JPS60198419A - Calorimeter device for measuring transmission power of optical fiber - Google Patents

Calorimeter device for measuring transmission power of optical fiber

Info

Publication number
JPS60198419A
JPS60198419A JP5537984A JP5537984A JPS60198419A JP S60198419 A JPS60198419 A JP S60198419A JP 5537984 A JP5537984 A JP 5537984A JP 5537984 A JP5537984 A JP 5537984A JP S60198419 A JPS60198419 A JP S60198419A
Authority
JP
Japan
Prior art keywords
bolometer
optical fiber
temperature
power
heat load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5537984A
Other languages
Japanese (ja)
Inventor
Takemi Inoue
井上 武海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5537984A priority Critical patent/JPS60198419A/en
Publication of JPS60198419A publication Critical patent/JPS60198419A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure accurately light power transmitted in an optical fiber by using a bolometer constituted by adhering a temperature-sensitive resistance element to an optical fiber end surface so as to absorb the light power. CONSTITUTION:Cooling power which is larger than the operating bias power in the bolometer 11 is set for a thermoelectric cooling element 23 by using a constant current source 24. While a heat load part 10 is cooled through the operation of said element, a bolometer bridge 25 is balanced to hold the resistance value of the temperature-sensitive resistance element in the bolometer 11 constant. Consequently, negative feedback to a heater 17 is so controlled that the resulting temperature difference between the heat load part 10 and a reference temperature jacket 20 is eliminated. Almost all of the heat generated at this time is radiated to the reference temperature jacket 20 through the thermoelectric cooling element 23. Bias power is measured as to the bolometer 11 and heater 17 while they are controlled to the same temperature, and the light power being transmitted through the optical fiber 2 is calculated from a specific expression.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、光通信、光応用計測等で用いられる光ファ
イバの光パワーの測定を行うためのカロリメータ装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a calorimeter device for measuring the optical power of an optical fiber used in optical communication, optical applied measurement, etc.

〔従来技術〕[Prior art]

光フアイバ伝送においては、最も基本となる測定量の一
つに、光フアイバ中を伝送する光パワーがある。この光
パワーの測定には、従来第1図に示すような測定装置が
用いられている。
In optical fiber transmission, one of the most basic measured quantities is the optical power transmitted through the optical fiber. Conventionally, a measuring device as shown in FIG. 1 has been used to measure this optical power.

第1図において、1は信号源、2は光ファイバ、3は校
正されたレーザビーム用の受光器、4はコネクタまたは
裸フアイバ用のアダプタ(以下、アダプタという)、5
は受光素子、6は指示計である。
In FIG. 1, 1 is a signal source, 2 is an optical fiber, 3 is a calibrated laser beam receiver, 4 is a connector or bare fiber adapter (hereinafter referred to as an adapter), 5
is a light receiving element, and 6 is an indicator.

信号源1からの光パワーは光ファイバ2を通り、受光器
3のアダプタ4を介して受光素子5に入射し、受光素子
5により光パワーを測定し、指示計6で指示していた。
Optical power from a signal source 1 passes through an optical fiber 2 and enters a light receiving element 5 via an adapter 4 of a light receiver 3. The light receiving element 5 measures the optical power, and an indicator 6 indicates the optical power.

しかし、この場合に測定される光パワーの測定量は、い
ずれも光ファイバ2の端面がら空間へ放射された光パワ
ーであり、通常、Siガラス素材と空気の屈折率の違い
から4%程度の端面反射が生ずる。実際の光ファイバ2
の端面における反射は、端面の加工条件の違いにより常
に異なるとみなければならない。
However, the amount of optical power measured in this case is the optical power radiated into space from the end face of the optical fiber 2, and is usually about 4% due to the difference in refractive index between the Si glass material and air. Edge reflection occurs. Actual optical fiber 2
It must be assumed that the reflection at the end face always differs depending on the processing conditions of the end face.

従って1反射のない整合した状態における光ファイバ2
を伝送中の光パワーを知るには、その都度リフレクトメ
ータを用いて端面の反射を測定し、補正することが必要
となり、測定精度が劣る原因となる。
Therefore, 1 the optical fiber in a matched state without reflections 2
In order to determine the optical power during transmission, it is necessary to measure and correct the reflection of the end face using a reflectometer each time, which causes a decrease in measurement accuracy.

以上の事実から、光ファイバ2を伝送中の光パワーを高
い精度で測定するには、光ファイバ2と直接整合した負
荷に伝送中の光パワーを吸収させて測定することが必要
となる。
From the above facts, in order to measure with high accuracy the optical power being transmitted through the optical fiber 2, it is necessary to absorb the optical power being transmitted by a load that is directly matched with the optical fiber 2 and then measure it.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の点にかんがみなされたもので、光フ
アイバ中を伝送する光パワーを、光フアイバ用ボロメー
タを用いて正確に測定することができる光フアイバ伝送
パワー測定用カロリメータ装置を提供することを目的と
する。
The present invention has been made in view of the above points, and an object of the present invention is to provide a calorimeter device for measuring optical fiber transmission power that can accurately measure the optical power transmitted through an optical fiber using an optical fiber bolometer. With the goal.

〔発明の概要〕[Summary of the invention]

この発明は、整合のとれた光フアイバ用ボロメータの実
効能率すなわち、既知のパワーによって置換測定された
パワーと吸収された光パワーの比を、熱負荷部と温度基
準ジャケットを等温に制御することによって決定し、こ
の実効能率値を用いて、光ファイバを伝送中の光パワー
を、ブリッジ測定のみによって簡単に、かつ高精度に測
定することができるようにしたものである。以下この発
明の実施例について説明する。
This invention improves the effective efficiency of a matched fiber optic bolometer, that is, the ratio of the measured power to the absorbed optical power by replacing it with a known power, by isothermally controlling the heat load section and the temperature reference jacket. By using this effective efficiency value, the optical power being transmitted through the optical fiber can be easily and highly accurately measured by only bridge measurement. Examples of the present invention will be described below.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例を示すもので、10は熱負
荷部で、ボロメータ11とヒータ17とからなり、温度
安定化のために温度基準ジャケラ)20 、外部ジャケ
ット21からなる二重ジャケット内に収容され、温度基
準ジャケラ)20と熱負荷部10との温度差を検出する
熱電検出素子22および熱負荷部10を冷却するための
熱電冷却素子23とを有し、さらに、定電流源24、ボ
ロメータブリッジ25、ヒータパワー制御器26を備え
ている。
FIG. 2 shows an embodiment of the present invention, in which 10 is a heat load section consisting of a bolometer 11 and a heater 17, a temperature reference jacket 20 for temperature stabilization, and an external jacket 21. It is housed in the jacket and has a thermoelectric detection element 22 for detecting the temperature difference between the temperature reference jacket 20 and the heat load section 10, and a thermoelectric cooling element 23 for cooling the heat load section 10, and further includes a constant current It includes a source 24, a bolometer bridge 25, and a heater power controller 26.

第3図は熱負荷部10の構成図である。FIG. 3 is a configuration diagram of the heat load section 10.

光ファイバ2を伝送中の光パワーを、無駄な反射がなく
、かつ効率良く全部吸収するため、ボロメータ11は光
ファイバ2のクラッド2Aの径と同程度の大きさの感温
抵抗素子12で、例えばサーミスタが用いられ、光ファ
イバ2のコアおよびクラッド2Aの端面で、屈折率の近
いエポキシ樹脂13で接着し、さらに2枚のアルミニウ
ム等の金属板14a、14b中に設けた球状の空間15
a、15bに固定したものである。なお、12Aは感温
抵抗素子12のリード線、16はこのリード線12Aを
引出すための溝である。そして空間15a、15bは大
きくして一方のみとすることもできる。感温抵抗素子1
2は反射を少なくするためにあらかじめ黒色に塗装し、
2枚の金属板14a、14bの向い合う面も黒化加工し
ておく。熱負荷部10のボロメータ11に対し、アルミ
ニウム等の金属板18a、18bで挟んだ蒸着被覆によ
る抵抗体19(19′は電極)からなるヒータ17を一
体として構成する。
In order to efficiently absorb all of the optical power being transmitted through the optical fiber 2 without unnecessary reflection, the bolometer 11 is a temperature-sensitive resistance element 12 having a size similar to the diameter of the cladding 2A of the optical fiber 2. For example, a thermistor is used, and is bonded to the end faces of the core and cladding 2A of the optical fiber 2 with an epoxy resin 13 having a similar refractive index, and is further provided in a spherical space 15 in two metal plates 14a and 14b made of aluminum or the like.
a, 15b. Note that 12A is a lead wire of the temperature-sensitive resistance element 12, and 16 is a groove for drawing out this lead wire 12A. Further, the spaces 15a and 15b can be made larger and only one of them can be used. Temperature sensitive resistance element 1
2. Painted black in advance to reduce reflection,
The opposing surfaces of the two metal plates 14a and 14b are also blackened. A heater 17 consisting of a resistor 19 (19' is an electrode) sandwiched between metal plates 18a and 18b made of aluminum or the like and coated with vapor deposition is integrally formed with the bolometer 11 of the heat load section 10.

第2図の構成をさらに説明する。前述した熱負荷部10
と温度基準ジャケット20との温度差を検出するための
熱電検出素子22と、熱負荷部10を冷却するための熱
電冷却素子23との間に熱負荷部】Oを挟み、温度基準
ジャケット20に熱伝導性よく接着する。検出した温度
差をヒータ17に負帰還し、熱負荷部10と温度基準ジ
ャケラ)20を等温に制御する。このためにヒータパワ
ー制御器26が設けられている。定電流源24は熱電冷
却素子23に電流を供給するためのものである。ボロメ
ータブリッジ25はボロメータ11にパワーを供給し、
前記ボロメータブリッジ25内の抵抗を調整して平衡を
保つものである。
The configuration shown in FIG. 2 will be further explained. The aforementioned heat load section 10
The heat load section ]O is sandwiched between the thermoelectric detection element 22 for detecting the temperature difference between the temperature reference jacket 20 and the thermoelectric cooling element 23 for cooling the heat load section 10, and the temperature reference jacket 20 is Adheres with good thermal conductivity. The detected temperature difference is fed back negatively to the heater 17, and the heat load section 10 and the temperature reference jacket 20 are controlled to be at the same temperature. A heater power controller 26 is provided for this purpose. The constant current source 24 is for supplying current to the thermoelectric cooling element 23. The bolometer bridge 25 supplies power to the bolometer 11,
The resistance within the bolometer bridge 25 is adjusted to maintain balance.

次に動作について説明する。Next, the operation will be explained.

まず、ボロメータ11内の動作バイアスパワーより大き
い冷却パワーを、定電流源24を用いて熱電冷却素子2
3に設定する。この操作によって熱負荷部10を冷却す
ると同時に、ボロメータブリッジ25の平衡をとり、ボ
ロメータ11内ノ感温抵抗素子12の抵抗値を一定に保
つ。この結果生じた熱負荷部10と温度基準ジャケラ)
20間の温度差が零となるようにヒーター7へ負帰還制
御する。このとき発生した熱は、はとんど熱電冷却素子
23を通って温度基準ジャケット20へ放出される。
First, a cooling power larger than the operating bias power in the bolometer 11 is applied to the thermoelectric cooling element 2 using a constant current source 24.
Set to 3. Through this operation, the heat load section 10 is cooled, and at the same time, the bolometer bridge 25 is balanced, and the resistance value of the temperature-sensitive resistance element 12 inside the bolometer 11 is kept constant. The resulting heat load section 10 and temperature reference jacket)
Negative feedback control is applied to the heater 7 so that the temperature difference between the two temperatures becomes zero. The heat generated at this time mostly passes through the thermoelectric cooling element 23 and is released to the temperature reference jacket 20.

等温に制御された状態で、ボロメータ−1およびヒータ
ー7についてバイアスパワーを測定し、以下のように光
ファイバ2を伝送中の光パワーをめることができる。
By measuring the bias power of the bolometer 1 and the heater 7 under isothermal control, the optical power transmitted through the optical fiber 2 can be calculated as follows.

すなわち、光フアイバ端面における反射が充分小さいと
すれば、光ファイバ2を伝送中の光パワーは次式からめ
られる。
That is, if the reflection at the end face of the optical fiber is sufficiently small, the optical power transmitted through the optical fiber 2 can be calculated from the following equation.

ここで、η。はボロメータ−1で測定した置換測定パワ
ーと、ボロメータ−1に吸収された光ファイバ2を伝送
中の光パワーの比であり、次式からめられる。
Here, η. is the ratio of the displacement measurement power measured by the bolometer 1 and the optical power absorbed by the bolometer 1 while being transmitted through the optical fiber 2, and is calculated from the following equation.

ここで、B4 とpA は光フアイバ入力を印加しない
ときのボロメータ11およびヒータ17のバイアスパワ
〜で、Pb とPh は光フアイバ入力を印加したとき
のボロメータ11およびヒータ17のバイアスパワーで
あり、Sは等温制御のもとにおけるボロメータ11のパ
ワーとヒータ17のバイアスパワーの置換係数△Pb 
/△Phである。
Here, B4 and pA are the bias powers ~ of the bolometer 11 and the heater 17 when the optical fiber input is not applied, Pb and Ph are the bias powers of the bolometer 11 and the heater 17 when the optical fiber input is applied, and S is the bias power of the bolometer 11 and the heater 17 when the optical fiber input is applied. Substitution coefficient ΔPb between the power of the bolometer 11 and the bias power of the heater 17 under isothermal control
/ΔPh.

そして、カロリメータ測定によって第(2)式を用いて
ボロメータ11の実効能率η8を決定し、ボロメータ1
1の測定によって、第(1)式を用いて光ファイバ2を
伝送中の光パワーをめることができる。
Then, the effective efficiency η8 of the bolometer 11 is determined using equation (2) through calorimeter measurement, and the bolometer 1
1, the optical power being transmitted through the optical fiber 2 can be determined using equation (1).

この発明の構成による具体例は次のとおりである。A specific example of the configuration of this invention is as follows.

〔発明の具体例〕[Specific examples of the invention]

導入部の光ファイバ2はFC型コネクタ入力の1m長の
マルチモードグレイデッドインデックス(コア50 g
m 、クラッド2Aの径125 gm)である。ボロメ
ータ11内の感温抵抗素子12には、0.13mm直径
の微小サーミスタを用いた。エポキシ樹脂13は屈折率
1.538で最高使用温度125°Cの粘性の低いもの
を用いた。
The optical fiber 2 at the introduction part is a 1 m long multimode graded index (core 50 g) with FC type connector input.
m, diameter of cladding 2A 125 gm). A minute thermistor with a diameter of 0.13 mm was used as the temperature-sensitive resistance element 12 in the bolometer 11. The epoxy resin 13 used was a low viscosity one with a refractive index of 1.538 and a maximum operating temperature of 125°C.

熱負荷部10を構成する金属板14a、14b。Metal plates 14a and 14b that constitute the heat load section 10.

18a、18bは4mm角のアルミニウムとし、感温抵
抗素子12を収納する0、8mm径の球状の空間15’
a、15bおよび感温抵抗素子12のリード線12Aを
収納する0、3mm深さの溝16を設けた。感温抵抗素
子12のリード線12Aは金属板14a、14bと電気
的に絶縁した。感温抵抗素子12を収納する側のアルミ
ニウムからなる金属板14a、14bの面上には漏洩光
パワーを吸収するため、黒色アルマイト加工をした。抵
抗体19は、ポリイミド樹脂基板にNiCrを蒸着し、
金蒸着膜を電極としたものである。熱電検出素子22.
熱電冷却素子23は、B1−Te合金の熱電素子7対か
らなる4mm角で高さが3mmのベルチェ素子を用いた
。温度基準ジャケット20は肉厚的15mmの銅製で外
形は50mmX40mmX30mmである。外部ジャケ
ット21は肉厚10mmの真鋳製で、外形は120mm
X104mmX100mmとなッテいる。ボロメータ1
1における感温抵抗素子12として用いたサーミスタの
抵抗値は測定すべき光ファイバ2を伝送中の光パワーの
レベルおよびエポキシ樹脂13の最高使用温度等によっ
て決まるが、この場合はIKΩとした。従って、ボロメ
ータブリッジ25はIKΩの平衡抵抗となるものを構成
した。ヒータパワー制御器26は高感度直流電圧計(3
,V・・・・・・フルスケール・ゲイン3×105)と
、パワー増幅器(共に図示せず)により構成した。
18a and 18b are made of 4 mm square aluminum and have a spherical space 15' with a diameter of 0.8 mm to accommodate the temperature sensitive resistance element 12.
A groove 16 with a depth of 0.3 mm was provided to house the lead wire 12A of the temperature sensitive resistance element 12. Lead wire 12A of temperature-sensitive resistance element 12 was electrically insulated from metal plates 14a and 14b. The surfaces of metal plates 14a and 14b made of aluminum on the side housing the temperature-sensitive resistance element 12 were treated with black alumite in order to absorb leaked optical power. The resistor 19 is made by depositing NiCr on a polyimide resin substrate.
It uses a gold vapor-deposited film as an electrode. Thermoelectric detection element 22.
As the thermoelectric cooling element 23, a Vertier element having a size of 4 mm square and a height of 3 mm and consisting of seven pairs of thermoelectric elements made of B1-Te alloy was used. The temperature reference jacket 20 is made of copper and has a wall thickness of 15 mm, and its outer dimensions are 50 mm x 40 mm x 30 mm. The external jacket 21 is made of brass with a wall thickness of 10 mm and an external diameter of 120 mm.
It is 104mm x 100mm. Bolometer 1
The resistance value of the thermistor used as the temperature-sensitive resistance element 12 in Example 1 is determined by the level of optical power being transmitted through the optical fiber 2 to be measured, the maximum operating temperature of the epoxy resin 13, etc., and in this case it was set to IKΩ. Therefore, the bolometer bridge 25 constituted a balanced resistance of IKΩ. The heater power controller 26 is a high-sensitivity DC voltmeter (3
, V (full-scale gain 3×10 5 ) and a power amplifier (both not shown).

測定は信号源1として、波長850 nmの安定したL
D光源とレベル可変減衰器を用いて構成した。
Measurements were made using a stable L signal with a wavelength of 850 nm as signal source 1.
It was constructed using a D light source and a variable level attenuator.

カロリメータ測定により、ボロメータ11の実効能率測
定を行う際に、ドリフト補正のため3分間隔で5回ずつ
レベルを変えて行った結果を第4図に示す。
FIG. 4 shows the results of measuring the effective efficiency of the bolometer 11 by changing the level 5 times at 3-minute intervals to correct for drift.

第4図で、横軸は測定パワーレベル(#LW)を、縦軸
はボロメータの実効能率(%)を示す。
In FIG. 4, the horizontal axis shows the measured power level (#LW), and the vertical axis shows the effective efficiency (%) of the bolometer.

この図から、lO〜300 ILWの広いレベル範囲で
光フアイバ用ボロメータの実効能率の平均値85%を得
、レベル依存性が少ないことが明らかになった。また、
そのときのばらつきは0.2〜1%以下であった。
From this figure, it is clear that the average effective efficiency of the optical fiber bolometer is 85% in a wide level range from 1O to 300 ILW, and there is little level dependence. Also,
The variation at that time was 0.2 to 1% or less.

得られた実効能率値ならびにあらかじめ測定した光フア
イバ入力部の損失の割合を用いてボロメータ測定値を補
正し、光ファイバ2を伝送中の光パワーは直ちにめられ
、得られた結果の再現性は実効能率測定と同程度になっ
た。
The bolometer measurement value is corrected using the obtained effective efficiency value and the loss ratio of the optical fiber input section measured in advance, and the optical power being transmitted through the optical fiber 2 is immediately determined, and the reproducibility of the obtained result is It became comparable to the effective efficiency measurement.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明は光ファイバの端
面に感温抵抗素子を光パワーを反射なく吸収できるよう
に接着してボロメータを構成し、直流置換のためのヒー
タをボロメータと一体として熱負荷部とし、この熱負荷
部を温度基準ジャケットに収容し、さらにこのボロメー
タに直流電力を加えてその抵抗値を調整するボロメータ
ブリッジ、熱負荷部と温度基準ジャケットとの温度差を
検出する熱電検出素子、熱負荷部を冷却するための熱電
冷却素子、熱負荷部と温度基準ジャケットとの温度差を
零にするため前記ヒータを加熱するためのヒータパワー
制御器とを具備させたので、光ファイバを伝送中の光パ
ワーを正確、かつ簡単に測定することが可能となり、光
フアイバ技術に有用な計測手段を提供できる利点を有す
る。
As explained in detail above, the present invention configures a bolometer by bonding a temperature-sensitive resistance element to the end face of an optical fiber in such a way that it can absorb optical power without reflection, and integrates a heater for direct current displacement with the bolometer to generate heat. A bolometer bridge that functions as a load section, houses this heat load section in a temperature reference jacket, and adjusts its resistance value by applying DC power to this bolometer, and thermoelectric detection that detects the temperature difference between the heat load section and the temperature reference jacket. The optical fiber It is possible to accurately and easily measure the optical power during transmission, and has the advantage of providing a useful measurement means for optical fiber technology.

負荷部の構成図、第4図はボロメータの実効能率測定図
である。
The configuration diagram of the load section and FIG. 4 are diagrams for measuring the effective efficiency of the bolometer.

図中、1は信号源、2は光ファイバ、10は熱負荷部、
11はボロメータ、12は感温抵抗素子、13はエポキ
シ樹脂、14a、14bは金属板、15a、15bは球
状の空間、16は溝、17はヒータ、18a、18bは
金属板、19は抵抗体、20は温度基準ジャケット、2
1は外部ジャケット、22は熱電検出素子、23は熱電
冷却素子、24は定電流源、25はボロメータブリッジ
、26がヒータパワー制御器である。
In the figure, 1 is a signal source, 2 is an optical fiber, 10 is a heat load section,
11 is a bolometer, 12 is a temperature-sensitive resistance element, 13 is an epoxy resin, 14a and 14b are metal plates, 15a and 15b are spherical spaces, 16 is a groove, 17 is a heater, 18a and 18b are metal plates, and 19 is a resistor , 20 is a temperature reference jacket, 2
1 is an external jacket, 22 is a thermoelectric detection element, 23 is a thermoelectric cooling element, 24 is a constant current source, 25 is a bolometer bridge, and 26 is a heater power controller.

Claims (1)

【特許請求の範囲】[Claims] 光ファイバの端面に光パワーを反射なく吸収する感温抵
抗素子を接着して構成したボロメータと、このボロメー
タと一体に構成された直流置換のためのヒータとからな
る熱負荷部と、この熱負荷部を収容する温度基準ジャケ
ットと、前記ボロメータに直流電力を加えてその抵抗値
を調整するボロメータブリッジと、前記熱負荷部と前記
温度基準ジャケットとの温度差を検出する熱電検出素子
と、前記熱負荷部を冷却するための熱電冷却素子と、前
記熱負荷部と温度基準ジャケットとの温度差を零にする
ため前記ヒータを加熱するためのヒータパワー制御器と
からなることを特徴とする光フアイバ伝送パワー測定、
用カロリメータ装置。
A heat load section consisting of a bolometer constructed by bonding a temperature-sensitive resistance element that absorbs optical power without reflection to the end face of an optical fiber, and a heater for direct current displacement constructed integrally with this bolometer, and this heat load. a bolometer bridge that applies DC power to the bolometer to adjust its resistance value; a thermoelectric detection element that detects a temperature difference between the heat load section and the temperature reference jacket; An optical fiber comprising: a thermoelectric cooling element for cooling a load section; and a heater power controller for heating the heater to zero the temperature difference between the heat load section and a temperature reference jacket. Transmission power measurement,
calorimeter device.
JP5537984A 1984-03-23 1984-03-23 Calorimeter device for measuring transmission power of optical fiber Pending JPS60198419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5537984A JPS60198419A (en) 1984-03-23 1984-03-23 Calorimeter device for measuring transmission power of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5537984A JPS60198419A (en) 1984-03-23 1984-03-23 Calorimeter device for measuring transmission power of optical fiber

Publications (1)

Publication Number Publication Date
JPS60198419A true JPS60198419A (en) 1985-10-07

Family

ID=12996848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5537984A Pending JPS60198419A (en) 1984-03-23 1984-03-23 Calorimeter device for measuring transmission power of optical fiber

Country Status (1)

Country Link
JP (1) JPS60198419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107732A (en) * 1989-09-21 1991-05-08 Sonitsuku Fueroo Kk Optical power meter using cylindrical photodetection plate
JP2002195879A (en) * 2000-12-25 2002-07-10 Japan Quality Assurance Organization Isothermal control type laser calorimeter
US20150176947A1 (en) * 2013-12-23 2015-06-25 Sergey V. Zaitsev Bolometric infrared quadrant detectors and uses with firearm applications
CN109540284A (en) * 2018-11-06 2019-03-29 中国计量科学研究院 A kind of optical power detector and its measurement method and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107732A (en) * 1989-09-21 1991-05-08 Sonitsuku Fueroo Kk Optical power meter using cylindrical photodetection plate
JP2002195879A (en) * 2000-12-25 2002-07-10 Japan Quality Assurance Organization Isothermal control type laser calorimeter
US20150176947A1 (en) * 2013-12-23 2015-06-25 Sergey V. Zaitsev Bolometric infrared quadrant detectors and uses with firearm applications
US9261408B2 (en) * 2013-12-23 2016-02-16 Svz Technologies, Llc Bolometric infrared quadrant detectors and uses with firearm applications
CN109540284A (en) * 2018-11-06 2019-03-29 中国计量科学研究院 A kind of optical power detector and its measurement method and preparation method

Similar Documents

Publication Publication Date Title
EP0516398B1 (en) Method and apparatus for controlling the emission spectrum of a light emitting diode
US4362057A (en) Optical fiber temperature sensor
US4576486A (en) Optical fiber thermometer
US5115127A (en) Optical fiber sensor for measuring physical properties of fluids
US4689483A (en) Fiber optical temperature measuring apparatus
US4964735A (en) Apparatus for indicating the power and position of a laser beam
CN112344973B (en) Fiber grating etalon based on closed cavity metal plate temperature control and use method
RU2698484C1 (en) Device for measuring radiation power of fiber lasers
CN110398610B (en) Flow velocity detection method and probe of optical fiber hot wire flow velocity sensor
US5047626A (en) Optical fiber sensor for measuring physical properties of liquids
CN107727123B (en) Adjustable type fiber integration Michelson interferometer based on electric heating effect
US4979796A (en) Thermally controlled optical fiber
JPS60198419A (en) Calorimeter device for measuring transmission power of optical fiber
US4091681A (en) Method for the simultaneous determination of low optical bulk and surface absorption coefficients in solids
RU2630857C1 (en) Laser emission standard source for power meter calibration
US4030362A (en) Self-calibrating radiometer
CN214541271U (en) Optical fiber Fabry-Perot sensing teaching experimental device
US4019381A (en) Transparent optical power meter
JPS5858008B2 (en) Laser power detection device
US6350056B1 (en) Method for fiber optic temperature measurement and fiber optic temperature sensor
Kendall Sr The JPL standard total-radiation absolute radiometer
Inoue et al. Highly sensitive calorimeter for microwatt-level laser power measurements
US4515474A (en) Method and apparatus for determining peak temperature along an optical fiber
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
US4012955A (en) Apparatus for measuring the incident power of light in fiber optics