JPS60194073A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS60194073A
JPS60194073A JP3265285A JP3265285A JPS60194073A JP S60194073 A JPS60194073 A JP S60194073A JP 3265285 A JP3265285 A JP 3265285A JP 3265285 A JP3265285 A JP 3265285A JP S60194073 A JPS60194073 A JP S60194073A
Authority
JP
Japan
Prior art keywords
magnet
film
permanent magnet
substrate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3265285A
Other languages
Japanese (ja)
Other versions
JPH0243824B2 (en
Inventor
Sukeyoshi Tsunekawa
恒川 助芳
Yoshio Honma
喜夫 本間
Hiroshi Morizaki
浩 森崎
Yukiyoshi Harada
原田 征喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3265285A priority Critical patent/JPH0243824B2/en
Publication of JPS60194073A publication Critical patent/JPS60194073A/en
Publication of JPH0243824B2 publication Critical patent/JPH0243824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the forming speed of a thin film and the uniformity of the film thickness by forming target electrodes of annular permanent magnets and magnet assembles which are provided in said annular magnets and are reversed with the polarities of the permanent magnets. CONSTITUTION:A sputtering device consists of a vacuum vessel 41, target electrodes 42, 43, 44, a substrate electrode 411 and high-frequency power sources 48, 49, 410, 414. Said electrodes 42, 43, 44 have plural pieces of magnet assemblies. For example, an annular permanent magnet 22 is disposed to each assembly in such a way that the surface 23 is of an N pole and a permanent magnet 24 is disposed in the central part thereof in such a way that said magnet has the S- pole surface 24 reverse from the above-mentioned magnet 24. The directions of the magnetic lines of forces are made opposite from each other with the electrodes 42, 43 and electrodes 43, 44 which are in proximity to each other.

Description

【発明の詳細な説明】 [発明の利用分野〕 本発明はスパッタリング装置に関するもので、とりわけ
バイアススパッタリング法による薄膜の形成速度の向上
及び形成した薄膜の膜厚均一に極めて有効なスパッタリ
ング装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a sputtering apparatus, and particularly to a sputtering apparatus that is extremely effective in improving the formation rate of thin films by bias sputtering method and in uniformly forming the thickness of the formed thin film. be.

〔発明の背景〕[Background of the invention]

従来技術について説明する。ここでは説明の便宜上Si
O□膜の形成に就いて以下に説明するが。
The conventional technology will be explained. Here, for convenience of explanation, Si
The formation of the O□ film will be explained below.

本発明はこわに限定されるものではなく、他の薄膜の形
成にも適用できる。
The present invention is not limited to stiff films, but can also be applied to the formation of other thin films.

バイアススパッタ法による5in2膜の形成は、ターゲ
ットの石英板を取付けるターゲット電極の他に基板電極
にも高周波電力を印加し基板電極にターゲット電極の2
0〜50%の負の電流バイアス電圧を誘起してターゲッ
トの他に基板にもグロー放電中のイオンの一部を衝突さ
せ、基板にSiO2膜を堆積させながら同時にその一部
を再放出(エツチング除去)させてSiO□膜を形成す
る方法である。
Formation of a 5in2 film by bias sputtering involves applying high frequency power to the substrate electrode in addition to the target electrode to which the target quartz plate is attached.
By inducing a negative current bias voltage of 0 to 50%, some of the ions in the glow discharge collide with the target as well as the substrate, depositing a SiO2 film on the substrate and at the same time re-releasing (etching) some of the ions. In this method, a SiO□ film is formed by removing the SiO□ film.

バイアススパッタ法によるSiO□膜の形成を、第1図
のスパッタリング装置の一例を参照して更に具体的に説
明する。真空容器1の中にターゲット電極2及び基板電
極4を取付け、真空容器壁を接地して3電極構造とする
。ターゲット電極にはターゲットの石英板3を取付ける
。また基板電極には石英板5を取付け、その石英板上に
5iO8膜を形成しようとする基板6を設置する。基板
電極上の石英板5は、基板電極4がスパッタされて基板
6に形成するSiO□膜が汚染されることを防止する。
The formation of the SiO□ film by the bias sputtering method will be described in more detail with reference to an example of the sputtering apparatus shown in FIG. A target electrode 2 and a substrate electrode 4 are installed in a vacuum container 1, and the wall of the vacuum container is grounded to form a three-electrode structure. A target quartz plate 3 is attached to the target electrode. Further, a quartz plate 5 is attached to the substrate electrode, and a substrate 6 on which a 5iO8 film is to be formed is placed on the quartz plate. The quartz plate 5 on the substrate electrode prevents the substrate electrode 4 from being sputtered and contaminating the SiO□ film formed on the substrate 6.

7,8は、ターゲット電極2、基板電極4の裏面がスパ
ッタされないようにするために接地電位に保たれたアー
スシールドである。この真空容器の中を排気装置(図に
は示されない)によってまず10”−gTorr程度の
高真空に排気し、その後ガス導入装置(図には示されな
い)によって不活性ガス(例えばArガス)を10−3
〜1O−2T orr台まで導入し、高周波電源9(例
えば発振波数1356 MHz)によって高周波電力を
ターゲット電極及び基板電極に印加し、グロー放電を起
こさせる。基板電極に印加する高周波電力は可変コンデ
ンサ10によって調整し、基板電極にはターゲット電極
に対して20〜50%の負の直流電圧が誘起されるよう
にして、基板6上にSiO2膜を形成する。この様に基
板に負の直流電圧を誘起して5in2膜を形成すると5
i02膜や基板表面に凹凸が存在しても5in2膜の表
面を平坦に形成できる。反面このバイアススパッタ法は
、SiO2膜を堆積しながらその5i02膜の一部をエ
ツチングして5in2膜を形成するため、5i02膜の
形成速度が著しく小さくなるという欠点がある。例えば
第1図の装置では基板に負の直流電圧を誘起しない場合
5i02膜の形成速度は100人/分程度であるが、タ
ーゲット電極に対して20〜50%の負の直流電圧を誘
起すると5iOz膜の形成速度は80〜50人/分にま
で低下する。また、第1図に示したターゲット電極に替
ってプレーナマグネトロン型の高速スパッタ源を用いた
バイアススパッタリング装置の提案があるが基板に負の
直流電圧を誘起した場合においても5in2膜の形成速
度が3〜5倍になる反面漏えい磁束が発生して基板上で
のエツチングの均一性に悪影響を与える。従って、Si
O□膜の堆積と堆積した膜の一部のエツチングを同時に
行なって5i02膜を形成するバイアススパッタ法にお
いては、膜厚均一性が著しく悪くなるという欠点がある
Reference numerals 7 and 8 denote earth shields kept at ground potential to prevent the back surfaces of the target electrode 2 and substrate electrode 4 from being sputtered. The inside of this vacuum container is first evacuated to a high vacuum of about 10"-gTorr using an exhaust device (not shown), and then an inert gas (e.g. Ar gas) is injected using a gas introduction device (not shown). 10-3
~10-2 Torr level, high frequency power is applied to the target electrode and the substrate electrode by the high frequency power supply 9 (for example, oscillation wave number: 1356 MHz) to cause glow discharge. The high frequency power applied to the substrate electrode is adjusted by the variable capacitor 10 so that a negative DC voltage of 20 to 50% with respect to the target electrode is induced in the substrate electrode to form a SiO2 film on the substrate 6. . When a 5in2 film is formed by inducing a negative DC voltage on the substrate in this way, the
Even if there are irregularities on the surface of the i02 film or the substrate, the surface of the 5in2 film can be formed flat. On the other hand, this bias sputtering method has the disadvantage that the formation speed of the 5i02 film is extremely slow because the 5in2 film is formed by etching a part of the 5i02 film while depositing the SiO2 film. For example, in the apparatus shown in Figure 1, the formation rate of 5i02 film is about 100 people/min when no negative DC voltage is induced on the substrate, but when a 20 to 50% negative DC voltage is induced on the target electrode, the formation rate is 5iOz. The film formation rate drops to 80-50 people/min. In addition, there has been a proposal for a bias sputtering device that uses a planar magnetron type high-speed sputtering source instead of the target electrode shown in Figure 1, but the formation speed of the 5in2 film is low even when a negative DC voltage is induced on the substrate. On the other hand, the leakage magnetic flux is increased by 3 to 5 times, which adversely affects the uniformity of etching on the substrate. Therefore, Si
The bias sputtering method in which a 5i02 film is formed by depositing an O□ film and etching a portion of the deposited film at the same time has the drawback that the uniformity of the film thickness deteriorates significantly.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のスパッタリング装置の有する上
記欠点を解決し、基板に負電圧を誘起した場合において
も腹の形成速度が大きく、均一な膜厚を有する膜を形成
できるスパッタリング装置を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of conventional sputtering apparatuses, and to provide a sputtering apparatus that can form a film having a high antinode formation rate and a uniform thickness even when a negative voltage is induced in a substrate. There is a particular thing.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明は、ターゲット電極は
少なくとも2個のマグネットアセンブリを有しており、
該アセンブリに内蔵されている少なく共2個の永久磁石
は近接する他のマグネットアセンブリの有する永久磁石
と互いに極性を逆にして配置されていることにある。こ
の様に近接するマグネットアセンブリにおけるトンネル
状の磁力線束において、その磁力線の向きを互いに逆方
向とし、基板あるいはマグネットアセンブリを運動させ
ることによって漏えい磁束の影響を均一化することにあ
る。
To achieve the above object, the present invention provides that the target electrode has at least two magnet assemblies,
At least two permanent magnets built into the assembly are arranged with polarities opposite to those of other adjacent magnet assemblies. The purpose of this method is to equalize the influence of the leakage magnetic flux by making the directions of the magnetic lines of force in tunnel-like magnetic fluxes in adjacent magnet assemblies opposite to each other and moving the substrate or the magnet assembly.

本発明は上記構成になるので、バイアススパッタによる
5i02膜形成において膜厚均一性に悪影響を及ぼす高
速スパッタ源のマグネットアセンブリによる基板上での
漏えい磁束の影響が小さくなる。以下図面を用いて本発
明の詳細な説明する。
Since the present invention has the above configuration, the influence of leakage magnetic flux on the substrate due to the magnet assembly of the high speed sputtering source, which adversely affects film thickness uniformity in forming a 5i02 film by bias sputtering, is reduced. The present invention will be described in detail below using the drawings.

第2a図および第2b図は本発明を説明するための概略
斜視図である。
Figures 2a and 2b are schematic perspective views for explaining the present invention.

プレーナマグネトロン型の高速スパッタ源は、第2b図
に示すマグネットアセンブリをターゲット電極の中に組
込むことによって第2a図に示す様なトンネ状の磁力線
束を形成することによって構成される。すなわち第2b
図に示したように。
A planar magnetron type high speed sputtering source is constructed by incorporating a magnet assembly shown in FIG. 2b into a target electrode to form a tunnel-like magnetic flux as shown in FIG. 2a. i.e. 2nd b
As shown in the figure.

軟鉄板21上に例えば表面23がN極になる様に軟鉄板
の周辺部にループ状(環状)の永久磁石22を配置し、
軟鉄板上の中央部には、表面23がN極の場合には表面
25がS極になる様に永久磁石24を配置する。このマ
グネットアセンブリをターゲットの裏側に取付けると、
第2a図の様なトンネル状の磁力線束を発生させること
ができる。
A loop-shaped (annular) permanent magnet 22 is arranged on the periphery of the soft iron plate 21, for example, so that the surface 23 becomes the north pole,
A permanent magnet 24 is placed in the center of the soft iron plate so that when the surface 23 is the north pole, the surface 25 is the south pole. When this magnet assembly is attached to the back side of the target,
It is possible to generate a tunnel-like magnetic flux as shown in FIG. 2a.

すなわち第2a図において、ターゲット11上に磁力線
12が矢印で示した方向に発生し、ターゲット表面上で
閉じたトンネ状の磁力線束を形成するにの時の磁力線の
磁束密度はターゲラ1−表面においてその平行成分で2
00〜300ガウスであればよい。またスパッタリング
装置の中でグロー放電を起こすと、このターゲット表面
に負の直流電圧が誘起されターゲット表面に垂直に電気
力線が形成される。この磁力線束と電気力線によって、
グロー放電中で発生した電子はこのトンネル状の閉じた
磁力線束の中を運動し、効率よ<Arガスをイオン化す
る。この結果、トンネル状に閉じた磁力線束に面してい
るターゲット表面13がこれ以外のターゲット表面に比
べ高速度でスパッタされ、基板での膜の形成速度を大き
くすることができる。なお、ターゲット表面の領域13
はエロージ目ンエリアと呼ばれている。ところが、この
ままではターゲット電極に組込んだマグネットアセンブ
リによって基板表面には、基板に垂直な成分で50ガウ
ス程度の漏えい磁束が存在する。
That is, in FIG. 2a, when the magnetic lines of force 12 are generated on the target 11 in the direction indicated by the arrow and form a closed tunnel-like magnetic flux on the target surface, the magnetic flux density of the magnetic lines of force is Its parallel component is 2
00 to 300 Gauss is sufficient. Furthermore, when a glow discharge is generated in the sputtering device, a negative DC voltage is induced on the target surface, and electric lines of force are formed perpendicular to the target surface. Due to this magnetic flux and electric lines of force,
The electrons generated during the glow discharge move in this tunnel-like closed magnetic flux and ionize the Ar gas with high efficiency. As a result, the target surface 13 facing the tunnel-shaped magnetic flux is sputtered at a higher speed than other target surfaces, and the film formation speed on the substrate can be increased. Note that area 13 on the target surface
It is called the Erogime area. However, as it is, a leakage magnetic flux of about 50 Gauss exists on the surface of the substrate due to the magnet assembly incorporated in the target electrode, with a component perpendicular to the substrate.

ところが、前述の様に本発明は磁力線の向きが互いに逆
方向になっており、漏洩磁束の影響が均一化され、これ
によって均一な膜厚の5i02膜が得られる。
However, as described above, in the present invention, the directions of the magnetic lines of force are opposite to each other, so that the influence of the leakage magnetic flux is made uniform, thereby making it possible to obtain a 5i02 film with a uniform thickness.

上記構成において、基板あるいはマグネットアセンブリ
を所定の稼動装置に取付け、併進、往復または回転運動
させるとさらに均一な膜が得られるのでなお良い。
In the above configuration, it is even better if the substrate or the magnet assembly is attached to a predetermined moving device and moved in translation, reciprocation, or rotation, since a more uniform film can be obtained.

以下、本発明な実施例を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to embodiments.

実施例1 本実施例は第3図に示すように、ターゲット31の中に
複数の閉じたトンネル状磁力線束32゜33.34.3
5をもち、複数のエロージ五ンエリア36,37,38
.39が形成される。ここで、磁力線束32.34の磁
力線の向き310゜312は、周辺部から中央部に向か
って形成される。また、磁力線束33,35の磁力線の
向き311.313は、磁力線束32.34とは反対に
中央部から周辺部に向って形成される。
Embodiment 1 As shown in FIG. 3, in this embodiment, a plurality of closed tunnel magnetic fluxes 32° 33.
5 and multiple erotic five area 36, 37, 38
.. 39 is formed. Here, the directions 310° 312 of the magnetic fluxes 32 and 34 are formed from the periphery toward the center. Moreover, the directions 311 and 313 of the magnetic force lines of the magnetic force lines 33 and 35 are formed from the center toward the periphery, opposite to the magnetic force lines 32 and 34.

実施例2 本実施例は第4図に示すようなインライン型の装置にお
いて、ターゲット電極42,43.44に第2−b図の
ようなマグネットアセンブリを組込む時、磁力線束の磁
力線の向きをターゲット電極42.43で互いに逆にし
、ターゲット電極43.44で互いに逆とする。第4図
において、41・・・真空容器、45,46,47・・
・ターゲット、48.49,410,414・・・高周
波電源。
Embodiment 2 In this embodiment, in an in-line type device as shown in FIG. 4, when a magnet assembly as shown in FIG. Electrodes 42.43 are reversed and target electrodes 43.44 are reversed. In Fig. 4, 41... vacuum container, 45, 46, 47...
・Target, 48.49,410,414...High frequency power supply.

411・・・基板電極、42は基板413に形成する薄
膜の汚染を防止するためターゲット同材質の板である。
411...substrate electrode; 42 is a plate made of the same material as the target in order to prevent contamination of the thin film formed on the substrate 413;

基板電極411は矢印415で示した方向に直IsM動
を行ない、膜厚の均一性は向上する。
The substrate electrode 411 performs a direct IsM movement in the direction shown by the arrow 415, and the uniformity of the film thickness is improved.

実施例3 本実施例は第5図に示すような円筒型の装置で、ターゲ
ット電極52.53に第2−b図のようなマグネットア
センブリを組込む時、磁力線束の磁力線の向きを隣り合
うターゲット電極で互いに逆とする。なお他の記号は実
施2と同じである。基板電極511は515のように回
転運動する。
Embodiment 3 This embodiment uses a cylindrical device as shown in FIG. 5, and when a magnet assembly as shown in FIG. The electrodes are opposite to each other. Note that other symbols are the same as in the second embodiment. The substrate electrode 511 rotates like 515.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく本発明によれば、バイアススパッタ
法によって薄膜を形成する場合、その形成速度が著しく
向上し、かつその薄膜の均一性も改善されるので、実用
上極めて有用である。
As explained above, according to the present invention, when a thin film is formed by bias sputtering, the formation speed is significantly improved and the uniformity of the thin film is also improved, so that it is extremely useful in practice.

図面の簡単な説 第1図は従来のスパッタリング装置の概略断面図、第2
a図および第2b図は本発明を説明するためのターゲッ
ト電極の概略斜視図、第3図は本発明に使用したターゲ
ット電極の概略斜視図、第4図は本発明の一実施例を示
す概略の断面図、第5図は本発明の他の実施例を示す概
略断面図である。
Brief description of the drawings Figure 1 is a schematic sectional view of a conventional sputtering device, Figure 2
Figures a and 2b are schematic perspective views of a target electrode for explaining the present invention, Figure 3 is a schematic perspective view of a target electrode used in the present invention, and Figure 4 is a schematic diagram showing an embodiment of the present invention. FIG. 5 is a schematic sectional view showing another embodiment of the present invention.

41・・・真空容器、42,43,44・・・ターゲッ
ト電極、45,46,47・・・ターゲット、48゜4
9.410,414・・・高周波電源、411・・・基
板電極、413・・・基板、412・・・汚染防止板。
41... Vacuum vessel, 42, 43, 44... Target electrode, 45, 46, 47... Target, 48°4
9.410,414...High frequency power supply, 411...Substrate electrode, 413...Substrate, 412...Contamination prevention plate.

代理人 弁理士 小 川 勝 男C 384Agent: Patent Attorney Masaru Kogawa C 384

Claims (1)

【特許請求の範囲】[Claims] 1、真空容器、ターゲット電極、基板電極、および、高
周波電源を少なくとも有するスパッタリング装置におい
て、ループ状の永久磁石と該ループ状の永久磁石のルー
プ内に独立して設けられ、上記ループ状の永久磁石とは
極性の異なる永久磁石からなるマグネットアッセンブリ
ーを少なくとも2個有し、上記各マグネットアッセンブ
リーの有する上記ループ状の永久磁石と上記独立して設
けられた永久磁石は、隣り合う上記マグネットアッセン
ブリーの有する上記ループ状の永久磁石と上記独立して
設けられた永久磁石と、それぞれ互いに異なる極性を有
することを特徴とするスパッタリング装置。
1. In a sputtering apparatus having at least a vacuum container, a target electrode, a substrate electrode, and a high-frequency power source, the loop-shaped permanent magnet is provided independently within the loop of the loop-shaped permanent magnet, and the loop-shaped permanent magnet is provided independently within the loop of the loop-shaped permanent magnet. The loop-shaped permanent magnet of each magnet assembly and the independently provided permanent magnet have at least two magnet assemblies each consisting of a permanent magnet having a polarity different from that of the adjacent magnet assembly. A sputtering apparatus characterized in that a loop-shaped permanent magnet and the independently provided permanent magnet have polarities different from each other.
JP3265285A 1985-02-22 1985-02-22 SUPATSUTARINGUSOCHI Expired - Lifetime JPH0243824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265285A JPH0243824B2 (en) 1985-02-22 1985-02-22 SUPATSUTARINGUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265285A JPH0243824B2 (en) 1985-02-22 1985-02-22 SUPATSUTARINGUSOCHI

Publications (2)

Publication Number Publication Date
JPS60194073A true JPS60194073A (en) 1985-10-02
JPH0243824B2 JPH0243824B2 (en) 1990-10-01

Family

ID=12364792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265285A Expired - Lifetime JPH0243824B2 (en) 1985-02-22 1985-02-22 SUPATSUTARINGUSOCHI

Country Status (1)

Country Link
JP (1) JPH0243824B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147602A (en) * 1985-12-23 1987-07-01 松下電器産業株式会社 Manufacture of dielectric film
JPS62188777A (en) * 1986-02-13 1987-08-18 Anelva Corp Bias sputtering device
EP0516436A2 (en) * 1991-05-31 1992-12-02 Deposition Sciences, Inc. Sputtering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147602A (en) * 1985-12-23 1987-07-01 松下電器産業株式会社 Manufacture of dielectric film
JPS62188777A (en) * 1986-02-13 1987-08-18 Anelva Corp Bias sputtering device
EP0516436A2 (en) * 1991-05-31 1992-12-02 Deposition Sciences, Inc. Sputtering device

Also Published As

Publication number Publication date
JPH0243824B2 (en) 1990-10-01

Similar Documents

Publication Publication Date Title
JP2970317B2 (en) Sputtering apparatus and sputtering method
JPS6272121A (en) Semiconductor treating device
GB2051877A (en) Magnetically Enhanced Sputtering Device and Method
JPH02163373A (en) Thin film forming device
JPS60194073A (en) Sputtering device
US7638022B2 (en) Magnetron source for deposition on large substrates
JPS6217175A (en) Sputtering device
JP2001348663A (en) Sputtering system
JPH0578831A (en) Formation of thin film and device therefor
JPH0525625A (en) Magnetron sputtering cathode
JPS62218562A (en) Sputtering device
JPS62167877A (en) Plasma transfer type magnetron sputtering apparatus
JP2004124171A (en) Plasma processing apparatus and method
JPH11140639A (en) Magnetron device and sputtering device
JP3316878B2 (en) Sputtering electrode
JPH0734244A (en) Magnetron type sputtering cathode
JP3100242B2 (en) Plasma processing equipment
JPH0633454B2 (en) Sputtering device
JP2002069631A (en) Sputtering method and equipment therefor
JPS6389663A (en) Sputtering device
JPH0715900B2 (en) Dry process equipment
JPS6342707B2 (en)
JP3455616B2 (en) Etching equipment
JPH08325726A (en) Cathode
JP3221928B2 (en) Magnetron reactive ion processing equipment