JPS60138214A - Gas turbine composite cycle power generating plant - Google Patents

Gas turbine composite cycle power generating plant

Info

Publication number
JPS60138214A
JPS60138214A JP24928683A JP24928683A JPS60138214A JP S60138214 A JPS60138214 A JP S60138214A JP 24928683 A JP24928683 A JP 24928683A JP 24928683 A JP24928683 A JP 24928683A JP S60138214 A JPS60138214 A JP S60138214A
Authority
JP
Japan
Prior art keywords
organic medium
temperature side
steam
condenser
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24928683A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP24928683A priority Critical patent/JPS60138214A/en
Publication of JPS60138214A publication Critical patent/JPS60138214A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable effective use of waste heat, by a method wherein, in a titled plant which is constituted such that each of waste heat recovery power generating systems on the high-temperature side and the low-temperature side is combined with a gas turbine power generating system a waste heat from the system on the high-temperature side is guided to the system on the low-temperature side therough a condenser. CONSTITUTION:A titled plant is provided with a system 11 on the high-temperature side wherein, after exhaust gas from a steam turbine 18 is condensed with the aid of a first condenser 33, condensate is guided to a steam drum 17 through a first preheat pipe 14 of a waste heat recovery boiler 8, and stream generated in the steam drum is fed to the high-pressure stage of the steam turbine 18 through a first preheat pipe 13. Further, the titled plant comprises a system 12 on the low-temperature side 12 wherein exhaust gas from a low boiling point organic medium turbine 30 is caused to flow through a second condenser 35 and a second heating pipe 15, and organic medium steam generated during the passage of such exhaust gas is fed to the high-pressure side of the steam turbine 30. A condensate organic medium from the condenser 35 is guided to the inlet side of a cooling pipe 34 of the condenser 33 through a piping 36, and a medium, which has been increased in temperature, is returned to the heating pipe 15 side.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はガスタービン複合サイクル発電プラントに係シ
、特に低沸点有機媒体を用いたサイクルを組み合せた廃
熱回収方式の複合サイクル発電プラントに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a gas turbine combined cycle power plant, and more particularly to a waste heat recovery combined cycle power plant combining a cycle using a low boiling point organic medium.

〔発明の背景〕[Background of the invention]

第1図に廃熱回収方式のガスタービン複合サイクル発電
プラントの一般的な例を示す。第1図において、燃焼用
空気1が低圧コンプレッサ2に与えられ、次いで高圧コ
ンプレッサ3により圧縮された後、燃焼器4に供給され
る。なお、低圧コンプレッサ2と高圧コンプレッサ3と
の中間段には中間冷却器(熱交換器)5が設けられてい
る。この中間冷却器5は、低圧および高圧コンプレッサ
2.3での圧縮比が大きくなると材料面や効率面で好ま
しくないので中間段において圧縮空気を冷却するための
ものである。すなわち、コンプレッサは本来的に断熱変
化があるため、作動流体(空気)温度(絶対温度)に比
例して断熱圧縮動力が増大することとなり、この増大は
ガスタービン発電において損失となるため、極力低減す
ることが望ましいからである。一般に冷却媒体6として
水が用いられ、水に回収された熱は大気に放散させてい
る。
Figure 1 shows a typical example of a gas turbine combined cycle power plant using the waste heat recovery method. In FIG. 1, combustion air 1 is applied to a low pressure compressor 2, then compressed by a high pressure compressor 3, and then supplied to a combustor 4. Note that an intermediate cooler (heat exchanger) 5 is provided at an intermediate stage between the low-pressure compressor 2 and the high-pressure compressor 3. This intercooler 5 is for cooling the compressed air in the intermediate stage, since it is undesirable in terms of materials and efficiency if the compression ratio of the low-pressure and high-pressure compressors 2.3 increases. In other words, since compressors inherently undergo adiabatic changes, the adiabatic compression power increases in proportion to the working fluid (air) temperature (absolute temperature), and this increase results in loss in gas turbine power generation, so it should be reduced as much as possible. This is because it is desirable to do so. Generally, water is used as the cooling medium 6, and the heat recovered in the water is dissipated into the atmosphere.

さて、燃焼器4からの燃焼ガスはガスタービン7に供給
されて仕事をし、排ガスとして廃熱回収ボイラ8を経て
煙突9から排出される。なお、46は発電機である。
Now, the combustion gas from the combustor 4 is supplied to the gas turbine 7 to do work, and is discharged from the chimney 9 via the waste heat recovery boiler 8 as exhaust gas. Note that 46 is a generator.

廃熱回収ボイラ8にはガスタービン7からの排ガスの廃
熱を利用する発電、システムIOが設ケラれている。こ
の廃熱回収方式と1.て良く知られているものに多段圧
力式ランキンサイクルがある。
The waste heat recovery boiler 8 is equipped with a power generation system IO that utilizes the waste heat of the exhaust gas from the gas turbine 7. This waste heat recovery method and 1. A well-known example is the multi-stage pressure Rankine cycle.

これは、廃熱回収ボイラ8において入口側から出口側に
向かって徐々に排ガス温度が降下するに応じた圧力で蒸
気を発生させ、その発生蒸気をその圧力に応じたタービ
ンの段落に投入することにより、タービンを駆動するも
のである。ガスタービンの排ガスについて考えた場合、
一般に2段圧力式が経済的見地からして限度とされる。
This involves generating steam at a pressure that corresponds to the temperature of the exhaust gas gradually decreasing from the inlet side to the outlet side in the waste heat recovery boiler 8, and injecting the generated steam into the turbine stage that corresponds to the pressure. This is what drives the turbine. When considering gas turbine exhaust gas,
Generally, a two-stage pressure type is considered to be the upper limit from an economical point of view.

つまり、さらに低圧段を増設しても水(H,O)を媒体
とする多段ランキンサイクルでは物性的にあまり高い出
力が望めず、非現実的なものとなるからである。
In other words, even if a low-pressure stage is added, a multi-stage Rankine cycle using water (H, O) as a medium cannot expect a very high output due to its physical properties, making it unrealistic.

通常、ガスタービンの排気ガスの温度は450〜500
℃である。このレベルの温度のエネルギを有効な機械的
仕事に変換するランキンサイクルの媒体とl〜てけ、安
定物質の面および安全性の面から「水」あるいけ[低沸
点有機媒体であるフロリノール85Jが実用化されてい
る。なお、低沸点有機媒体としては上記の他に[フレオ
ンJ。
Normally, the temperature of the exhaust gas of a gas turbine is 450 to 500.
It is ℃. Water is considered the medium of the Rankine cycle that converts energy at this level of temperature into useful mechanical work, from the standpoint of stability and safety. has been made into In addition to the above, examples of the low boiling point organic medium include [Freon J.

「イソブタン」等の炭化水素系有機物質でもよい。Hydrocarbon-based organic substances such as "isobutane" may also be used.

また、上記フロリノールは実際には作動温度300〜3
50℃程度で若干低目の温度で使用されている。
In addition, the above Florinol actually has an operating temperature of 300 to 3
It is used at a slightly lower temperature of around 50°C.

ここで、ランキンサイクルの媒体として「水」を用いた
廃熱回収方式の発電システムの従来の例を第2図に示す
。このシステム(第2図)は、廃熱回収ボイラ8の高温
側の廃熱を利用する発電システム(以下、高温側システ
ムという。)11と、低温側の廃熱を利用する発電シス
テム(以下、低温側システムという。)12により廃熱
回収ボイラ8内の温度降下に応じて高低の2段で構成さ
れている。すなわち、高温側はエクセルギー(機械的有
効仕事と定義される。)が高く、低温側はエクセルギー
が低いのでそれぞれを有効なエネルギに変換するために
上述の如く2段構成としているのである。
Here, FIG. 2 shows a conventional example of a waste heat recovery type power generation system using "water" as the medium of the Rankine cycle. This system (Fig. 2) consists of a power generation system (hereinafter referred to as the high temperature side system) 11 that utilizes waste heat on the high temperature side of the waste heat recovery boiler 8, and a power generation system (hereinafter referred to as the high temperature side system) that utilizes the waste heat on the low temperature side of the waste heat recovery boiler 8. (referred to as a low-temperature side system) 12, it is configured with two stages, one high and one low, depending on the temperature drop within the waste heat recovery boiler 8. That is, the high temperature side has high exergy (defined as mechanical effective work), and the low temperature side has low exergy, so in order to convert each into effective energy, the two-stage configuration is used as described above.

第2図において、廃熱回収ボイラ8内には、入口側から
出口側に向かって(つまり、高温側から低温側に向かっ
て)第1加熱管13、第1予熱管14、第2加熱管15
、第2予熱管16が順次設置されている。第1加熱管1
3および第1予熱管14け高温側システム11に属し、
第2加熱管15および第2予熱管16け低温側システム
12に属する。高圧蒸気ドラム17で発生した蒸気は第
1加熱管13に送られ、廃熱により加熱されて過熱蒸気
となって蒸気タービン18の高圧段に導入される。蒸気
タービン18からの排気は復水器19により復水されそ
の復水は脱気器20を介して低圧給水ポンプ21により
、第2予熱管16に供給される。予熱された復水は低圧
蒸気ドラム22に送られる。なお、低圧蒸気ドラム22
の缶水は缶水循環ポンプ23により缶水予熱管24に送
られて予熱される一方、高圧給水ポンプ25により第2
予熱管14に送られて予熱された後、高圧蒸気ドラム1
7に戻される。高圧蒸気ドラム17の缶水も缶水循環ポ
ンプ26により缶水予熱管27により予熱される。一方
、低圧蒸気ドラム22により発生した蒸気は第2加熱管
15により加熱された後、蒸気タービン18の低圧段に
供給される。
In FIG. 2, inside the waste heat recovery boiler 8, from the inlet side to the outlet side (that is, from the high temperature side to the low temperature side), there is a first heating pipe 13, a first preheating pipe 14, and a second heating pipe. 15
, and second preheating tube 16 are installed in sequence. First heating tube 1
3 and the first preheating pipe 14 belong to the high temperature side system 11,
The second heating pipe 15 and the second preheating pipe 16 belong to the low temperature side system 12 . The steam generated in the high-pressure steam drum 17 is sent to the first heating pipe 13, heated by waste heat, becomes superheated steam, and is introduced into the high-pressure stage of the steam turbine 18. Exhaust gas from the steam turbine 18 is condensed by a condenser 19, and the condensate is supplied to the second preheating pipe 16 via a deaerator 20 by a low-pressure feed water pump 21. The preheated condensate is sent to the low pressure steam drum 22. In addition, the low pressure steam drum 22
The canned water is sent to the canned water preheating pipe 24 by the canned water circulation pump 23 and preheated, while the canned water is sent to the canned water preheating pipe 24 by the high pressure water supply pump 25.
After being sent to the preheating pipe 14 and preheated, the high pressure steam drum 1
It will be returned to 7. The canned water in the high-pressure steam drum 17 is also preheated by the canned water preheating pipe 27 by the canned water circulation pump 26 . On the other hand, the steam generated by the low-pressure steam drum 22 is heated by the second heating pipe 15 and then supplied to the low-pressure stage of the steam turbine 18.

28目、発電機を示している。Number 28 shows a generator.

次に、水と低沸点有機媒体の物性に着目してみる。水の
場合は蒸発潜熱が大きく有機媒体の場合は小さい。第3
図は廃熱回収ボイラ8における熱流線図を示したもので
「実#JF′i水の場合、「鎖線」は有機媒体の場合を
それぞれ示したものである。T1け廃熱回収ボイラ8の
入口ガス温度、TOは水の場合の出口ガス温度、To′
は有機媒体の場合の出口ガス温度である。まだ、rWは
水の蒸発潜熱、rfけ有機媒体の蒸発潜熱を示している
。この第3図の熱流線図によれば、水の場合と有機媒体
でd廃熱回収ボイラでのピンチポイントΔTを一定とし
、かつ、ある一定の圧力レベルを維持した場合(なお、
圧力を高める程うンキンザイクルの効率は良くなる。)
廃熱回収ボイラ8の出口ガス温度は水の場合(TO)よ
りも有機媒体の場合(To’)の方が低下していること
がわかる。このことは、廃熱回収ボイラの低温側のエク
セルギーを機械的エネルギに効率良く変換するためには
低沸点有機媒体が有利となることを意味する。このよう
なことから、低温側に有機媒体を用いた発電システムの
例を第4図に示す。
Next, we will focus on the physical properties of water and low-boiling organic media. The latent heat of vaporization is large for water and small for organic media. Third
The figure shows a heat flow diagram in the waste heat recovery boiler 8, and the "dotted line" shows the case of "actual #JF'i water" and the "dashed line" shows the case of organic medium, respectively. T1 is the inlet gas temperature of the waste heat recovery boiler 8, TO is the outlet gas temperature in the case of water, To'
is the outlet gas temperature for organic media. Furthermore, rW indicates the latent heat of vaporization of water, rf indicates the latent heat of vaporization of organic medium. According to the heat flow diagram in Fig. 3, when the pinch point ΔT in the d waste heat recovery boiler is constant in the case of water and the organic medium, and a certain pressure level is maintained (
The higher the pressure, the better the efficiency of the engine. )
It can be seen that the outlet gas temperature of the waste heat recovery boiler 8 is lower in the case of organic medium (To') than in the case of water (TO). This means that a low boiling point organic medium is advantageous for efficiently converting exergy on the low temperature side of the waste heat recovery boiler into mechanical energy. For this reason, FIG. 4 shows an example of a power generation system using an organic medium on the low temperature side.

第4図において、高温側システム11の構成は基本的に
は第3図のものと変りはない。すなわち、廃熱回収ボイ
ラ8内には順次高温側から低温側に向かって、第1加熱
管13、缶水予熱管27、第1予熱管14、第2加熱管
15が設けられている。
In FIG. 4, the configuration of the high temperature side system 11 is basically the same as that in FIG. 3. That is, in the waste heat recovery boiler 8, a first heating pipe 13, a canned water preheating pipe 27, a first preheating pipe 14, and a second heating pipe 15 are provided in order from the high temperature side to the low temperature side.

第2予熱管、16および缶水予熱管27は蒸気ドラムが
ないので存在しない。高圧側システム11において、高
圧蒸気ドラム17で発生した蒸気は第1加熱管13によ
り加熱された後、蒸気タービン18に導入されて仕事を
する。蒸気タービン18からの排気は復水器19にて復
水され、その復水は給水ポンプ29により蒸気ドラム1
7に回収される。一方、低圧側システム12において、
有機媒体蒸気タービン30からの排ガスは復水器31に
て復水され、給水ポンプ32により第2加熱管15に送
られる。第2加熱管15で加熱された有機媒体蒸気は有
機媒体蒸気タービン30の高圧段に入力されて仕事をす
る。
The second preheating pipe 16 and the canned water preheating pipe 27 are not present since there is no steam drum. In the high-pressure side system 11, steam generated in the high-pressure steam drum 17 is heated by the first heating pipe 13, and then introduced into the steam turbine 18 to perform work. The exhaust gas from the steam turbine 18 is condensed in a condenser 19, and the condensed water is sent to the steam drum 1 by a water supply pump 29.
It will be collected on 7th. On the other hand, in the low pressure side system 12,
Exhaust gas from the organic medium steam turbine 30 is condensed in a condenser 31 and sent to the second heating pipe 15 by a feed water pump 32. The organic medium steam heated by the second heating pipe 15 is input to the high pressure stage of the organic medium steam turbine 30 to perform work.

以上の低温側システム12に有機媒体を用いた発電シス
テム(第4図)によれば、第2図の水のみを用いた発電
システムより廃熱回収効率がよく、したがって結果的に
発電出力を増加させうるものであり、このことは第3図
からも理解できる(出口温度ToとTo’参照)。
According to the power generation system (Fig. 4) using an organic medium in the low-temperature side system 12 described above, the waste heat recovery efficiency is better than the power generation system using only water as shown in Fig. 2, and therefore the power generation output is increased as a result. This can be understood from FIG. 3 (see outlet temperatures To and To').

しかしながら、かかる従来のシステム(第4図)であっ
ても低温側のエクセルギーを機械的エネルギに変換する
ものとして充分に効率のよいものではなく、さらに一層
の発電出力の増大が望まれる。
However, even such a conventional system (FIG. 4) is not sufficiently efficient in converting exergy on the low temperature side into mechanical energy, and a further increase in power generation output is desired.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は高温側システムに水を用い、低温側シ
ステムに有機媒体を用いた発電システムにおいて、比較
的簡単な構成で発電出力を一層増大しうるガスタービン
複合サイクル発電プラントを提供することを目的とする
Therefore, the present invention aims to provide a gas turbine combined cycle power generation plant that can further increase the power generation output with a relatively simple configuration in a power generation system that uses water in the high temperature side system and an organic medium in the low temperature side system. purpose.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による発電。 In order to achieve the above object, power generation according to the present invention.

プラントは廃熱回収ボイラの高温側に媒体として水を用
いたランキンサイクルで構成される発電システムを用い
、低温側には低沸点有機媒体のランキンサイクルで構成
される発電、システムを組み合せた複合サイクル発電プ
ラントにおいて、高温側システムの復水器(第1復水器
)の冷却流体として低温側システムの有機媒体を導入す
ることにより、高圧側システムの廃熱を低温側システム
に有効に回収しうるようにした点に特徴を有する。
The plant uses a power generation system consisting of a Rankine cycle that uses water as a medium on the high temperature side of the waste heat recovery boiler, and a combined cycle system that combines the power generation system and the system that uses a Rankine cycle with a low boiling point organic medium on the low temperature side. In a power generation plant, waste heat from the high-pressure system can be effectively recovered to the low-temperature system by introducing an organic medium from the low-temperature system as a cooling fluid for the condenser (first condenser) of the high-temperature system. It is characterized by the fact that it is made as follows.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明によるガスタービン複合サイクル発電プラ
ントの実施例を図面に基づいて説明する。
Embodiments of the gas turbine combined cycle power plant according to the present invention will be described below with reference to the drawings.

第5図に本発明の一実施例を示す。なお、第5図におい
て第1図、第2図、第4図に示した部分と重複する部分
には同一符号を附してあり、単線は水ザイクル、複線は
有機媒体サイクルを示している。前述のように、このシ
ステムの特徴は高温側システム11の復水器(以下、第
1復水器)33の冷却管34の入口側に低温側システム
の復水器(以下、第2復水器)35からの復水有機媒体
を供給する配管36を配し、かつ、冷却管34の出口側
に第2加熱管15に通じる配管37を配し、低温側シス
テム12の有機媒体を第1復水器33の冷却流体として
用いるようにしたものである。
FIG. 5 shows an embodiment of the present invention. In FIG. 5, parts that overlap with those shown in FIGS. 1, 2, and 4 are given the same reference numerals, and a single line indicates a water cycle, and a double line indicates an organic medium cycle. As mentioned above, the feature of this system is that the condenser of the low temperature side system (hereinafter referred to as the second condenser) is placed on the inlet side of the cooling pipe 34 of the condenser (hereinafter referred to as the first condenser) 33 of the high temperature side system 11. A pipe 36 is arranged to supply the condensed organic medium from the cooling pipe 35, and a pipe 37 communicating with the second heating pipe 15 is arranged on the outlet side of the cooling pipe 34, so that the organic medium from the low temperature side system 12 is supplied to the first heating pipe 15. It is designed to be used as a cooling fluid for the condenser 33.

したがって、蒸気タービン18からの排気の熱は第1復
水器33において有機媒体に回収されることとなり、間
接的に廃熱回収ボイラ8の廃熱を無駄なく低温側におい
て回収することとなり、回収効率が向上する。このこと
はプラント全体としての効率の向上に寄与し、発電出力
の向上を達成できることとなる。38はコンデンセート
ポンプを示している。
Therefore, the heat of the exhaust gas from the steam turbine 18 is recovered into the organic medium in the first condenser 33, and the waste heat of the waste heat recovery boiler 8 is indirectly recovered on the low temperature side without waste. Increased efficiency. This contributes to improving the efficiency of the entire plant, making it possible to improve the power generation output. 38 indicates a condensate pump.

ところで、給水ポンプ32からの配管は第1復水器33
に向かう配管36から分岐されて第1復水器33のバイ
パス路を形成する配管39には電磁弁40が挿入されて
いる。この電磁弁40はガスタービン7(第1図)の負
荷が下がった場合(熱源が減少したとき)に高圧側シス
テム11の稼動を停止させて有機媒体による低圧側シス
テム12のみの廃熱回収発電の運転に切替えるだめのも
のである。(この際、−ヒ流の蒸気サイクルを全く停止
することはボイラ伝熱管の保護の観、点から好ましくな
く、給水のみ循環させ、発生する熱水を蒸気タービン1
8をバイパスする回路47を設けである。) さらに、廃熱回収ボイラ8からの廃熱回収効率を向上さ
せるため、第2予熱管16の入口側にはコンデンセート
ポンプ38の出口配管から分岐された配管41が配され
ている。第2予熱管16の出口側は有機媒体蒸気タービ
ン30の低圧段に配管42がなされ、これによって第2
予熱管16により予熱された有機媒体蒸気が供給される
ようになっている。
By the way, the piping from the water supply pump 32 is connected to the first condenser 33.
A solenoid valve 40 is inserted into a pipe 39 that is branched from a pipe 36 leading to the first condenser 33 and forms a bypass path for the first condenser 33 . This electromagnetic valve 40 stops the operation of the high-pressure side system 11 when the load on the gas turbine 7 (Fig. 1) decreases (when the heat source decreases), and generates waste heat recovery power only in the low-pressure side system 12 using an organic medium. This means that you cannot switch to normal operation. (In this case, it is not preferable to completely stop the -H flow steam cycle from the viewpoint of protecting the boiler heat exchanger tubes, so only the feed water is circulated and the generated hot water is transferred to the steam turbine.
A circuit 47 is provided to bypass 8. Furthermore, in order to improve the efficiency of waste heat recovery from the waste heat recovery boiler 8, a pipe 41 branched from the outlet pipe of the condensate pump 38 is arranged on the inlet side of the second preheating pipe 16. The outlet side of the second preheating pipe 16 is connected to a pipe 42 to the low pressure stage of the organic medium steam turbine 30, and thereby the second
A preheating pipe 16 supplies preheated organic medium vapor.

なお、第5図において蒸気タービン18と有機媒体蒸気
タービン30とは同軸で発電機28に連結されているが
、この態様に限らず別々に設け、各々のタービンに発電
機を連結する構成でもよい。
Note that although the steam turbine 18 and the organic medium steam turbine 30 are coaxially connected to the generator 28 in FIG. 5, the present invention is not limited to this embodiment, and a configuration may also be adopted in which they are provided separately and a generator is connected to each turbine. .

以上は廃熱回収発電システム廃熱回収ボイラからの廃熱
回収効率に着目した例であるが、次にガスタービンフ側
、すなわちコンプレッサ側の廃熱を回収することによっ
て発電出力を向上しうるようにした実施例について説明
する。第6図にその実施例を示す。なお、以下に述べる
点以外V↓第5図と同一の構成なので同一の符号を附し
、説明を省略する。ただし、本実施例を適用するに当っ
て母体となる廃熱回収発電プラント自体は第4図の如き
既存設備であってもよく、またこの適用は有効である。
The above is an example focusing on the waste heat recovery efficiency from the waste heat recovery boiler of the waste heat recovery power generation system. An example will be described below. An example is shown in FIG. It should be noted that the configuration is the same as V↓ in FIG. 5 except for the points described below, so the same reference numerals are given and the explanation will be omitted. However, in applying this embodiment, the base waste heat recovery power generation plant itself may be an existing facility as shown in FIG. 4, and this application is effective.

その理由り以下の説明から明らかとなる。The reason for this will become clear from the explanation below.

先の〔発明の背景〕の欄における低圧コンプレッサ2と
高圧コンプレッサ3の中間に設けられた中間冷却&5の
説明で述べたように、従来では中間冷却器5の冷却媒体
6として「水」が用いられ、その回収された熱はしかる
べき手段を講じて大気(放散してい゛るものであった。
As mentioned in the explanation of the intercooler &5 provided between the low-pressure compressor 2 and the high-pressure compressor 3 in the [Background of the Invention] column, conventionally, "water" was used as the cooling medium 6 of the intercooler 5. The recovered heat was dissipated into the atmosphere by appropriate means.

しかし、この低圧コンプレッサ2で発生した熱の大気へ
の放散は、低圧コンプレッサ2における断熱圧縮仕事の
一部を全て無駄にすることに等しい。もつとも、この場
合低圧コンプレッサ2の効率の面では問題ないが、しか
し冷却水によって持ち去られる熱量は損失となる。そこ
で、この冷却水の保有する熱の有効利用を図ったのが本
実施例である。
However, this dissipation of the heat generated by the low-pressure compressor 2 into the atmosphere is equivalent to wasting part of the adiabatic compression work in the low-pressure compressor 2. Of course, in this case, there is no problem in terms of the efficiency of the low-pressure compressor 2, but the amount of heat carried away by the cooling water becomes a loss. Therefore, this embodiment aims to effectively utilize the heat held by this cooling water.

すなわち、中間冷却器5の温度レベルは廃熱回収ボイラ
8の低温部の温度とほぼ同程度である点に着目し、低温
側システム12から有機媒体を中間冷却器5の冷却媒体
として導ひき、中間冷却器5の廃熱を低温側システム1
2に導入するものである。有機媒体tの導出方法として
は、配管41の分岐点Aから中間冷却器5の流入口44
へ配管し、かつ流出口45から配管430分岐点Bに戻
すようにするか、あるいは分岐点Aから導出して配管4
2の分岐点Cに戻すようにする。この分岐点AとBの組
み合せとするか、またはAとCの組み合せとするかは、
廃熱回収ボイラ8の低温部の温度レベルと中間冷却器5
の温度レベルとの相対的な差により適宜選択すればよい
。なお、分岐点BはCよりも高温高圧である。
That is, focusing on the fact that the temperature level of the intercooler 5 is approximately the same as the temperature of the low temperature section of the waste heat recovery boiler 8, an organic medium is introduced from the low temperature side system 12 as a cooling medium of the intercooler 5, The waste heat of the intercooler 5 is transferred to the low temperature side system 1.
This will be introduced in Section 2. The organic medium t can be led out from the branch point A of the pipe 41 to the inlet 44 of the intercooler 5.
The piping 430 can be routed through the outlet 45 and returned to the branch point B of the piping 430 from the outlet 45, or it can be led out from the branch point A and the piping 4
Return to branch point C in step 2. Whether to combine the branching points A and B or A and C is determined by
Temperature level of low temperature section of waste heat recovery boiler 8 and intercooler 5
It may be selected as appropriate depending on the relative difference from the temperature level. Note that branch point B is at a higher temperature and pressure than C.

このように中間冷却器5の廃熱をも低温側システムのラ
ンキンサイクル中に導入することにより、発電プラント
全体としての発電出力の増大を達成でき、第5図のシス
テムによる発電出力の増大と相まって相剰的に発電出力
の増大が可能となる。
In this way, by introducing the waste heat of the intercooler 5 into the Rankine cycle of the low-temperature side system, it is possible to increase the power generation output of the power plant as a whole. It becomes possible to increase the power generation output in a complementary manner.

〔発明の効里〕[Efficacy of invention]

以上の通り、本発明によれば、水ランキンサイクルで構
成される高温側廃熱回収発電システムと有機媒体ランキ
ンサイクルで構成される低温側廃熱回収発電システムと
をガスタービン発電システムに組み合せた複合サイクル
発電プラントにおいて、−ヒ記高温側システムの廃熱を
当該システムの復水器(第1復水器)を介して低温側シ
ステムに導くようにしたことにより、廃熱の有効利用が
図れ、発電プラントの発電出力を増大させることができ
る。またこのことは、簡単な構成で実現することが可能
である。
As described above, according to the present invention, a gas turbine power generation system is combined with a high temperature side waste heat recovery power generation system consisting of a water Rankine cycle and a low temperature side waste heat recovery power generation system consisting of an organic medium Rankine cycle. In a cycle power generation plant, waste heat from the high-temperature side system described in (h) is led to the low-temperature side system via the condenser (first condenser) of the system, thereby making it possible to effectively utilize the waste heat. The power generation output of the power generation plant can be increased. Moreover, this can be realized with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なガスタービン複合サイクル発電プラン
トのシステム構成を示すブロック図、第2図は従来の廃
熱回収発電システムの一〇例を示すブロック図、 第3図は廃熱回収ボイラにおいて媒体が水の場合と有機
媒体の場合を比較して示した熱流線図、第4図は従来の
廃熱回収発電システムの他の例を示すブロック図、 第5図は本発明による廃熱回収発電システムの−の実施
例を示すブロック図、 第6図はその他の実施例を示すブロック図である。 l・・・燃焼用空気、 2・・・低圧コンプレッサ、3
・・・高圧コンプレッサ、 4・・・燃焼器、4′・・・燃料、 5・・・中間冷却器、 6・・・冷却媒体、7・・・ガ
スタービン、8・・・廃熱回収ボイラ、9・・・煙突、 10・・・廃熱回収発電システム、 11・”・・高温側システム、 12・・・低温側システム、 13・・・第1加熱管、14・・・第1予熱管、15・
・・第2加熱管、16・・・第2予熱管、17・・・蒸
気ドラム、18・・・蒸気タービン、30・・・有機媒
体蒸気タービン、 33・・・第1復水器、 34・・・冷却管、35・・
・第2復水器、 36・・・配管、37・・・配管、 
42・・・配管、 46・・・発電1機。 代理人 鵜 沼 辰 之 (ほか1名) Q7+ 一ト 第1図 1 第3図 第4図
Figure 1 is a block diagram showing the system configuration of a typical gas turbine combined cycle power generation plant, Figure 2 is a block diagram showing 10 examples of a conventional waste heat recovery power generation system, and Figure 3 is a block diagram showing the system configuration of a typical gas turbine combined cycle power generation plant. A heat flow diagram comparing the cases where the medium is water and the case where the organic medium is used. Figure 4 is a block diagram showing another example of the conventional waste heat recovery power generation system. Figure 5 is the waste heat recovery according to the present invention. FIG. 6 is a block diagram showing another embodiment of the power generation system. l...Combustion air, 2...Low pressure compressor, 3
...High pressure compressor, 4...Combustor, 4'...Fuel, 5...Intercooler, 6...Cooling medium, 7...Gas turbine, 8...Waste heat recovery boiler , 9... Chimney, 10... Waste heat recovery power generation system, 11... High temperature side system, 12... Low temperature side system, 13... First heating pipe, 14... First preheating tube, 15・
...Second heating pipe, 16...Second preheating pipe, 17...Steam drum, 18...Steam turbine, 30...Organic medium steam turbine, 33...First condenser, 34 ...Cooling pipe, 35...
・Second condenser, 36... Piping, 37... Piping,
42...Piping, 46...1 power generator. Agent: Tatsuyuki Unuma (and 1 other person) Q7+ Hito Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 (11人口の高温側から出口の低温側に向かって順次配
列された第1加熱管、予熱管および第2加熱管を備えた
廃熱回収ボイラと、 蒸気タービンからの排気を第1の復水器により復水し、
その復水を蒸気ドラムに供給して蒸気を発生させ、この
発生蒸気を前記第1加熱管により加熱してその加熱蒸気
を前記蒸気タービンの高圧段に送るようにした水ランキ
ンサイクルで構成される高温側発電システムと、 低沸点有機媒体蒸気タービンからの排気を第2の復水器
により復水し、その有機媒体復水を前記第2加熱管によ
り加熱してその加熱有機媒体蒸気を前記有機媒体蒸気タ
ービンの高圧段に送るようにした有機媒体ランキンサイ
クルで構成される低温側発電システムと、を備えたガス
タービン複合サイクル発電プラントにおいて、 前記第1復水器の冷却管の入口側に前記第2復水器から
の有機媒体復水を供給する配管を設け、かつ、前記冷却
管の出口側に第1復水器によって加熱された加熱有機媒
体復水を第2加熱管に供給する配管を設けたことを特徴
とするガスタービン複合サイクル発電プラント。 (2) 特許請求の範囲第1項記載の発電、プラントに
おいて、廃熱回収ボイラにおける第2過熱管よ ゛り低
温側に第2の予熱管を設け、前記第2復水器からの有機
媒体復水の一部を前記第2予熱管に導入して予熱し、予
熱された有機媒体復水を前記有機媒体蒸気タービンの低
圧段に供給する配管を設けたことを特徴とするガスター
ビン複合サイクル発電プラント。
[Claims] (11) A waste heat recovery boiler comprising a first heating pipe, a preheating pipe, and a second heating pipe arranged sequentially from a high temperature side to a low temperature side of an outlet, and an exhaust gas from a steam turbine. is condensed by the first condenser,
It consists of a water Rankine cycle in which the condensate is supplied to a steam drum to generate steam, the generated steam is heated by the first heating pipe, and the heated steam is sent to the high pressure stage of the steam turbine. The exhaust gas from the high-temperature side power generation system and the low-boiling organic medium steam turbine is condensed in a second condenser, the organic medium condensate is heated by the second heating pipe, and the heated organic medium steam is converted into the organic medium steam. A gas turbine combined cycle power generation plant comprising: a low temperature side power generation system configured with an organic medium Rankine cycle in which the medium is sent to a high pressure stage of a medium steam turbine; Piping for supplying organic medium condensate from the second condenser is provided, and piping for supplying heated organic medium condensate heated by the first condenser to the second heating pipe on the outlet side of the cooling pipe. A gas turbine combined cycle power generation plant characterized by being provided with. (2) In the power generation or plant described in claim 1, a second preheating pipe is provided on a lower temperature side than the second superheating pipe in the waste heat recovery boiler, and the organic medium from the second condenser is A gas turbine combined cycle characterized in that a pipe is provided for introducing a part of the condensate into the second preheating pipe to preheat it and supplying the preheated organic medium condensate to the low pressure stage of the organic medium steam turbine. power plant.
JP24928683A 1983-12-26 1983-12-26 Gas turbine composite cycle power generating plant Pending JPS60138214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928683A JPS60138214A (en) 1983-12-26 1983-12-26 Gas turbine composite cycle power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928683A JPS60138214A (en) 1983-12-26 1983-12-26 Gas turbine composite cycle power generating plant

Publications (1)

Publication Number Publication Date
JPS60138214A true JPS60138214A (en) 1985-07-22

Family

ID=17190705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928683A Pending JPS60138214A (en) 1983-12-26 1983-12-26 Gas turbine composite cycle power generating plant

Country Status (1)

Country Link
JP (1) JPS60138214A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104234763A (en) * 2014-04-14 2014-12-24 天津市职业大学 Organic Rankine cycle system recovering waste heat through heat pipe technology
WO2014193604A3 (en) * 2013-05-30 2015-06-18 General Electric Company System and method of waste heat recovery
WO2014193629A3 (en) * 2013-05-30 2015-07-02 General Electric Company System and method of waste heat recovery
US9145795B2 (en) 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
WO2015146669A1 (en) * 2014-03-24 2015-10-01 三菱日立パワーシステムズ株式会社 Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
RU2688342C2 (en) * 2009-09-28 2019-05-21 Дженерал Электрик Компани System operating as per rankine cycle, and corresponding method
US10844753B2 (en) 2015-03-31 2020-11-24 Mitsubishi Hitachi Power Systems, Ltd. Boiler, steam-generating plant provided with same, and method for operating boiler

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2688342C2 (en) * 2009-09-28 2019-05-21 Дженерал Электрик Компани System operating as per rankine cycle, and corresponding method
US9593597B2 (en) 2013-05-30 2017-03-14 General Electric Company System and method of waste heat recovery
WO2014193604A3 (en) * 2013-05-30 2015-06-18 General Electric Company System and method of waste heat recovery
WO2014193629A3 (en) * 2013-05-30 2015-07-02 General Electric Company System and method of waste heat recovery
US9145795B2 (en) 2013-05-30 2015-09-29 General Electric Company System and method of waste heat recovery
RU2658895C2 (en) * 2013-05-30 2018-06-25 Дженерал Электрик Компани System and method for waste heat recovery
US9260982B2 (en) 2013-05-30 2016-02-16 General Electric Company System and method of waste heat recovery
RU2637776C2 (en) * 2013-05-30 2017-12-07 Дженерал Электрик Компани System and method of waste-heat recovery
US9587520B2 (en) 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
WO2015146669A1 (en) * 2014-03-24 2015-10-01 三菱日立パワーシステムズ株式会社 Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
EP3124758A4 (en) * 2014-03-24 2017-11-22 Mitsubishi Hitachi Power Systems, Ltd. Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
CN106103913A (en) * 2014-03-24 2016-11-09 三菱日立电力***株式会社 Waste heat recovery plant, the gas turbine complete set of equipments possessing this waste heat recovery plant and waste recovery method
KR20180005289A (en) * 2014-03-24 2018-01-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
JP2015183595A (en) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 Exhaust heat recovery apparatus, gas turbine plant including the same, and exhaust heat recovery method
US10480411B2 (en) 2014-03-24 2019-11-19 Mitsubishi Hitachi Power Systems, Ltd. Waste heat recovery device, gas turbine plant provided with same, and waste heat recovery method
CN104234763A (en) * 2014-04-14 2014-12-24 天津市职业大学 Organic Rankine cycle system recovering waste heat through heat pipe technology
US10844753B2 (en) 2015-03-31 2020-11-24 Mitsubishi Hitachi Power Systems, Ltd. Boiler, steam-generating plant provided with same, and method for operating boiler

Similar Documents

Publication Publication Date Title
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
US5628179A (en) Steam attemperation circuit for a combined cycle steam cooled gas turbine
US5412937A (en) Steam cycle for combined cycle with steam cooled gas turbine
US20070017207A1 (en) Combined Cycle Power Plant
US6389797B1 (en) Gas turbine combined cycle system
CN101865033A (en) Method for expanding compressor discharge bleed air
JPH06317106A (en) Steam-gas turbine composite type power plant
US3006146A (en) Closed-cycle power plant
USRE36524E (en) Steam attemperation circuit for a combined cycle steam cooled gas turbine
TW368547B (en) Gas- and steam turbine equipment and its method of operation
US4896496A (en) Single pressure steam bottoming cycle for gas turbines combined cycle
JPH0388902A (en) Gas.steam turbine complex equipment with coal-gasification apparatus
JP3095745B1 (en) Ultra high temperature power generation system
JPS60138214A (en) Gas turbine composite cycle power generating plant
RU2153080C2 (en) Combined-cycle power generation process and combined-cycle plant
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JPH09209714A (en) Composite power generating device with reactor coolant heating steam generator
JPS61237804A (en) Power system
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
RU97122121A (en) METHOD FOR OPERATION OF STEAM POWER ENGINEERING INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
JP2002371807A (en) Turbine equipment and steam converting device
JPS61258907A (en) Power system
JP2001214758A (en) Gas turbine combined power generation plant facility
JP2642954B2 (en) How to start a reheat combined plant
JP2960371B2 (en) Hydrogen combustion turbine plant