JP2680424B2 - Method for producing low yield strength austenitic stainless steel sheet - Google Patents

Method for producing low yield strength austenitic stainless steel sheet

Info

Publication number
JP2680424B2
JP2680424B2 JP1142112A JP14211289A JP2680424B2 JP 2680424 B2 JP2680424 B2 JP 2680424B2 JP 1142112 A JP1142112 A JP 1142112A JP 14211289 A JP14211289 A JP 14211289A JP 2680424 B2 JP2680424 B2 JP 2680424B2
Authority
JP
Japan
Prior art keywords
yield strength
less
stainless steel
cooling rate
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1142112A
Other languages
Japanese (ja)
Other versions
JPH0310017A (en
Inventor
崇徳 中澤
雅之 天藤
英隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1142112A priority Critical patent/JP2680424B2/en
Publication of JPH0310017A publication Critical patent/JPH0310017A/en
Application granted granted Critical
Publication of JP2680424B2 publication Critical patent/JP2680424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は引張耐力の低いオーステナイト系ステンレス
鋼板の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an austenitic stainless steel sheet having low tensile strength.

(従来の技術) オーステナイト系ステンレス鋼はそのすぐれた耐食
性、加工性あるいは溶接性のため、化学プラント、建
築、耐久消費材等に広く使用される。オーステナイト系
ステンレス鋼は一般に低耐力で降伏比が低く、かつ塑性
領域が大きいためすぐれた成形性を有する。このためオ
ーステナイト系ステンレス鋼では製品の寸法精度、美観
あるいは耐食性の点から冷間加工が広く用いられる。
(Prior Art) Austenitic stainless steel is widely used for chemical plants, construction, durable consumer products, etc. because of its excellent corrosion resistance, workability, and weldability. Austenitic stainless steel generally has a low yield strength, a low yield ratio, and a large plastic region, so that it has excellent formability. For this reason, cold working is widely used for austenitic stainless steels in terms of product dimensional accuracy, aesthetics, and corrosion resistance.

しかしながら、板厚が大きくなるにともない変形抵抗
が増加するため、成形加工装置の能力の点から冷間加工
が困難になる。このような場合には材料温度を高めるこ
とにより変形抵抗を低下させる、いわゆる熱間加工法が
適用される。
However, since the deformation resistance increases as the plate thickness increases, cold working becomes difficult from the viewpoint of the capability of the molding apparatus. In such a case, a so-called hot working method is applied in which the deformation resistance is lowered by raising the material temperature.

しかし材料を高温に加熱することは、炭化物の析出等
の組織変化を引き起こすことになり、耐食性の劣化等の
問題を生じる。
However, heating the material to a high temperature causes a structural change such as precipitation of carbides, which causes problems such as deterioration of corrosion resistance.

なお、鋼材の変形抵抗を低下させるため、炭素あるい
は窒素量を低減した鋼種が開発されている(特公昭55−
2465号公報)。しかし引張耐力の低下幅は小さく、十分
な冷間加工性をもたらすものではない。
In order to reduce the deformation resistance of steel materials, steel grades with reduced carbon or nitrogen content have been developed (Japanese Patent Publication No. 55-
2465 publication). However, the range of decrease in tensile strength is small, and it does not bring about sufficient cold workability.

(発明が解決しようとする課題) このように従来鋼のオーステナイト系ステンレス鋼
は、降伏比が低いため冷間加工に適している。しかし、
板厚が増加するにともない変形抵抗が大きくなり、熱間
加工が必要になる。この熱間加工は炭化物の粒界析出を
引き起こし、耐粒界腐食性を低下させる等の材質上の問
題点をかかえている。このため熱間加工後に再び溶体化
熱処理を施す場合もある。
(Problems to be Solved by the Invention) As described above, the conventional austenitic stainless steel has a low yield ratio and is suitable for cold working. But,
The deformation resistance increases as the plate thickness increases, and hot working is required. This hot working causes grain boundary precipitation of carbides, which causes problems in materials such as reduction in intergranular corrosion resistance. For this reason, solution heat treatment may be performed again after hot working.

さらに熱間加工では材料を加熱するため、冷間加工に
比べ加工・工程が複雑で、また設備も大規模なものとな
る。このような問題点を解決するためオーステナイト系
ステンレス鋼の引張耐力を低下させる試みがなされてい
る。
Further, since the material is heated in the hot working, the working / process is complicated and the equipment is large-scale as compared with the cold working. In order to solve such problems, attempts have been made to reduce the tensile strength of austenitic stainless steel.

すなわち、オーステナイト系ステンレス鋼の主要強化
元素である炭素及び窒素量を低下させること、及び結晶
粒の粗大化による耐力の低下である。しかし現在到達し
ている耐力レベルは約16kg f/mm2であり、上記の課題を
解決する上では、まだ不十分なものである。
That is, the amount of carbon and nitrogen, which are the main strengthening elements of austenitic stainless steel, is reduced, and the yield strength is reduced due to the coarsening of crystal grains. However, the yield level currently reached is about 16 kg f / mm 2 , which is still insufficient for solving the above problems.

本発明者らはオーステナイト系ステンレス鋼の引張耐
力を支配する因子について、系統的な調査を行い、上記
の炭素、窒素および結晶粒度の他に材料の歪が重要な役
割を果たしていることを突き止めた。そして、この歪は
溶体化熱処理後の急冷時に生じる材料内部の温度勾配に
より発生することを明らかにした。
The present inventors systematically investigated the factors governing the tensile strength of austenitic stainless steel and found that the strain of the material plays an important role in addition to the above-mentioned carbon, nitrogen and grain size. . It was clarified that this strain is caused by the temperature gradient inside the material that occurs during rapid cooling after solution heat treatment.

この冷却による歪を発生させないための冷却方法につ
いて検討し、板厚の関数として与えられる臨界冷却速度
以下の冷却速度であれば、耐力の上昇が生じないことを
知見した。
A cooling method for preventing the strain due to this cooling was examined, and it was found that the yield strength does not increase at a cooling rate equal to or lower than the critical cooling rate given as a function of the plate thickness.

(課題を解決するための手段) 本発明は以上のような知見に基づいてなされたもので
あってその要旨とする所は、重量%でC0.020%以下、N
0.02%以下、P0.050%以下に制限し、さらにTi0.3%以
下、Nb0.3%以下のいずれかあるいは双方を含有するオ
ーステナイト系ステンレス鋼板の溶体化熱処理後あるい
は再結晶温度以上での熱間圧延後の900℃から200℃の間
の平均冷却速度を、次式で与えられる臨界冷却速度以下
とする低耐力ステンレス鋼板の製造方法にある。
(Means for Solving the Problems) The present invention has been made based on the above findings, and the gist of the present invention is that C0.020% or less by weight%, N
Heat of austenitic stainless steel sheet containing 0.02% or less and P0.050% or less and further containing Ti 0.3% or less, Nb 0.3% or less, or both after solution heat treatment or above recrystallization temperature. This is a method for producing a low yield strength stainless steel sheet in which the average cooling rate between 900 ° C. and 200 ° C. after hot rolling is made equal to or lower than the critical cooling rate given by the following equation.

臨界冷却速度(℃/sec)=10/板厚(mm) 以下に本発明を詳細に説明する。Critical cooling rate (° C / sec) = 10 / plate thickness (mm) The present invention will be described in detail below.

(作用) 先ず本発明の成分系において、Cは侵入型の原子のた
め少量でも強度を高め、さらに高温で粒界にCr炭化物を
析出し耐粒界腐食性を損なう元素でもある。このような
観点からC量を0.020%以下と定めたが、とくに低耐力
あるいは耐粒界腐食性が要求される場合は0.010%以下
とすることが望ましい。
(Operation) First, in the component system of the present invention, C is an element that enhances strength even with a small amount because it is an interstitial atom, and further precipitates Cr carbides at grain boundaries at high temperatures and impairs intergranular corrosion resistance. From this point of view, the C content is set to 0.020% or less, but it is desirable to set it to 0.010% or less particularly when low yield strength or intergranular corrosion resistance is required.

NはCと同じく侵入型の原子のため少量でも強度を高
めるため制限する必要がある元素である。なお、NはC
に比べ溶解度が大きいため、Cr窒化物による耐粒界腐食
性の劣化は考えなくてよい。このような観点からN量を
0.020%以下と定めたが、特に低耐力が要求される場合
は0.010%以下とすることが望ましい。
Since N is an interstitial atom like C, it is an element that must be limited in order to increase the strength even in a small amount. Note that N is C
Since the solubility is higher than that of, it is not necessary to consider deterioration of intergranular corrosion resistance due to Cr nitride. From this point of view,
Although it has been set to 0.020% or less, it is desirable to set it to 0.010% or less especially when low yield strength is required.

PはFe,Cr,Ni等に比べ原子半径が小さいため、比較的
少量でも強化作用がある元素である。またPは溶接性お
よび熱間加工性を著しく損なうことから制限する必要の
ある元素である。したがって、P量を0.050%以下とし
た。
Since P has a smaller atomic radius than Fe, Cr, Ni, etc., it is an element having a strengthening action even in a relatively small amount. Further, P is an element that must be limited because it significantly impairs weldability and hot workability. Therefore, the P content is set to 0.050% or less.

なお、本発明は以上の成分の制限以外は、常温でオー
ステナイト組織を維持できる化学成分を有するステンレ
ス鋼であることを前提とするものである。
The present invention is based on the premise that the stainless steel has chemical components capable of maintaining an austenite structure at room temperature, other than the above restrictions on the components.

以上が本発明における基本成分系であるが、本発明に
おいてはさらに低耐力化及び耐粒界腐食性を高めるた
め、TiあるいはNbを所定の範囲で含有せしめることが有
効である。TiはC及びNをそれぞれ炭化物及び窒化物と
して固定する作用の強い元素であるため、添加すること
によりC及びNの固溶強化作用を低下させることができ
る。
The above is the basic component system in the present invention, but in the present invention, it is effective to contain Ti or Nb in a predetermined range in order to further lower the yield strength and the intergranular corrosion resistance. Since Ti is an element having a strong action of fixing C and N as carbide and nitride, respectively, the addition of Ti can reduce the solid solution strengthening action of C and N.

また、同時にCr炭化物の析出も抑制されるため耐粒界
腐食性も改善できる。しかし、0.3%を超えて添加する
と熱間加工性を損なうため、含有量を0.3%以下とし
た。NbもTiと同様の役割を果たす元素であるが、0.3%
を超えて添加すると熱間加工性を損なうため、含有量を
0.3%以下とした。
At the same time, the precipitation of Cr carbide is also suppressed, so that the intergranular corrosion resistance can be improved. However, if added over 0.3%, the hot workability is impaired, so the content was made 0.3% or less. Nb is an element that plays the same role as Ti, but 0.3%
If added in excess of 1, the hot workability will be impaired.
It was set to 0.3% or less.

次に、上記のような化学成分の鋼を製造する過程にお
いて、最終製品の溶体化熱処理を行う必要があるが、JI
S−G−4304,4305等により溶体化保持温度から急冷する
ことが要求されている。これは冷却中にCr炭化物が粒界
に析出し、耐粒界腐食性の低下を防止するための規定で
ある。一方、材料を急冷することにより材料内部に温度
差を生じるため、いわゆる熱応力が発生する。
Next, in the process of manufacturing steel with the above chemical composition, it is necessary to perform solution heat treatment of the final product.
S-G-4304, 4305, etc. are required to quench from the solution holding temperature. This is a rule for preventing Cr carbide from precipitating at grain boundaries during cooling and reducing the intergranular corrosion resistance. On the other hand, when the material is rapidly cooled, a temperature difference occurs inside the material, so that so-called thermal stress occurs.

この熱応力が耐力を超える場合には材料に塑性歪が残
留し、いわゆる加工硬化が生じ、結果として材料の耐力
が上昇することになる。そこで本発明者らは次のような
実験を行った。
When this thermal stress exceeds the yield strength, plastic strain remains in the material, so-called work hardening occurs, and as a result, the yield strength of the material increases. Therefore, the present inventors conducted the following experiment.

先ず0.015%C−0.032%P−11%Ni−18%Cr−0.018
%N鋼の板厚・10mmの鋼板について、耐力におよぼす冷
却速度の影響を調査した。冷却速度としては900℃から2
00℃の間の平均値をとり、耐力との関係を第1図に示し
た。
First, 0.015% C-0.032% P-11% Ni-18% Cr-0.018
The effect of the cooling rate on the proof stress was investigated for a steel plate of% N steel with a thickness of 10 mm. Cooling rate from 900 ℃ to 2
The average value between 00 ° C was taken and the relationship with the proof stress is shown in Fig. 1.

通常行われている急冷処理である水冷処理は略100℃/
secであるが、この条件では約21kg f/mm2の耐力を示
す。冷却速度が遅くなるにともない、耐力は低下し約1
℃/secの条件で耐力は10kg f/mm2となり飽和する。この
飽和した耐力を飽和低耐力と呼ぶことにする。
The water cooling process, which is a rapid cooling process that is usually performed, is approximately 100 ° C /
Although it is sec, a proof stress of about 21 kg f / mm 2 is shown under this condition. As the cooling rate slows down, the yield strength decreases and it is about 1
At a temperature of ℃ / sec, the proof stress becomes 10 kg f / mm 2 and it becomes saturated. This saturated yield strength will be called saturated low yield strength.

冷却にともなう歪は材料内部の温度差によるものであ
るため、鋼板の厚みにより変化する。このため板厚の影
響を調査した。
Since the strain accompanying cooling is due to the temperature difference inside the material, it changes depending on the thickness of the steel sheet. Therefore, the influence of plate thickness was investigated.

供試材は先の実験と同一のもので、板厚を1mmから100
mmまで変化させ、冷却速度と耐力の関係を求めた。その
結果を、飽和低耐力・10kg f/mm2を達成するための冷却
速度(臨界冷却速度とする。)と板厚の関係として第2
図に示した。
The test material is the same as the previous experiment, and the plate thickness is from 1 mm to 100
The relationship between the cooling rate and the yield strength was determined by changing the value up to mm. The result is the second relationship between the cooling rate (the critical cooling rate) and the plate thickness to achieve the saturated low yield strength and 10 kg f / mm 2 .
Shown in the figure.

図から明らかなように、板厚の増加とともに臨界冷却
速度は小さくなり、板厚100mmでは約0.1℃/sec以下にす
る必要がある。なお、この実験結果から臨界冷却速度
(CCR)は板厚(t)との間に次式の関係があることが
判明した。
As is clear from the figure, the critical cooling rate becomes smaller as the plate thickness increases, and at a plate thickness of 100 mm, it is necessary to make it about 0.1 ° C / sec or less. From this experimental result, it was found that the critical cooling rate (CCR) and the plate thickness (t) have the following relationship.

CCR(℃/sec)=10/t(mm) (1) なお、他の成分系についても同様の調査を行い、飽和
低耐力を達成するための冷却速度が式(1)で表される
ことを確認した。したがって、飽和低耐力を達成するた
めには、最終の溶体化熱処理後の冷却速度を上記の式
(1)で表される臨界冷却速度・CCR以下にする必要が
ある。
CCR (℃ / sec) = 10 / t (mm) (1) In addition, the same investigation should be conducted for other component systems, and the cooling rate for achieving low saturation yield strength should be expressed by equation (1). It was confirmed. Therefore, in order to achieve the low saturation yield strength, the cooling rate after the final solution heat treatment needs to be equal to or lower than the critical cooling rate / CCR represented by the above formula (1).

なお、熱間圧延で再結晶温度以上で圧延が終了する場
合は、圧延後の冷却速度を式(1)の臨界冷却速度以下
にすることにより、低耐力を達成できることはその原理
から当然のことである。
It should be noted from the principle that low yield strength can be achieved by setting the cooling rate after rolling to be equal to or lower than the critical cooling rate of the formula (1) when the rolling is finished at the recrystallization temperature or higher in hot rolling. Is.

以上の如き成分組成を有する本発明鋼は、各種電気炉
等による製鋼を行った後、通常の造塊あるいは連続鋳造
により鋼塊あるいは鋼片とし、ついで圧延あるいは鍛造
により各種形状の鋼材とし、所定の溶体化熱処理あるい
は熱間圧延後所定の冷却条件を施して使用に供されるも
のである。
The steel of the present invention having the composition as described above, after performing steel making by various electric furnaces, etc., is made into a steel ingot or a billet by ordinary ingot making or continuous casting, and then is made into a steel material having various shapes by rolling or forging. After being subjected to solution heat treatment or hot rolling, it is subjected to predetermined cooling conditions before use.

(実 施 例) 第1表に本発明鋼と比較鋼の化学成分を示す。(Examples) Table 1 shows the chemical composition of the steel of the present invention and the comparative steel.

第2表は第1表の鋼材について実施した熱間圧延後の
冷却速度あるいは溶体化処理後の冷却速度を示したもの
である。
Table 2 shows the cooling rates after the hot rolling or the solution treatment performed on the steel materials in Table 1.

第3表は第2表の鋼についての室温での引張耐力及び
粒界腐食試験結果を示したものである。
Table 3 shows the tensile strength and intergranular corrosion test results at room temperature for the steels in Table 2.

この特性調査結果から明らかなように、本発明鋼は比
較鋼に比べ耐力が低く、また冷却速度が遅いにもかかわ
らず耐粒界腐食性がすぐれたものである。
As is clear from the results of this property investigation, the steel of the present invention has a lower yield strength than the comparative steel and has excellent intergranular corrosion resistance despite the slow cooling rate.

(発明の効果) 以上述べた如く本発明鋼は、耐粒界腐食性を備えた低
耐力材料となっており、容易に冷間加工が行える材料と
して工業的に極めて有効なものである。
(Effects of the Invention) As described above, the steel of the present invention is a low yield strength material having intergranular corrosion resistance, and is industrially extremely effective as a material that can be easily cold worked.

【図面の簡単な説明】 第1図は室温の引張耐力に及ぼす冷却速度の影響を示す
図表、第2図は臨界冷却速度と板厚の関係を示す図表で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a chart showing the effect of cooling rate on tensile strength at room temperature, and FIG. 2 is a chart showing the relationship between critical cooling rate and plate thickness.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−197817(JP,A) 特開 昭62−267419(JP,A) 特開 昭51−77523(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-60-197817 (JP, A) JP-A-62-267419 (JP, A) JP-A-51-77523 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.020%以下、N:0.02%以
下、P:0.050%以下に制限し、更にTi:0.3%以下、Nb:0.
3%以下のいずれかあるいは双方を含有するオーステナ
イト系ステンレス鋼板の溶体化熱処理後、もしくは再結
晶温度以上で熱間圧延を終了した後の900℃から200℃の
間の平均冷却速度を、次式に示す臨界冷却速度以下と
し、耐力が12kgf/mm2未満であることを特徴とする低耐
力オーステナイト系ステンレス鋼板の製造方法。 臨界冷却速度(℃/sec)=10/板厚(mm)
1. By weight%, C: 0.020% or less, N: 0.02% or less, P: 0.050% or less, Ti: 0.3% or less, Nb: 0.
The average cooling rate between 900 ℃ and 200 ℃ after solution heat treatment of austenitic stainless steel sheet containing either or both of 3% or less or after hot rolling at the recrystallization temperature or higher A method for producing a low-yield austenitic stainless steel sheet, characterized in that the critical cooling rate is less than or equal to, and the yield strength is less than 12 kgf / mm 2 . Critical cooling rate (℃ / sec) = 10 / plate thickness (mm)
JP1142112A 1989-06-06 1989-06-06 Method for producing low yield strength austenitic stainless steel sheet Expired - Fee Related JP2680424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142112A JP2680424B2 (en) 1989-06-06 1989-06-06 Method for producing low yield strength austenitic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142112A JP2680424B2 (en) 1989-06-06 1989-06-06 Method for producing low yield strength austenitic stainless steel sheet

Publications (2)

Publication Number Publication Date
JPH0310017A JPH0310017A (en) 1991-01-17
JP2680424B2 true JP2680424B2 (en) 1997-11-19

Family

ID=15307697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142112A Expired - Fee Related JP2680424B2 (en) 1989-06-06 1989-06-06 Method for producing low yield strength austenitic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP2680424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340499B1 (en) * 1997-09-24 2002-11-16 주식회사 포스코 A Heat Treatment Method of Austenitic Stainless Hot Rolled Steel Sheet Containg Ti
DE102009049624A1 (en) 2009-10-16 2011-04-21 Daimler Ag Method for operating a particle filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177523A (en) * 1974-12-27 1976-07-05 Kawasaki Steel Co OOSUTENAITOKEISUTENRESUKONETSUENKOTAINO SEIZOHOHO
JPS60197817A (en) * 1984-03-19 1985-10-07 Nippon Kokan Kk <Nkk> Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JPS62267419A (en) * 1986-05-13 1987-11-20 Kawasaki Steel Corp Manufacture of austenitic stainless steel plate

Also Published As

Publication number Publication date
JPH0310017A (en) 1991-01-17

Similar Documents

Publication Publication Date Title
CA1072864A (en) Combined mechanical and thermal processing method for production of seamless steel pipe
KR101476866B1 (en) Low density steel with good stamping capability
JPH08199235A (en) Production of niobium-containing ferritic steel sheet
WO1994017215A1 (en) Process for producing chromium-containing stainless steel strip with excellent toughness
JP2680424B2 (en) Method for producing low yield strength austenitic stainless steel sheet
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
JP3067892B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent surface properties and deep drawability
JP3137754B2 (en) Efficient production method of cold rolled steel sheet with excellent deep drawability
JPH04276042A (en) Austenitic stainless steel and its production
JPS5856734B2 (en) Manufacturing method of ferritic stainless steel sheet
JP3026232B2 (en) Manufacturing method of thin stainless steel slab with excellent corrosion resistance and workability
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH0615692B2 (en) Method for manufacturing austenitic stainless steel plate
JPH0774380B2 (en) Manufacturing method of high strength steel
JP2526122B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting
JPH022940B2 (en)
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
JPH0757890B2 (en) Method for producing high heat and corrosion resistant ferritic stainless steel sheet
JPH10280035A (en) Production of high purity ferritic stainless hot rolled steel strip excellent in workability and heat resistance
JP3222048B2 (en) Manufacturing method of high purity ferritic stainless steel sheet with excellent ridging characteristics
JPH0570835A (en) Manufacture of duplex stainless steel sheet extremely small in roughening of surface caused by superplastic forming
JPH024656B2 (en)
JPS6045251B2 (en) Method for manufacturing duplex stainless steel sheet with excellent formability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees