JPS60190519A - Method for directly softening and rolling two-phase stainless steel bar - Google Patents

Method for directly softening and rolling two-phase stainless steel bar

Info

Publication number
JPS60190519A
JPS60190519A JP4674684A JP4674684A JPS60190519A JP S60190519 A JPS60190519 A JP S60190519A JP 4674684 A JP4674684 A JP 4674684A JP 4674684 A JP4674684 A JP 4674684A JP S60190519 A JPS60190519 A JP S60190519A
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
phase
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4674684A
Other languages
Japanese (ja)
Inventor
Shoji Nishimura
彰二 西村
Kazuhiko Nishida
和彦 西田
Kenji Kurokawa
黒川 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4674684A priority Critical patent/JPS60190519A/en
Publication of JPS60190519A publication Critical patent/JPS60190519A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To carry out direct softening and rolling when a two-phase stainless steel is rolled into a steel bar, by finishing the rolling at a specified temp., holding the resulting bar at the temp. for a specified time by making use of the sensible heat, and cooling it rapidly. CONSTITUTION:A two-phase stainless steel contg. Fe, Cr, Ni and Mo as principal components or further contg. one or moe among Cu, W, V and Co is rolled at >=950 deg.C finishing temp. The resulting bar is held at >=950 deg.C for <=100sec, preferably 30-100sec by making use of the sensible heat, and it is rapidly cooled to <=600 deg.C at >=1 deg.C/sec cooling rate to carry out direct softening.

Description

【発明の詳細な説明】 技術分野 本発明はFe−Cr−Ni−Moを主成分とし、必要に
応じてCu、W、V、Coの1種又は2種以上を含有す
る二相ステンレス鋼の棒鋼の圧延方法、特に軟化処理を
施すことな(直接軟化圧延する方法に関する。
Detailed Description of the Invention Technical Field The present invention relates to a duplex stainless steel mainly composed of Fe-Cr-Ni-Mo and optionally containing one or more of Cu, W, V, and Co. This invention relates to a method of rolling a steel bar, particularly a method of direct softening rolling without softening treatment.

背景技術 Fe−Cr−Ni−Moを主成分(C≦0.03%。Background technology The main component is Fe-Cr-Ni-Mo (C≦0.03%.

Cr 20〜!+ 04 、 Ni 2.0〜15%、
 M。
Cr 20~! +04, Ni 2.0-15%,
M.

α5〜5.0 % )とし、必要に応じてCu(0,1
〜ts*)、w(o、05〜1.5 % ) 、 VC
o、05〜1.5チ)、Co(0,05〜1.5チ)の
1種又は2種以上を含有せしめた二相ステンレス鋼は高
強度でかつ海水などの耐食性にすぐれているため、海水
淡水化装置、海底油田開発用プラントホーム、発電設備
及びその他の化学反応〆置などのボルト、ナツトなどの
締結部品、溶接材、補強部品などによく使用されている
α5~5.0%), and Cu (0,1
~ts*), w(o, 05~1.5%), VC
Duplex stainless steel containing one or more of the following: O, 0.05 to 1.5 Ch) and Co (0.05 to 1.5 Ch.) has high strength and excellent corrosion resistance against seawater, etc. It is often used for fastening parts such as bolts and nuts, welding materials, and reinforcing parts for seawater desalination equipment, offshore oil field development plant homes, power generation equipment, and other chemical reaction devices.

然し、周知の如くこの二相ステンレス鋼はσ相が析出し
易く、而もとのσ相が析出すると材質が著しく硬化して
脆化し易くなり、かつ耐食性も著しく低下する。そのた
め、従来斯る二相ステンレス棒鋼をボルト、ナツト及び
磨棒などに機械加工及び冷間加工するには、圧延素材を
to00〜i、250℃に再加熱してσ相を同浴化した
る後急冷して軟化する、所謂軟化処理な施したる後上記
加工を行なっている。然しながら、この方法によるとき
は圧延素材のミルスケールの上に再加熱によるスケール
が発生し表面肌が劣化し而も省エネルギー上からも好ま
しくない。そのため、これを避けるために圧延素材なば
洗、ショット及びピーリング処理後軟化処理しているが
、これによると作菓工数の増加及び歩留の低下など経杭
性か悪くなる。
However, as is well known, in this duplex stainless steel, the σ phase tends to precipitate, and when the original σ phase precipitates, the material becomes extremely hardened and easily becomes brittle, and the corrosion resistance is also significantly reduced. Therefore, conventionally, in order to machine and cold-work such duplex stainless steel bars into bolts, nuts, polished bars, etc., the rolled material must be reheated to 250°C to 00~i to convert the σ phase into the same bath. The above-mentioned processing is performed after performing a so-called softening treatment in which the material is rapidly cooled and softened. However, when this method is used, scale is generated on the mill scale of the rolled material due to reheating, the surface texture deteriorates, and it is not preferable from the viewpoint of energy saving. Therefore, in order to avoid this, the rolled material is softened after washing, shot and peeling, but this increases the number of man-hours required for making confectionery and reduces the yield, resulting in poor rolling properties.

発明の*要 本光明は前述のこれらの問題を一挙に解決することを目
的とするもので、上記二相ステンレス鋼を棒鋼に圧延す
るに当り、圧延終了温度を950℃以上とし、圧延終了
後の材料のもっている顕熱を利用して圧延終了後950
℃以上の温度に100秒以内、好ましくは60〜100
秒間保持したる後急冷することにより、直接軟化圧延処
理するものである。
The main purpose of the present invention is to solve the aforementioned problems all at once, and when rolling the duplex stainless steel mentioned above into a steel bar, the rolling end temperature is set at 950°C or higher, and after the rolling is completed, 950℃ after finishing rolling by utilizing the sensible heat of the material.
℃ or higher within 100 seconds, preferably 60-100 seconds
It is directly softened and rolled by holding it for a second and then rapidly cooling it.

詳細な説明 一般にσ相の析出は高温で長時間保持すると起るが、上
記成分系の二相ステンレス鋼の場合、σ相の析出温度は
25 Cr −6Ni −5Mo −0,3W鋼を12
50℃で20分間加熱した場合のσ相析出のTTT曲線
が例示されている第3図に示すように750〜900℃
である。
Detailed Description Generally, precipitation of the σ phase occurs when held at high temperature for a long time, but in the case of duplex stainless steel with the above composition system, the precipitation temperature of the σ phase is 25 Cr -6Ni -5Mo -0,3W steel at 12
As shown in Figure 3, which shows the TTT curve of σ phase precipitation when heated at 50°C for 20 minutes, the heating temperature is between 750 and 900°C.
It is.

従来、第2図に示すように二相ステンレス鋼の傅調圧延
では、鋼片を一般に900〜1050℃程贋で圧延し圧
延素材となし、然る後同浴化処理温反で再加熱して急冷
する軟化処理を竹なっている。この場合、15〜20簡
φ程度の如き細径棒鋼はそれ単独では第6図より明らか
なように冷却速度が速いのでσ相が生じ雛いか、大証に
生産される圧延工場においては冷却床上で隣接する棒鋼
の顕熱の影響を受け、冷却速度が低下しσ相が生じ易く
なる。一方20■φ以上の中、太径はそれ単独でも冷却
速度が遅いのでσ相がいよいよ発生し易くなる。
Conventionally, as shown in Fig. 2, in the tempered rolling of duplex stainless steel, a steel billet is generally rolled at 900 to 1050°C to obtain a rolled material, and then reheated in the same hot bath bath. The bamboo has been softened by rapid cooling. In this case, as it is clear from Fig. 6, a small diameter steel bar such as 15 to 20 mm diameter is cooled at a high rate when used alone, so a σ phase is formed and the steel bar is not heated on a cooling bed in the rolling mill produced in OSE. Under the influence of the sensible heat of the adjacent steel bar, the cooling rate decreases and the σ phase is more likely to occur. On the other hand, if the diameter is larger than 20 mm, the cooling rate is slow even when it is alone, so the σ phase is more likely to occur.

本発明は圧延終了後圧延材のもっている顕熱を利用して
急冷することによって直接軟化処理を行なうものであり
、上記二相ステンレス鋼の棒鋼圧延を行なうに当り、第
1図に示すように鋼片を加熱炉で1200〜1300℃
に加熱し、σ相などの炭化物を完全に固溶させたる後所
定のサイズまで連続ミルで圧延する場合に、圧延終了温
度を含め、その圧延全工程の間材料の温度を950℃以
上に保ち圧延終了後その保有する顕熱をそのま〜利用し
100秒以内、好ましくは30〜100秒間、材料を9
50℃以上に保持した後攪拌、循環水槽などに投入して
1℃/SθC以上の冷却速度で600℃以下の温度まで
急冷するものである。
The present invention performs a direct softening treatment by rapidly cooling the rolled material by utilizing the sensible heat it has after rolling. Steel slabs are heated to 1200-1300℃ in a heating furnace.
When rolling the material to a specified size using a continuous mill after heating it to a temperature to completely dissolve carbides such as the σ phase into a solid solution, the temperature of the material is maintained at 950°C or higher during the entire rolling process, including the rolling end temperature. After rolling, the material is heated to 90% within 100 seconds, preferably 30 to 100 seconds, using the sensible heat it possesses.
After maintaining the temperature at 50° C. or higher, the mixture is stirred and then put into a circulating water tank or the like and rapidly cooled to a temperature of 600° C. or lower at a cooling rate of 1° C./SθC or higher.

以下、本発明における圧延及び冷却する際の条件につい
てその限定理由を説明する。
Hereinafter, the reasons for limiting the conditions for rolling and cooling in the present invention will be explained.

本発明において重要なことはまず第一に圧延終了温度を
含め、その圧延全工程を950℃以上の温度に確保する
ことである。これは上記第6図に示すFe−Cr−Ni
−Mo系二相ステンレス鋼のσ相のTTT曲線より明ら
かなようにσ相が可及的に析出する900〜750℃の
温度領域を避けるためであり、σ相は900〜750℃
の温度域では短時間で生じ易く、次の保熱工程でσ相が
析出する恐れがあり、又圧延終了温度が950η以下に
なると二相ステンレス鋼の場合結晶粒の成長が起り難く
なるためである。
What is important in the present invention is first to ensure that the entire rolling process, including the rolling end temperature, is maintained at a temperature of 950° C. or higher. This is the Fe-Cr-Ni shown in Fig. 6 above.
- This is to avoid the temperature range of 900 to 750°C where the σ phase precipitates as much as possible, as is clear from the TTT curve of the σ phase of Mo-based duplex stainless steel.
In the temperature range of , it tends to occur in a short time, and there is a risk that the σ phase will precipitate in the next heat retention process.Also, if the rolling end temperature is less than 950η, crystal grain growth will be difficult to occur in duplex stainless steel. be.

本発明においては、さらに圧延終了後100秒以内、好
ましくは30〜100秒間素材を950℃以上に保持し
た後急冷しているか、このように冷却前の温度7950
℃以上とするのは全断面内の結晶粒を均一にするためで
ある〇一般にステンレス鋼は熱伝専が悪いため表面部と
中心部の温度勾配が太きく、符に最表面部の温度低下が
著しい。それ故、オーステナイト及びフェライト粒の粒
成長が緩硬となり又圧延加工中、塑性変形は相対的に表
面部の方か中心部より゛大き(受けるため表面部の結晶
粒が細長く延伸され、加工歪によって硬度も中心部より
高(不均一な性状となるため、斯る問題を解決するため
に圧延終了後100秒以内、好ましくは30〜100秒
間材料なσ相の発生し難い950℃以上に保持し結晶の
成長を促し加工歪を同機させるものである。さらに第5
図及び第6図には180mφ鋼片より60瓢φに圧延終
了温度1000℃で圧延後水中に投入して急冷するまで
の保熱時間と表面部と中心部の硬度レベル(第5図)及
゛びミクロ組織(第6図の顕微鏡写A)との関係を示す
が、図面における(イ)〜に)の時間保持後のミクロ組
織において、(イ)ではσ相の析出は認められないが表
面部の硬さは中心部より高く、又ミクロ組織も中心部よ
り細か(、又(ロ)、(ハ)ではσ相の析出もなく表面
、中心の組織も均一であるがに)では数多程度のσ相の
析出が認められる。即ち、保熱時間が30秒以下では(
イ)で認められるように表面部の結晶粒は中心部のそれ
よりも細かく硬度レベルも高く均一な性状にはならない
がσ相は析出しない。しかし100秒以上ではに)に認
められるように結晶の回復成長及び硬度の低下がほぼ一
定化し而もこれより長くなると温度の低下が進行し材料
温度が900℃以下に低下しσ相が析出、するために硬
化するので保熱時間を100秒以下としている。
In the present invention, the material is further maintained at 950°C or higher for 100 seconds after the end of rolling, preferably 30 to 100 seconds, and then rapidly cooled, or the temperature before cooling is 7950°C.
The reason for setting the temperature above ℃ is to make the crystal grains uniform throughout the entire cross section. In general, stainless steel has poor heat conduction, so the temperature gradient between the surface and center is large, and the temperature at the outermost surface is significantly lower. is remarkable. Therefore, the grain growth of austenite and ferrite grains becomes slow and hard, and during rolling, the plastic deformation is relatively larger at the surface than at the center. Therefore, in order to solve this problem, the hardness of the material is higher than that of the center (which results in non-uniform properties).To solve this problem, the material is held at a temperature of 950°C or higher for less than 100 seconds, preferably 30 to 100 seconds, to prevent the occurrence of the σ phase. This is to promote crystal growth and reduce processing strain.Furthermore, the fifth
Figures and Figure 6 show the heat retention time and the hardness level of the surface and center parts after rolling a 180mφ steel slab to 60mmφ at a finishing temperature of 1000°C and quenching it in water (Figure 5). The relationship between the microstructure and the microstructure (micrograph A in Figure 6) is shown. In the microstructure after holding for the time shown in (a) to (a) in the drawing, precipitation of the σ phase is not observed in (a), but The hardness of the surface part is higher than that of the center part, and the microstructure is finer than that of the center part. A large amount of σ phase precipitation is observed. In other words, if the heat retention time is 30 seconds or less (
As seen in b), the crystal grains at the surface are finer and have a higher hardness level than those at the center, and although the properties are not uniform, the σ phase does not precipitate. However, as can be seen in (2003), the recovery growth of crystals and the decrease in hardness become almost constant over 100 seconds; however, if the time is longer than this, the temperature decreases, the material temperature drops to below 900℃, and the σ phase precipitates. The heat retention time is set to 100 seconds or less since the resin is cured.

又Cr−Ni−Mo系二相ステレレス鋼のσ相析出のO
CT曲線を示す第4図において、実W<a>は25Cr
−6Ni−!IMO−0,!+W鋼を1050℃で20
分間加熱した場合のσ相の析出曲線を示し、又破# (
b)は1250℃で20分間加熱後減面積率50チ以上
熱間加工し950℃で加工を終了した場合のσ相の析出
曲線を示1−か、このように熱間加工を行なうと析出曲
線(a)は加工歪の影曽を受けて短時間側にシフトし、
加工歪を加えない場合より短時間で析出すること〜なり
、1℃/’secの臨界冷却曲線(C)であれば圧延終
了温度が950℃以上で圧延した場曾、1%/sec以
上では析出曲線(b)と冷却曲i (C)とが接触しな
いのでσ相の析出しないことが判る。なお冷却速匿は1
℃/sec以上であれは速いほどよいが冷却装置の冷却
能や材料の断面積によって自から決まるものであるから
特に上限につ−・ては規定する必要はない。
In addition, O in the σ phase precipitation of Cr-Ni-Mo dual-phase stainless steel
In FIG. 4 showing the CT curve, the actual W<a> is 25Cr
-6Ni-! IMO-0,! +W steel at 1050℃ for 20
It shows the precipitation curve of the σ phase when heated for 1 minute, and the fracture # (
b) shows the precipitation curve of the σ phase when heated at 1250°C for 20 minutes, then hot-worked with an area reduction rate of 50 cm or more, and completed at 950°C. Curve (a) shifts to the short time side due to the influence of processing strain,
Precipitation occurs in a shorter time than when no working strain is applied, and if the critical cooling curve (C) is 1°C/'sec, the rolling end temperature is 950°C or higher, and if the rolling end temperature is 950°C or higher, precipitation will occur in a shorter time than when no working strain is applied. It can be seen that the σ phase does not precipitate because the precipitation curve (b) and the cooling curve i (C) do not contact each other. The cooling speed is 1
C/sec or more, the faster the better, but it is determined by the cooling capacity of the cooling device and the cross-sectional area of the material, so there is no need to specify an upper limit.

本発明において又材料を600℃以下までに急冷するの
は第4図からも判るように600℃以下ではσ相析出が
出ないので600℃以下まで冷却すればよいが勿論常温
まで冷却すべきである〇 以上のようにその圧延条件な満足させることにより、本
発明においてはσ相の析出を防止し、断面内の結晶粒及
び硬度分布が均一な軟化処理かインライン工程で可能と
なる。
In the present invention, the material is rapidly cooled to below 600°C.As can be seen from Figure 4, σ phase precipitation does not occur below 600°C, so it is sufficient to cool the material to below 600°C, but of course it should be cooled to room temperature. By satisfying the rolling conditions as described above, in the present invention, precipitation of the σ phase can be prevented, and a softening treatment or in-line process can be used to make the crystal grains and hardness distribution uniform in the cross section.

以上、本発明を実施例を示してさらに説明する0 実施例 下記第1表に示す成分糸の二相ステンレス鋼の180咽
φ鋼片を1250℃に加熱後、連続圧延機にて第2表に
示す圧延サイズ、圧延終了温度及び冷却条件にて棒鋼を
製造し、第2表にそれらの機械的性質、硬度、σ相の析
出状況及上衣WJ2表において ※1ri械的性質の試験片は20間φ以上の場合はV2
よ一す、20簡φ未満の場合は中心部より採取し常法に
暴き機械加工したものを使用する。
The present invention will now be further explained with reference to Examples.Example: After heating a 180 mm diameter steel piece of duplex stainless steel with the yarn composition shown in Table 1 below to 1250°C, it was heated in a continuous rolling mill as shown in Table 2. Steel bars were produced with the rolling size, rolling end temperature, and cooling conditions shown in Table 2, and their mechanical properties, hardness, and precipitation status of σ phase are shown in Table 2. In Table 2, *1ri mechanical property test pieces are 20 If the distance is φ or more, V2
If the diameter is less than 20 mm, use a piece taken from the center, exposed and machined using a conventional method.

奈2二耐食注試験方法はJIS GO575ステンレス
鋼の硫酸、Vtば銅腐食試験方法に準じて行なった。但
し試験時間は定められた16時間より72時間に延長し
た。
The corrosion resistance test method was conducted in accordance with the JIS GO575 stainless steel sulfuric acid, Vt copper corrosion test method. However, the test time was extended from the specified 16 hours to 72 hours.

※3:本発明法に関する圧延条件中、本発明法の適用外
の条件で圧延されたものを示す。
*3: Among the rolling conditions related to the method of the present invention, this indicates those rolled under conditions to which the method of the present invention is not applicable.

壷4:従来法とは、熱間圧延素材を再加熱後水中にて急
冷し軟化処理したもので、その条件は以下の通りである
Bottle 4: The conventional method is a method in which a hot rolled material is reheated and then rapidly cooled in water for softening treatment, and the conditions are as follows.

1070℃×20分加熱 → 水中にて急冷(W、C,) 上記第2表より明らかなように本発明で規定した条件範
囲内で製造した棒鋼の諸性状を同表下段に刊記した従来
の方法で軟化処理した場合と同等の機械的性質及び耐秀
性を有していることが判る。又問題となるσ相の析出も
なく、保熱した場合、特に材料表面部と中心部の硬度差
も僅少で同表中には記載していないが、ミクロ組織も全
N1面にわたり均一であった。
Heating at 1070°C for 20 minutes → Rapid cooling in water (W, C,) As is clear from Table 2 above, the properties of the steel bars manufactured within the conditions specified in the present invention are listed in the lower part of the table according to the conventional method. It can be seen that the material has mechanical properties and durability equivalent to those obtained by softening treatment using the method described above. In addition, there was no precipitation of the problematic σ phase, and when the material was kept heated, the difference in hardness between the surface and center of the material was small, and although it is not listed in the table, the microstructure was uniform over the entire N1 surface. Ta.

以上の如く本発明法によれは従来の方法で製造した棒鋼
と何ら遜色のない軟化処理が可能で、2次、3次加工工
程において直接力11工づ−ることかでき、省エネルギ
ー、工程省略、歩貿向上なレス鋼の硫酸、4tLv鋼腐
食試験方法に準じて行なった結果であるが、試験時間は
定められた16時間より72時間に延長したものである
。又表中※印は本発明法に関する圧延条件中、本光明法
の適用外の条件で圧延されたものを示し、従来法とは熱
間圧延素材を1070℃×20分、再加熱後水中にて急
冷し軟化処理したものの結果を示す。
As described above, the method of the present invention allows for softening treatment comparable to that of steel bars produced by conventional methods, and allows direct force of 11 steps to be applied in the secondary and tertiary processing steps, saving energy and eliminating process steps. The results were conducted in accordance with the 4tLv steel corrosion test method using sulfuric acid for less steel, but the test time was extended from the specified 16 hours to 72 hours. In addition, the asterisks in the table indicate those rolled under conditions that are not applicable to the Komyo method among the rolling conditions related to the method of the present invention. The results are shown after being rapidly cooled and softened.

以上、゛本発明法は常温でオーステナイトー7ニライト
組織を有する二相ステンレス鋼の直接軟化圧延処理を提
供するものであるが、そのほか一般のオーステナイト系
のステンレス鋼の直接軟化圧延処理にも適用できるもの
である。
As mentioned above, the method of the present invention provides direct softening rolling treatment of duplex stainless steel having an austenite-7nyrite structure at room temperature, but it can also be applied to direct softening rolling treatment of general austenitic stainless steel. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面において第1図は本発明法、第2図は従来法の
処理パターンを示し、第3図は250r −6Ni −
5Mo −0,5W鋼のσ相析出のTTT曲庫、第4図
は同OCT曲線を示し、又第5図は保熱時間(圧延後急
冷する迄の保熱時間)と材料の諸性状との関係であり、
第6図はその顕微鏡組織を示す写真である。 ナ r ta 叶II)1 米、2 t2′I 片ル]
In the accompanying drawings, Fig. 1 shows the treatment pattern of the present invention method, Fig. 2 shows the treatment pattern of the conventional method, and Fig. 3 shows the treatment pattern of 250r-6Ni-
Figure 4 shows the OCT curve of the σ phase precipitation of 5Mo-0,5W steel, and Figure 5 shows the heat retention time (heat retention time until quenching after rolling) and various properties of the material. The relationship is
FIG. 6 is a photograph showing its microscopic structure. na r ta Kano II) 1 rice, 2 t2'I Kataru]

Claims (1)

【特許請求の範囲】[Claims] Fe−Cr−Ni”Moを主成分とし、必要に応じて延
終了温度を950℃以上とし、圧延終了後950℃以上
の温度に100秒以内保持したる後1℃/see以上の
冷却速度で600℃以下の温朋まで急冷することを%徴
とする二相ステンレス棒鋼の直接軟化圧延方法。
The main component is Fe-Cr-Ni''Mo, the rolling end temperature is set to 950°C or higher as required, and after the rolling is completed, the temperature is maintained at 950°C or higher for less than 100 seconds, and then the cooling rate is 1°C/see or higher. A direct softening rolling method for duplex stainless steel bars that involves rapid cooling to a temperature of 600°C or less.
JP4674684A 1984-03-12 1984-03-12 Method for directly softening and rolling two-phase stainless steel bar Pending JPS60190519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4674684A JPS60190519A (en) 1984-03-12 1984-03-12 Method for directly softening and rolling two-phase stainless steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4674684A JPS60190519A (en) 1984-03-12 1984-03-12 Method for directly softening and rolling two-phase stainless steel bar

Publications (1)

Publication Number Publication Date
JPS60190519A true JPS60190519A (en) 1985-09-28

Family

ID=12755897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4674684A Pending JPS60190519A (en) 1984-03-12 1984-03-12 Method for directly softening and rolling two-phase stainless steel bar

Country Status (1)

Country Link
JP (1) JPS60190519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030150A (en) * 2006-07-28 2008-02-14 Mcc Corp Cutting tool for steel bar
JP2019141864A (en) * 2018-02-19 2019-08-29 日本製鉄株式会社 Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe
JP2020041221A (en) * 2013-11-12 2020-03-19 エイティーアイ・プロパティーズ・エルエルシー Methods for processing metal alloys
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030150A (en) * 2006-07-28 2008-02-14 Mcc Corp Cutting tool for steel bar
JP2020041221A (en) * 2013-11-12 2020-03-19 エイティーアイ・プロパティーズ・エルエルシー Methods for processing metal alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
JP2019141864A (en) * 2018-02-19 2019-08-29 日本製鉄株式会社 Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe

Similar Documents

Publication Publication Date Title
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
CN114891994A (en) Grain size control method for rolling 316H austenitic stainless steel medium plate for nuclear power
CN114015847A (en) Method for producing 45 steel for direct cutting by controlled rolling and controlled cooling process
JPS6389650A (en) Heat-treatment of nickel base alloy
JPS60190519A (en) Method for directly softening and rolling two-phase stainless steel bar
JPS60197817A (en) Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JP2003253401A (en) Austenitic stainless steel excellent in intergranular corrosion resistance and production method thereof
JPS6043429A (en) Method for refining cold rolled austenitic stainless steel sheet
JPH0379742A (en) Production of duplex stainless steel excellent in corrosion resistance and sheet of same
JPS58144420A (en) Method of making large-sized austenitic stainless forged steel
JPS6358906B2 (en)
JPH0372030A (en) Production of austenitic stainless steel strip excellent in ductility
JPH04276042A (en) Austenitic stainless steel and its production
JPH03215625A (en) Production of superplastic duplex stainless steel and hot working method therefor
JPS6059022A (en) Production of austenitic stainless steel strip
JPS60255921A (en) Manufacture of hot rolled austenitic stainless steel strip
JPH0615692B2 (en) Method for manufacturing austenitic stainless steel plate
US3446333A (en) Treating austenitic stainless steels
CN115287418B (en) 690 MPa-grade extra-thick marine steel with excellent low-temperature toughness and Z-direction performance and heat treatment method thereof
JPH01104716A (en) Manufacture of austenitic stainless steel stock excellent in nitric acid corrosion resistance
JP2680424B2 (en) Method for producing low yield strength austenitic stainless steel sheet
JPS6156234A (en) Manufacture of austenite stainless fine grain steel
JPS61243118A (en) Production of hot-rolled two-phase stainless steel
JPS59153830A (en) Heat treatment of hot rolled strip of martensitic stainless steel
JPS62267419A (en) Manufacture of austenitic stainless steel plate