、特許請求の範囲第1項〜第4項のいずれか一つに記
載の光センサ素子において、前記光電変換部を前記基板
側から第一導電型の非晶質半導体層と、真性非晶質半導
体層と、第二導電型の非晶質半導体層とで構成したこと
を特徴とする光センサ素子。
[Claims] 1. A substrate having at least a conductive portion for a lower electrode on one surface side, a photoelectric conversion section formed on the conductive surface of the substrate, and an upper electrode formed on the photoelectric conversion section. A photosensor element comprising: a conductor layer for upper electrode, and in which a region of the conductor layer for upper electrode is located within a region of the photoelectric conversion section when viewed in plan; The region of the contact surface with the region of the conductor layer for the upper electrode is made to have the same shape as the region of the conductor layer for the upper electrode, and the region of the photoelectric conversion section with the region of the conductor layer for the two-part electrode is made to have the same shape as the region of the conductor layer for the upper electrode. An optical sensor element characterized in that a region extending from a contact surface to at least a portion of the thickness in a plan view is narrower than the remaining region of the photoelectric conversion section. 2. The optical sensor element according to claim 1, wherein the conductive portion for the lower electrode is a radiation-transparent conductor layer, and the remainder of the substrate is made of a radiation-transparent material. sensor element. 3. The optical sensor element according to claim 1, wherein the upper electrode conductive layer is a radiation-transparent conductive layer. 4. The optical sensor element according to claim 1, wherein the entire substrate is a conductive substrate. 5. In the optical sensor element according to any one of claims 1 to 4, the photoelectric conversion section is formed from an amorphous semiconductor layer of a first conductivity type and an intrinsic amorphous semiconductor layer from the substrate side. 1. A photosensor element comprising a crystalline semiconductor layer and an amorphous semiconductor layer of a second conductivity type.
JP59055768A 1984-03-23 1984-03-23 Photosensor element Pending JPS60198870A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59055768A JPS60198870A (en) 1984-03-23 1984-03-23 Photosensor element
US07/204,942 US4885622A (en) 1984-03-23 1988-06-06 Pin photodiode and method of fabrication of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055768A JPS60198870A (en) 1984-03-23 1984-03-23 Photosensor element

Publications (1)

Publication Number Publication Date
JPS60198870A true JPS60198870A (en) 1985-10-08

Family

ID=13008042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055768A Pending JPS60198870A (en) 1984-03-23 1984-03-23 Photosensor element

Country Status (1)

Country Link
JP (1) JPS60198870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114058U (en) * 1987-01-16 1988-07-22
JPS63142862U (en) * 1987-03-12 1988-09-20

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463690A (en) * 1978-05-22 1979-05-22 Yamazaki Shunpei Photovoltaic force generating semiconductor and method of producing same
JPS5631908A (en) * 1979-08-14 1981-03-31 Plasser Bahnbaumasch Franz Track running machine for cutting irregularity of rail head surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463690A (en) * 1978-05-22 1979-05-22 Yamazaki Shunpei Photovoltaic force generating semiconductor and method of producing same
JPS5631908A (en) * 1979-08-14 1981-03-31 Plasser Bahnbaumasch Franz Track running machine for cutting irregularity of rail head surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114058U (en) * 1987-01-16 1988-07-22
JPS63142862U (en) * 1987-03-12 1988-09-20

Similar Documents

Publication Publication Date Title
US4597161A (en) Method of making photoelectric conversion device
US4518815A (en) Photoelectric conversion device
US8362354B2 (en) Photovoltaic apparatus and method of manufacturing the same
US4542578A (en) Method of manufacturing photovoltaic device
US4726849A (en) Photovoltaic device and a method of manufacturing thereof
JP2001291853A (en) Semiconductor energy detecting element
EP0307484A1 (en) Color sensor
US4528065A (en) Photoelectric conversion device and its manufacturing method
JPS6154756A (en) Contact type image sensor
JPS60198870A (en) Photosensor element
US4764476A (en) Method of making photoelectric conversion device
US5236516A (en) Photovoltaic apparatus
JP4636689B2 (en) Method for structuring transparent electrode layers
JPH02177374A (en) Photoelectric conversion device
JPS59220978A (en) Manufacture of photovoltaic device
JPH05145095A (en) Photovoltaic element
JP2883370B2 (en) Photovoltaic device
JPS61268077A (en) Photoelectric conversion element
JPS61113273A (en) Photosensor element
JP2771659B2 (en) Method for manufacturing photovoltaic device
JPH07105509B2 (en) Photovoltaic device
JPS6235681A (en) Photoelectric conversion element
JPS60233853A (en) Light receiving element array
JPS60231359A (en) Photodiode array
JPH0548131A (en) Photoelectric conversion element