JPS60190608A - Waste heat recovering device of electric power generator - Google Patents

Waste heat recovering device of electric power generator

Info

Publication number
JPS60190608A
JPS60190608A JP4393184A JP4393184A JPS60190608A JP S60190608 A JPS60190608 A JP S60190608A JP 4393184 A JP4393184 A JP 4393184A JP 4393184 A JP4393184 A JP 4393184A JP S60190608 A JPS60190608 A JP S60190608A
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
cooler
cooling
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4393184A
Other languages
Japanese (ja)
Inventor
Jun Araki
荒木 順
Taiji Inui
泰二 乾
Hiroshi Matsubayashi
松林 博志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4393184A priority Critical patent/JPS60190608A/en
Publication of JPS60190608A publication Critical patent/JPS60190608A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To recover thermal energy produced as loss in an electric power generator by increasing pressure of a cooling medium at a cooler inlet to raise temperature in a circulating system of the cooling medium. CONSTITUTION:Since a cooling medium (hydrogen), after cooling a rotor 14 and a stator 15, is raised in its temperature, it is fed to a hydrogen cooler 5 and cooled with external cooling water therein to cool the rotor 14 and the stator 15 again thereafter. Hydrogen fed into the hydrogen cooler 5 is pressurized by means of a compressing fan 13. A pressure reducing mechanism 16 reduces pressure by narrowing the area of the outlet air duct of the hydrogen cooler 5. With such arrangement, energy produced as loss in a power generator, i.e., all of discharged energy from a hydrogen side taken away by the hydrogen cooler 5 can be recovered in the power generating plant cycle, whereby thermal efficiency of the power generator can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、発電機の損失として発生する熱エネルギを発
電プラン1〜のサイクルへ熱回収する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a device for recovering heat energy generated as a loss of a power generator to cycles of power generation plans 1 to 1.

(発明の背景〕 g、電機では、電気発生時に、エネルギの横失が生じる
ため、冷却媒体2例えば、水素又は空気を発電機の回転
子、或いは、固定子へ送ってそのエネルギを奪うように
なっている。しかし、冷却媒体はこの熱交換によって温
度が丘昇するため冷却水冷却器で冷却し再び回転子或い
は固定子へ送り込まれる、いわゆる、同一冷却媒体によ
る閉ループシステムがとられている。
(Background of the invention) g. In electric machines, energy is lost when electricity is generated, so a cooling medium 2, for example, hydrogen or air, is sent to the rotor or stator of the generator to take away that energy. However, the temperature of the cooling medium rises due to this heat exchange, so a so-called closed loop system using the same cooling medium is used, in which the cooling medium is cooled by a cooling water cooler and sent to the rotor or stator again.

この閉ループシステムで、冷却器で冷却水によって外部
へ捨てられる熱量、即ち、J6電機での損失エネルギは
多大なものであり、従来より発電プラントサイクルに、
されを熱回収する方法が考えられてきた。
In this closed-loop system, the amount of heat that is discarded to the outside by cooling water in the cooler, that is, the energy loss in J6 Electric Machinery, is large, and conventionally, in the power generation plant cycle,
Methods have been developed to recover heat from the waste.

その−例として、第1図に発電機排熱を水素冷却器を介
して発電プラントサイクルの復水で熱回収を行なうべく
計画されたシステムを示す。
As an example, FIG. 1 shows a system designed to recover generator waste heat through a hydrogen cooler and into the condensate of the power plant cycle.

このシステムでは、復水器2からポンプ4によって抽出
された復水は、二方口制御弁12、復水冷却器11及び
二方口制御弁7を紅で水素冷却器6へ供給され、発電機
5の中の循環水素を冷却し、発電fi5で発生した損失
熱を復水器へ回収したのち、給水加熱器9を経てボイラ
10まで送水する。
In this system, condensate extracted from a condenser 2 by a pump 4 is supplied to a hydrogen cooler 6 through a two-way control valve 12, a condensate cooler 11, and a two-way control valve 7 to generate power. After cooling the circulating hydrogen in the machine 5 and recovering the loss heat generated in the power generation fi5 to the condenser, the water is sent to the boiler 10 via the feed water heater 9.

ここで、二方口制御弁7は、復水で冷却後の水素の適正
温度を常に保つため、水素温度を検出器8で検出し水素
冷却器6へ送るべき復水の所要量を制御する。又、復水
冷却器11と二方口制御弁12は、復水8:(2出1」
の領水温度が高くなった場合に、水素冷却器6の前流復
水の温度を検出器13で検出し、二方口制御弁12で復
水を冷却する1]的で設けられた復水冷却器1.4への
通水量を制御することによって、水素冷却器によって制
限される供給水の最低許容温度を維持する。
Here, the two-way control valve 7 detects the hydrogen temperature with a detector 8 and controls the required amount of condensate to be sent to the hydrogen cooler 6 in order to always maintain the appropriate temperature of hydrogen after being cooled with condensate. . In addition, the condensate cooler 11 and the two-way port control valve 12 are configured such that the condensate 8: (2 outputs 1)
When the temperature of the territorial water becomes high, the temperature of the condensate upstream of the hydrogen cooler 6 is detected by the detector 13, and the condensate is cooled by the two-way control valve 12. By controlling the flow of water to the cooler 1.4, the minimum allowable temperature of the feed water, which is limited by the hydrogen cooler, is maintained.

しかし21本システl\は、水素冷却のための復水の温
度の決定要素となる復水器冷却海水3の温度が高い発電
プラントでは、次の問題点があり、海水温度が充分低い
プラン1〜でのみ適用可能である。
However, the 21-piece system has the following problems in power plants where the temperature of the condenser cooling seawater 3, which is the determining factor for the temperature of condensate for hydrogen cooling, is high. Applicable only in ~.

第2図は、前述のシステム運用における各部温度の相関
関係を示す。海外温度[Cか充分低い時は、温度t5で
ある復水器0出口の復水は、復水冷却j4W (/ (
Lをバイパスと、そのまま、水素冷却器1−I Cへ送
られ、発電機Gで温度−上昇した水素を温度tI2から
1.まで冷却する。
FIG. 2 shows the correlation between the temperatures of each part during the system operation described above. When the overseas temperature [C] is sufficiently low, the condensate at the condenser 0 outlet, whose temperature is t5, is condensate cooled j4W (/ (
L is bypassed, the hydrogen is directly sent to the hydrogen cooler 1-IC, and the hydrogen whose temperature has been raised by the generator G is raised from the temperature tI2 to 1. Cool until cool.

又、海外温度がt。′のように高い場合は、復水温度も
t 、 7 と高くなるため、この復水は復水冷却器C
Cで温度15/から1gまで冷却され、水素冷却器HC
へ送られる。
Also, the temperature overseas is t. If the temperature is as high as
It was cooled to a temperature of 15 to 1g in a hydrogen cooler HC.
sent to.

復水冷却器CCによって復水を冷却すべきか否かは、復
水器C出1」の復水温度によって水素冷却器トICで水
素が冷却できるかどうかによって定まる。こhを、まず
、発電機Gの水素冷却側からtgとしての最高許容温度
をめると、[lと1gの温度差には水素冷却器HCの大
きさの制限及び発電機G本体との構造の面から最小許容
値があるのでこれを限界とされている6℃を用い、Lt
つ、1.を通常設定温度45℃とすると、復水人口温度
1sの最高許容温度は39℃となる。他方、復水器の復
水温度15は、海水温度1cに復水器での温度上昇(t
h tc)と復水器設計」二の必要温度差(1,−1h
)を加算したものとして決定されるが、これらの合計値
t5と16との温度差は、同様に発電プラント全体の経
済性から小さくなる方に限界があり一般的に11℃以上
は必要とされる1、よって、前述のt5の最高許容温度
39℃から、逆に復水器冷却海水の最高許容温度ECを
めると28℃となる。このように、海水温度は28°C
以下であれば問題はなく、28℃以−Lであれば各種制
限によって水素冷却器への供給復水を復水冷却器で冷却
し供給温度をさげてやる必要がある。
Whether or not the condensate should be cooled by the condensate cooler CC is determined by whether hydrogen can be cooled by the hydrogen cooler IC based on the condensate temperature of the condenser C output 1. First, if we calculate the maximum allowable temperature as tg from the hydrogen cooling side of generator G, we can find that [the temperature difference between l and 1g includes the size limit of hydrogen cooler HC and the difference between Since there is a minimum allowable value from the structural standpoint, using 6°C, which is considered as the limit, Lt
1. When the normal setting temperature is 45°C, the maximum allowable temperature of the condensate population temperature 1 s is 39°C. On the other hand, the condensate temperature 15 in the condenser is determined by the seawater temperature 1c plus the temperature rise in the condenser (t
h tc) and condenser design”2 required temperature difference (1, -1 h
), but the temperature difference between these total values t5 and t16 is similarly limited to being smaller due to the economic efficiency of the entire power plant, and generally a temperature of 11°C or more is required. Therefore, if the maximum allowable temperature EC of the condenser cooling seawater is subtracted from the maximum allowable temperature 39° C. at t5 mentioned above, it becomes 28° C. In this way, the seawater temperature is 28°C
If it is below, there is no problem, but if it is 28° C. or lower, due to various restrictions, it is necessary to cool the condensate supplied to the hydrogen cooler with a condensate cooler to lower the supply temperature.

これを実情に照らしてみると、寒冷地に設置される発電
プラントを除き、はとんどのプラントは、海水温度が特
に夏季において30℃を越えることがあるため、復水冷
却器の設置が必要になる。このことは復水冷却器並びに
同冷却器廻り復水側及び冷却dσ外の諸設備の設置によ
り、太tijなコストアップを招くばかりか、発電機側
で発生する損失のエネルギを熱回収するためのシステム
でありながら、他方では、復水を冷却し熱エネルギを外
部に捨てる結果となり、有効に熱回収が得られない問題
がある。特に、熱帯地域における発電所等、通常海水温
度が30℃前後のプラントでは全く熱回収のメリットは
得られない。
Looking at this in the light of the actual situation, most plants, with the exception of power plants installed in cold regions, require the installation of condensate coolers because the seawater temperature can exceed 30°C, especially in the summer. become. This not only leads to a significant cost increase due to the installation of a condensate cooler and various equipment around the condensate side and outside the cooling dσ, but also requires the installation of a condensate cooler and various equipment on the condensate side around the cooler and outside the cooling dσ. However, on the other hand, there is a problem in that the condensate is cooled and the thermal energy is discarded to the outside, making it impossible to effectively recover heat. In particular, plants where the seawater temperature is usually around 30°C, such as power plants in tropical regions, cannot benefit from heat recovery at all.

更に、海水温度の上限値は28℃としてめたが、実際に
は水素冷却器の必要復水鼠との兼ねあいによる運転上の
問題並びに、発電プラン1〜経済性の面から復水器での
復水温度はもつと高くすることが要求されるので、」二
限値は28℃よりもつと低い値として考えられべきで、
これらの諸問題から最近は、本システムはほとんど採用
されておらず、水素冷却器は別個の淡水冷却システムの
冷却水によって冷却され熱エネルギは系外へ捨てられて
しまっているのが現状である。
Furthermore, although the upper limit of the seawater temperature was set at 28℃, in reality, due to operational problems due to the need for condensation of hydrogen coolers, and from the economic point of view of power generation plan 1, condensers are not used. Since the condensate temperature of 28℃ is required to be higher, the second limit value should be considered as a lower value than 28℃.
Due to these problems, this system has rarely been adopted recently, and the current situation is that the hydrogen cooler is cooled by cooling water from a separate freshwater cooling system, and the thermal energy is discarded outside the system. .

〔発明の目的〕 本発明の目的は、発電機で発生する損失の熱エネルギを
発電プラン1〜のサイクルに熱回収する装置を提供する
にある。
[Object of the Invention] An object of the present invention is to provide a device for recovering heat energy lost from a generator in the cycles of power generation plans 1 to 1.

〔発明の概要〕[Summary of the invention]

本発明の要点は、発電プラン1−の復水器出口の復水温
度が高くても、その復水で発電機の冷却媒体を冷却可能
にする発電機内部の冷却系の構造にある。
The gist of the present invention lies in the structure of the cooling system inside the generator, which allows the cooling medium of the generator to be cooled by the condensed water even if the temperature of the condensed water at the outlet of the condenser of power generation plan 1- is high.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図から第5図によって詳
述する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 3 to 5.

第3図は、発電機内冷却系の構造の概要と、冷却媒体と
しての流れを示す。
FIG. 3 shows an overview of the structure of the cooling system within the generator and the flow of the cooling medium.

冷却媒体(水素)は、回転子14及び固定子15を冷却
した後に、その温度が上昇するため、水素冷却器5に送
られ外部冷却水で冷却された後、再び、冷却媒体として
回転子14及び固定子15に送られるが、この水素循環
系で本発明では、圧縮ファン13がロータ12にとり付
けら九ており、水素冷J41器へ送り込まれる水素はロ
ータ回転に伴い、圧縮ファン13によって加圧される。
Since the temperature of the cooling medium (hydrogen) increases after cooling the rotor 14 and stator 15, the cooling medium (hydrogen) is sent to the hydrogen cooler 5 and cooled with external cooling water. In this hydrogen circulation system, a compression fan 13 is attached to the rotor 12, and the hydrogen sent to the hydrogen cooling J41 is compressed by the compression fan 13 as the rotor rotates. be pressured.

そしてこの加圧された水素は、次に水素冷却器5から出
てくる際に圧縮ファン13によって加圧されたと同じ圧
力分、減圧機構16で減圧される。即ち、回転子14及
び固定子15が冷却される領域における水素の圧力に対
し、圧縮ファン1′3がら減圧機構16の間の水素冷却
器出入口領域では、高目の水素圧力によって運用するシ
ステムとなっている。
The pressurized hydrogen is then depressurized by the decompression mechanism 16 by the same pressure as that pressurized by the compression fan 13 when coming out of the hydrogen cooler 5 . That is, compared to the hydrogen pressure in the region where the rotor 14 and stator 15 are cooled, the system operates with a higher hydrogen pressure in the hydrogen cooler inlet/outlet region between the compression fan 1'3 and the pressure reducing mechanism 16. It has become.

本実施例で従来構造と異なる圧縮ファン13は、従来の
発電機で水素を循環されるために同じ位置にとり付けら
れているli!(環ファンと異なり、水素を加圧するも
のであり、又、減圧機構16は、水素冷却器5の出口風
道の面積を狭めることによって減圧を行なうものである
In this embodiment, the compression fan 13, which has a different structure from the conventional one, is installed at the same position in order to circulate hydrogen with a conventional generator. (Unlike a ring fan, it pressurizes hydrogen, and the pressure reduction mechanism 16 reduces the pressure by narrowing the area of the outlet air passage of the hydrogen cooler 5.

前述の水素の加圧並びに減圧は、その作用前後で水素温
度を下記のように変化させる。一般に、ガス流体を流体
と周囲との間に熱交換が無い状態で加圧すると、断熱変
化によって加圧後の温度は加圧前の温度より」型外する
。この温度上昇は、断熱変化の理論として T2 =T+ X (P 2 / P I) kとして
めることができる。
The aforementioned pressurization and depressurization of hydrogen causes the hydrogen temperature to change as follows before and after the action. Generally, when a gas fluid is pressurized without heat exchange between the fluid and the surroundings, the temperature after pressurization is higher than the temperature before pressurization due to adiabatic changes. This temperature increase can be expressed as T2 = T + X (P 2 / PI) k as a theory of adiabatic change.

ここに、Pは圧力、Tは絶対温度、kは断熱指数を示す
Here, P is pressure, T is absolute temperature, and k is adiabatic index.

第4図で、従来の発電機では、圧力P = 4 alg
aのもとで温度t+=45℃の水素が回転子及び固定子
冷却によ−)てt、=57°Cまで温度上昇し、水素冷
却器によって同じ/IEカのもとでt、=57℃からt
+=45℃まで冷却されるものとして、本実施例によっ
て水素循環途中、水素冷却器前後で水素圧力を!”’ 
=4.5al:aまで加圧し、次に、F’−4aC++
まで減圧を行なうとすると、水素の温度変化の相異は下
記となる。
In Figure 4, in the conventional generator, the pressure P = 4 alg
Hydrogen at temperature t+=45°C under a is heated to t,=57°C by rotor and stator cooling, and then heated to t,=57°C under the same /IE force by a hydrogen cooler. 57℃ to t
Assuming that the product is cooled to +=45°C, in this example, the hydrogen pressure is adjusted before and after the hydrogen cooler during hydrogen circulation! ”'
=4.5al: pressurize to a, then F'-4aC++
If the pressure is reduced to 1, the difference in temperature change of hydrogen will be as follows.

(+) P = ’I alga 、 ’t 、 = 
57℃の水素(k =1./II)を)”=/1.5旧
、i」まで加圧した後の水素冷却器入口dj度12′は
、 t、’ =341−273=68℃ (2) ・方、発電機冷却に必要とされる圧力温度P=
4ai、a−tl=45℃の水素を得るべき減圧前水素
冷却器出11温度1.′を逆にめると、t 、 ’ =
 329−27.3 = 56℃このことは、水素冷却
器の前後で、水素圧力を発電機冷却部の圧力により0.
5al;だけゎずかに高く保てば、水素冷却器で冷却す
べき水素温度条件を、従来発電機におけるt2−”65
℃→1.=45℃をi2′=68℃→11′=56°C
に変え得ることを示している。
(+) P = 'I alga, 't, =
The hydrogen cooler inlet dj degree 12' after pressurizing hydrogen (k = 1./II) at 57 °C to )" = /1.5 old, i" is t,' = 341-273 = 68 °C (2) ・Pressure temperature required for generator cooling P=
4ai, a-tl = 45°C hydrogen should be obtained. Pre-decompression hydrogen cooler outlet 11 temperature 1. ′ is reversed, t, ′ =
329-27.3 = 56°C This means that before and after the hydrogen cooler, the hydrogen pressure is reduced to 0.0 by the pressure of the generator cooling section.
If the hydrogen temperature condition to be cooled by the hydrogen cooler is kept slightly higher by 5al;
℃→1. = 45°C i2' = 68°C → 11' = 56°C
It shows that it can be changed to

即ち、第3図に示す圧縮ファンI3と減圧機構16は、
回転子j4及び固定子15の水素冷却温度は従来の45
℃を変えることなく、水素冷却器出口の水素温度条件を
従来の45℃から56℃まであげるために設置されるも
のである。
That is, the compression fan I3 and pressure reduction mechanism 16 shown in FIG.
The hydrogen cooling temperature of rotor j4 and stator 15 is 45
It was installed to raise the hydrogen temperature condition at the outlet of the hydrogen cooler from the conventional 45°C to 56°C without changing the temperature.

この水素冷却器量1」水素温度の大+lJなアップは、
水素冷却器がより高い温度の冷却水でも冷却できること
となることがら、発電プラントの復水器量■」水で冷却
する場合にも、何ら制限を与えない。
This hydrogen cooler quantity 1" large + lJ increase in hydrogen temperature is
Since the hydrogen cooler can cool even higher-temperature cooling water, there are no restrictions on the amount of condenser in a power plant when cooling with water.

これを、第5図に示す復水器と水素冷却器の各流体出入
口温度の関係図で説明する。
This will be explained with reference to FIG. 5, which is a diagram showing the relationship between the temperatures of each fluid inlet and outlet of the condenser and hydrogen cooler.

水素冷却器出口の水素の温度t、L を56℃とし、こ
の1./ と入口復水温度1.どの差を標fl、c!の
水素冷却器としての最小値6℃を用いると、水素冷却器
入口復水の最高許容温度t5が50℃どまる。これから
、復水器の復水温度t5を5゜℃として、復水器去却海
水温度1cを逆にめると、復水器での温度」−昇(th
−tc)と設計上の必要温度差(i5−t、)の合計値
をこれも標準復水器としての最小値11℃を用いると、
復水器の冷却riσ水の最高許容温度t。は37℃とな
る。
The hydrogen temperature t, L at the hydrogen cooler outlet is 56°C, and this 1. / and inlet condensate temperature 1. What difference fl, c! When the minimum value of 6°C for the hydrogen cooler is used, the maximum allowable temperature t5 of condensate at the hydrogen cooler inlet remains at 50°C. From now on, if the condensate temperature t5 of the condenser is set to 5°C and the condenser rejected seawater temperature 1c is reversed, the temperature in the condenser will rise (th
-tc) and the required design temperature difference (i5-t,) using the minimum value of 11°C for a standard condenser.
Maximum permissible temperature t of condenser cooling riσ water. becomes 37℃.

このことは、1毎水の温度が37°Cであっても、水素
冷却器量【−1の水素温度は従来発電機のそれと同じ4
5℃まで冷却が可能であることを示しており、実際は3
7°Cの715.本温度の発電プラン1−はあり得ない
事から、発電プラントの復水器出口の復水で水素冷却F
!:(を冷却することに対し、何ら制限があり得ないこ
とがわかる、 この様に、本発明は、従来、復水での水素の冷却jl(
i、びにそれによる発電機4j1:熱のプラントへの熱
回収のさまたげとなっていた復水器への冷却海水の温度
制限を↑1]、除できる。
This means that even if the water temperature per unit is 37°C, the hydrogen temperature for the hydrogen cooler quantity [-1] is the same as that of the conventional generator.
This indicates that cooling is possible down to 5℃, but in reality it is 3℃.
715 at 7°C. Since power generation plan 1- at this temperature is impossible, hydrogen cooling F
! It can be seen that there can be no restrictions on cooling hydrogen with condensate.
i and the resulting generator 4j1: The temperature limit on the cooling seawater to the condenser, which was an obstacle to heat recovery to the plant, can be removed by ↑1].

なお、図中1はタービン、3は冷却海水である。In the figure, 1 is a turbine, and 3 is cooling seawater.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発電機で発生する損失のエネ゛ノ塵ギ
、即ち水素冷却器で林われる水素側からの排出エネルギ
は全て発電プラントサイクルに熱回収できるので、発電
プラントの熱効率が向上する。
According to the present invention, all of the energy loss generated by the generator, that is, the exhaust energy from the hydrogen side stored in the hydrogen cooler, can be recovered into the power generation plant cycle, thereby improving the thermal efficiency of the power generation plant. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来排熱回収系統図、第2図はこの場合の各部
温度の関係図、第3図は本発明の発電機の構造図、第4
図は作用原理を説明する水素冷却器における各部圧力温
度線図、第5図は復水冷却における各部温度の関係図で
ある。 5・・・発電機、6・・・水素冷却器、12・・・ロー
タ、13・・・圧縮ファン、14・・回転子、15・・
固定子、翳1図 山2図 宅も[閑
Fig. 1 is a conventional exhaust heat recovery system diagram, Fig. 2 is a diagram of the temperature relationship of each part in this case, Fig. 3 is a structural diagram of the generator of the present invention, and Fig. 4
The figure is a pressure-temperature diagram of each part in the hydrogen cooler to explain the principle of operation, and FIG. 5 is a diagram of the relationship between the temperatures of each part in condensate cooling. 5... Generator, 6... Hydrogen cooler, 12... Rotor, 13... Compression fan, 14... Rotor, 15...
The stator, the shadow 1 zu mountain 2 zu house are also [quiet]

Claims (1)

【特許請求の範囲】 1、発電機の回転子及び固定子冷却のための冷却媒体の
循環系において、 冷却器入口で冷却媒体の圧力を昇圧することによって温
度を上げて、発電プラントの復水器量[J水により冷却
媒体を冷却することを特徴とする発電機排熱回収装置。 2、特許請求の範囲第1項において、 前記冷却媒体の温度を上げ、圧力をあげるために発+1
!機ロータにR圧装置をとりつけることを1.9徴とす
る発電機排熱回収装置。
[Claims] 1. In a cooling medium circulation system for cooling the rotor and stator of a generator, the temperature is raised by increasing the pressure of the cooling medium at the cooler inlet, and the condensate water of the power generation plant is increased. A generator exhaust heat recovery device characterized by cooling a cooling medium with water. 2. In claim 1, in order to raise the temperature and pressure of the cooling medium,
! 1.9 A generator exhaust heat recovery device that has an R pressure device attached to the machine rotor.
JP4393184A 1984-03-09 1984-03-09 Waste heat recovering device of electric power generator Pending JPS60190608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4393184A JPS60190608A (en) 1984-03-09 1984-03-09 Waste heat recovering device of electric power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4393184A JPS60190608A (en) 1984-03-09 1984-03-09 Waste heat recovering device of electric power generator

Publications (1)

Publication Number Publication Date
JPS60190608A true JPS60190608A (en) 1985-09-28

Family

ID=12677431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4393184A Pending JPS60190608A (en) 1984-03-09 1984-03-09 Waste heat recovering device of electric power generator

Country Status (1)

Country Link
JP (1) JPS60190608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254016A (en) * 2006-03-24 2007-10-04 Daikin Ind Ltd Packaging material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254016A (en) * 2006-03-24 2007-10-04 Daikin Ind Ltd Packaging material

Similar Documents

Publication Publication Date Title
US4578953A (en) Cascaded power plant using low and medium temperature source fluid
US5622044A (en) Apparatus for augmenting power produced from gas turbines
KR20040105851A (en) Method and device for the production of electricity from the heat produced in the core of at least one high-temperature nuclear reactor
US6422019B1 (en) Apparatus for augmenting power produced from gas turbines
JPH0445643B2 (en)
GB2280224A (en) Method of and apparatus for augmenting power produced from gas turbines
JPWO2011104759A1 (en) Thermal power generation system and operation method thereof, thermal power generation system modification method, steam turbine equipment used in thermal power generation system, carbon dioxide separation and recovery device, overheat reducer
JPH03124902A (en) Combined cycle power plant and operating method therefor
US6119445A (en) Method of and apparatus for augmenting power produced from gas turbines
CA2262722A1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
US6694766B1 (en) Power generation systems with earth heat transfer
US4004424A (en) Method for limiting back pressure on steam turbine
JPS60190608A (en) Waste heat recovering device of electric power generator
JPS63183346A (en) Solar system for generating steam
JPS60138214A (en) Gas turbine composite cycle power generating plant
JP2001280103A (en) Turbine equipment
JP3050783B2 (en) Method for cooling intake air of compressor of gas turbine in gas turbine plant
JPS58214606A (en) Two fluid cycle
CN219063808U (en) Industrial water waste heat utilization system for thermal power plant
USRE30630E (en) Power plant secondary coolant circuit
JPS5815705B2 (en) Heat recovery method in power generation equipment
RU2067668C1 (en) Combined-cycle plant operation process
CN212671881U (en) External condensate cooling system of exhaust steam recovery heat supply supercritical unit
JPH0783004A (en) Casing cooling/heating device
JP2002371807A (en) Turbine equipment and steam converting device