JPS60190020A - Cmos integrated circuit device - Google Patents

Cmos integrated circuit device

Info

Publication number
JPS60190020A
JPS60190020A JP59045471A JP4547184A JPS60190020A JP S60190020 A JPS60190020 A JP S60190020A JP 59045471 A JP59045471 A JP 59045471A JP 4547184 A JP4547184 A JP 4547184A JP S60190020 A JPS60190020 A JP S60190020A
Authority
JP
Japan
Prior art keywords
timing
output
circuit
bit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045471A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kodama
和行 児玉
Yoshiaki Kitatsume
吉明 北爪
Masakazu Akiyama
正和 秋山
Katsufumi Ishikawa
石川 克文
Kunihiko Onuma
邦彦 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Original Assignee
Hitachi Ltd
Hitachi Control Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Control Systems Inc filed Critical Hitachi Ltd
Priority to JP59045471A priority Critical patent/JPS60190020A/en
Publication of JPS60190020A publication Critical patent/JPS60190020A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To decrease a peak value of a power noise produced at signal switching without incurring the increase in a chip area by retarding a switching timing of plural output signals by a prescribed time at each several signal line bundles. CONSTITUTION:In case of, e.g., a voice recognition CMOSLSI circuit, 20 data lines D are divided into D1 in 6-bit and D2, D3 in 7-bit, the D1 is latched to a memory address register MAR1 in the timing of CK, the D2 is latched to an MAR2 by using a clock CK2 delayed by a delay time of the two stages of inverters INV than the time of the CK, and the D3 is latched in an MAR3 by using a clock CK3 delayed by the delay time of two stages of the INV than the time of the CK2. Thus, six lines are switched in the timing of the CK, seven lines are switched in the timing of the CK2 and seven lines are switched sequentially in the timing of the CK3 in the output circuit. Thus, the peak current produced in the output circuit and power supply is decreased at the switching of data in 20-bit.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、CMO8集積回路装置に係り、特に負荷波動
能力の大きい出力回路を有する高速のCMO8集積回路
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a CMO8 integrated circuit device, and particularly to a high-speed CMO8 integrated circuit device having an output circuit with a large load wave capability.

〔発明の背景〕[Background of the invention]

0M08回路は、定常状態では電源電流が流れないが、
出力レベルが変化するときに配線やゲート入力などの寄
生容量を充放電するための電流が流れる。この電流は負
荷駆動能力の大きな回路はど多く流れ、高速な回路はど
電流の立上りが速くピーク値が大きくなる。
In the 0M08 circuit, no power supply current flows in the steady state, but
When the output level changes, current flows to charge and discharge parasitic capacitances such as wiring and gate inputs. A large amount of this current flows in a circuit with a large load driving capacity, and a high-speed circuit causes a rapid current rise and a large peak value.

このような特性をもってCMO8集積回路装置(LSI
)の出力回路が同時に切換わると、LSI全体の電源電
流のピーク値は、出力回路数に比例して大きくなり、電
源配線の抵抗やインダクタンイを通じて他の信号にノイ
ズを与え、装置の誤動作を招く原因となっている。この
ため、従来は出力回路の信号切替え時の誤動作を防止す
るためつどのような対策を行なっていた。
With these characteristics, CMO8 integrated circuit device (LSI)
) switch at the same time, the peak value of the power supply current for the entire LSI increases in proportion to the number of output circuits, which causes noise to other signals through the resistance and inductance of the power supply wiring, causing equipment malfunction. It is the cause of the invitation. For this reason, conventional measures have been taken to prevent malfunctions when switching signals in the output circuit.

(1)誤動作を生じるような大きなノイズが発生しない
ように電g電流のピーク値をおさえるため。
(1) To suppress the peak value of electric current so as not to generate large noise that may cause malfunction.

出力回路のトランジスタの大きさを小さくする。Reduce the size of the transistor in the output circuit.

(2)LSI内の電源配線のインピーダンスを小さくす
るため、電源ビン数を増加し、かつ電源配線幅を広くす
る。
(2) In order to reduce the impedance of the power supply wiring within the LSI, increase the number of power supply bins and widen the width of the power supply wiring.

(3)出力回路の負荷容量を小さくする。(3) Reduce the load capacity of the output circuit.

(4)電源配線のインピーダンスを小さくするため、L
SIを実装する基板の電源配風を強化する。
(4) To reduce the impedance of power supply wiring,
Strengthen the power distribution of the board on which the SI is mounted.

しかし、(1)の方法では負荷駆動能力が低くなり、T
 T L回路の負荷を接続するとファンアウト数を大き
くできない。(2)の方法では信号ピン数が減少し、L
、SIのチップ面積が大きくなる。
However, with method (1), the load driving ability becomes low and T
If a TL circuit load is connected, the fan-out number cannot be increased. In method (2), the number of signal pins is reduced and L
, the chip area of SI increases.

(3)の方法は論理設計上の制約となり、(4)は基板
実装上の制約となっている。
Method (3) is a constraint on logical design, and method (4) is a constraint on board mounting.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、負荷駆動能力の大きい出力回路を有し
、同一タイミングで切換わる出力信号の本数が多いCM
 OS集積回路装置において、LSIチップ面積の増大
を招くことなく、また負荷容量および基板実装上の制限
をすることなく、出力信号切換え時の電源電流のピーク
値を小さくして。
An object of the present invention is to provide a CM that has an output circuit with a large load driving capacity and that has a large number of output signals that switch at the same timing.
To reduce the peak value of power supply current when switching output signals in an OS integrated circuit device without increasing the LSI chip area or limiting load capacity or board mounting.

装置の誤動作をひきおこすようなノイズをおさえるCM
O8集積回路装置を提供することにある。
A commercial that suppresses noise that can cause equipment malfunctions.
An object of the present invention is to provide an O8 integrated circuit device.

(発明の概要) 本発明は、上記目的を達成するために、a数本の出力信
号の切換えタイミングを、数本の信号線束ごとに一定時
間ずつ遅らせることによって、信号切換え時に生じる電
源ノイズのピーク値を減少せしめたものである。
(Summary of the Invention) In order to achieve the above object, the present invention delays the switching timing of a number of output signals by a certain period of time for each of several signal line bundles, thereby reducing the peak of power supply noise that occurs when switching signals. The value has been decreased.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。第1図に音声認識用C
N05LSI回路を示す。これは、音声の標準パターン
が蓄えられている標準パターンメモリのアドレスをある
シーケンスに従って計算する機能を有する。図で、IN
I〜IN4は入力ピン、OUTは出力ビンであり、DI
RおよびMARはクロックGKの立上りでデータDをラ
ッチするDタイプフリッププロップ、MUXはセレクト
人力SによってデータA、Bのいずれかを選択するマル
チプレクサ、INGはインフレメンタ、TINはタイミ
ング発生回路、INVはインバータ、CKDRVはクロ
ックドライブ用のN A、 N Dゲート、0UTDR
Vはインバータの論理機能を持つCMOS出力回路を示
す。
The present invention will be explained in detail below. Figure 1 shows C for speech recognition.
The N05LSI circuit is shown. This has the function of calculating the address of a standard pattern memory in which standard patterns of speech are stored according to a certain sequence. In the figure, IN
I~IN4 are input pins, OUT is an output bin, and DI
R and MAR are D-type flip-props that latch data D at the rising edge of clock GK, MUX is a multiplexer that selects either data A or B by the selector S, ING is an inflator, TIN is a timing generation circuit, and INV is a Inverter, CKDRV is NA, ND gate for clock drive, 0UTDR
V indicates a CMOS output circuit having the logic function of an inverter.

第1図の回路で、音声の標準パターンメモリのアドレス
計算はつどのように行なわれる。
In the circuit of FIG. 1, address calculations for the standard speech pattern memory are carried out each time.

(1)上位計算機からDATA線を通じて転送されてく
るメモリの初期アクセスアドレスnをICKによってD
IRに取り込む。
(1) The initial access address n of the memory transferred from the host computer through the DATA line is D by ICK.
Incorporate into IR.

(2)メモリのアクセス命令が上位計算機からCNTに
発せられると、回路はM A Rにまずnをラッチする
。このとき、TTMの出力Slは# 117レベルで、
M U XはデータBを選択し、INCは+1が禁止さ
れる。
(2) When a memory access command is issued from the host computer to the CNT, the circuit first latches n in MAR. At this time, the TTM output Sl is at #117 level,
MUX selects data B, and INC is prohibited from +1.

(3)つづいてSlはII Oljレベルとなり、40
0n 1llecごとに発せられるOCKによって、M
ARの出力はnからn +l + n + 2 +・・
・・・・と変化し、それが出力回′14!rOUTDR
Vを経てOUTピンに出力され、さらにメモリアドレス
端子に印加される。
(3) Next, Sl becomes II Olj level, 40
By OCK issued every 0n 1llec, M
The output of AR is from n to n + l + n + 2 +...
...and that is the output time '14! rOUTDR
It is output to the OUT pin via V, and is further applied to the memory address terminal.

(4)ある一連の標準パターンのアクセスが終了すると
、MARには再びnがラッチされ、以下(3)と同様に
nからn+1.n+2.・・・・・・の番地がアクセス
される。
(4) When the access for a certain series of standard patterns is completed, n is latched in the MAR again, and in the same manner as in (3) below, from n to n+1. n+2. The address of ... is accessed.

ところで、標準パターンメモリも、音声認識用上位計算
機のメモリ空間の一部として扱う場合、そのアドレスビ
ット数は第1図に示すように20ビツト(IMW)にな
る。したがって、標準パターンメモリのアドレス計算時
に、アドレス値りがINCによって7FFFF (16
進表示)から80000 (16進表示)に変化したと
きは、0UTDRVに入力されるデータはCKのタイミ
ングで20ビツトat I II→1/ OIIまたは
/l O77→II 147レベルに同時に切り換わる
。ここで20個の出力回路0UTDRVおよび電源には
ピーク値の大きな同時切換電流が瞬時に流れ、それが1
a源配線の抵抗やインダクタンスを通じて他の(L:i
 ”3にノイズを与え、装置の誤動作を招く。
By the way, if the standard pattern memory is also treated as part of the memory space of the host computer for speech recognition, the number of address bits will be 20 bits (IMW) as shown in FIG. Therefore, when calculating the standard pattern memory address, the address value is 7FFFF (16
When the level changes from 80000 (in hexadecimal) to 80000 (in hexadecimal), the data input to 0UTDRV simultaneously switches to the 20-bit at I II → 1/OII or /1 O77 → II 147 level at the CK timing. Here, simultaneous switching currents with large peak values flow instantaneously through the 20 output circuits 0UTDRV and the power supply, and
through the resistance and inductance of the a source wiring (L:i
``It causes noise to the device and causes malfunction of the device.

第2図に、第1図の破線内の回路を対象とした本発明の
実施例を示す。ここでは第1図に示した20本のデータ
線りを6ビツトのDl、7ビツ1−のD2.D3に分割
し、DIはCKのタイミングでMARlにラッチし、D
2はCKよりもインバータINV2段の遅延時間(約5
 n 5ec)だけ遅れたクロックGK2でMAR2に
ランチし、D3はCK2よりもINV2段の遅延時間C
3nsec)だけ遅れたクロックCK3でM A、 R
,3にラッチする。したがって出力回路は、(:にのタ
イミングで6個(OUTDIい口)、それより少し近れ
たCK2のタイミングで7個(OUTDRV2)、さら
に少し遅れてC,K 3のタイミングで7個(OUTD
RV3)が順次に切り換わって行く。
FIG. 2 shows an embodiment of the present invention targeted at the circuit within the broken line in FIG. Here, the 20 data lines shown in FIG. 1 are connected to 6-bit Dl, 7-bit 1-D2, . D3, DI is latched to MARl at CK timing, and D
2 is the delay time of the two stages of inverter INV (approximately 5
Launches to MAR2 with clock GK2 delayed by n 5ec), and D3 has delay time C of INV2 stage than CK2.
M A, R with clock CK3 delayed by 3 nsec)
,3. Therefore, there are 6 output circuits (OUTDI) at the timing of (:), 7 outputs (OUTDRV2) at the slightly closer timing of CK2 (OUTDRV2), and 7 output circuits (OUTDRV2) at the timing of C, K3 a little later.
RV3) are sequentially switched.

2μm程度のプロセスを用いた0MO8LSIでは、出
力回路切換時に電源電流に生じるピーク電流(ノイズ)
の半値幅は、負荷容量を30PFとしたとき3〜5ns
ecであるから、実施例によれば、20ビツトのデータ
の切換時に出方回路および電源に生じるピーク電流の大
きさは、第1図の場合に比べて7/20程度におさえる
ことができ、出力回路の同時切換に起因するノイズによ
る装置の誤動作を避けることができる。この様子を第3
図に示す、第3図のCK、CK2.CK3のタイミング
は第2図で説明したものであり、電源電圧Vccの波形
で、破線は20ビツトの出力回路がGKのタイミングで
同時に切り換わったときの第1図の回路におけるノイズ
波形、実線は本発明によりノイズのピーク値を低減した
第2図の場合の波形を示してる。
In 0MO8LSI using a process of about 2μm, the peak current (noise) that occurs in the power supply current when switching the output circuit
The half-value width of is 3 to 5 ns when the load capacity is 30PF.
ec, according to the embodiment, the magnitude of the peak current generated in the output circuit and power supply when switching 20 bits of data can be suppressed to about 7/20 of that in the case of FIG. Malfunction of the device due to noise caused by simultaneous switching of output circuits can be avoided. This situation can be seen in the third
CK, CK2. The timing of CK3 is as explained in Fig. 2, and the waveform of the power supply voltage Vcc is shown.The broken line is the noise waveform in the circuit shown in Fig. 1 when the 20-bit output circuit switches simultaneously at the timing of GK, and the solid line is the waveform of the power supply voltage Vcc. The waveform in the case of FIG. 2 in which the peak value of noise is reduced by the present invention is shown.

第2図ではDを6ビツト(DI)、7ビツト(D2)お
よび7ビツト(D3)と3分割したが、Dを5ビツトず
つ4分割すれば、同時にデータが変化したときのノイズ
の大きさは第1図と比べて5/20程度に減少できる。
In Figure 2, D is divided into three parts: 6 bits (DI), 7 bits (D2), and 7 bits (D3), but if D is divided into four parts of 5 bits each, the amount of noise when data changes simultaneously can be reduced. can be reduced to about 5/20 compared to FIG.

第4図に本発明の別な実施例を示す。ここではMARの
GKは共通として、MARの出力データ線に遅延回路を
挿入することによって、データが同時に切り換わったと
きの電源ノイズを低減するという、第2図の実施例と同
様の効果を得ている。
FIG. 4 shows another embodiment of the invention. Here, the GK of the MARs is common, and by inserting a delay circuit in the output data line of the MARs, the same effect as the embodiment shown in Fig. 2 is obtained, in which power supply noise is reduced when data is switched simultaneously. ing.

さらに本発明の別な実施例を示す。第5図はデータの出
力形態が3ステートの場合で、出力制御信号OEがII
 Oyルベルのとき16ビツトのDがLSIから入出力
ピンIOに出力される。OEが“1”レベルのときには
出力がハイインピーダンスとなり、IOピンから16ビ
ツトのDBUSのデータがLSIに入力される。第6図
は、第5図破線内の3ステ一ト回路OUTの詳細である
。これは、第5図のDおよびDBUS 1ビツトあたり
の図で、dはDのうちの1ビツト、dbusはDBUS
の1ビツト、INVはインバータ。
Furthermore, another embodiment of the present invention will be shown. Figure 5 shows the case where the data output form is 3 states, and the output control signal OE is II.
When Oy level, 16 bits D is output from the LSI to the input/output pin IO. When OE is at the "1" level, the output becomes high impedance, and 16-bit DBUS data is input to the LSI from the IO pin. FIG. 6 shows details of the three-state circuit OUT within the broken line in FIG. This is a diagram per 1 bit of D and DBUS in Figure 5, where d is 1 bit of D and dbus is DBUS
1 bit, INV is the inverter.

NANDはNANDゲト、NORはNORゲート、破線
で囲んだ0UTDRVは、PチャンネルMOSトランジ
スタ(P−MOS)およびNチャンネルMOSトランジ
スタ(N−MOS)がら構成されるCMOS出力回路で
ある。VDD 、 Vssは電源。
NAND is a NAND gate, NOR is a NOR gate, and 0UTDRV surrounded by a broken line is a CMOS output circuit composed of a P-channel MOS transistor (P-MOS) and an N-channel MOS transistor (N-MOS). VDD and Vss are power supplies.

CLは負荷容量および寄生容量を示す。この回路では、
出力制御信号OEがIt 17ルベルのときP−MOS
およびN−MOSすなわち出力回路0UTDRVはオフ
状態で、dbusはハイインピーダンスであり、OEが
II OItになるとdに応じてP−MOS、N−MO
Sのどちらか一方がオンしてdbusにdの値が出力さ
れるにのとき、出力回路0UTDRVにはCLを充放電
するための電流が流れる。
CL indicates load capacitance and parasitic capacitance. In this circuit,
P-MOS when output control signal OE is It17 level
and N-MOS, that is, the output circuit 0UTDRV is in the off state, dbus is high impedance, and when OE becomes II OIt, P-MOS, N-MO
When either one of S is turned on and the value of d is output to dbus, a current for charging and discharging CL flows through the output circuit 0UTDRV.

さて、第5図ではOEが′0″となった瞬時、16個の
0UTDRVがハイインピーダンスから同時にDのレベ
ルに切換わり、第1図で説明したのと同様にノイズが発
生した装置の誤動作を招く。
Now, in Figure 5, at the instant when OE becomes '0'', 16 0UTDRVs simultaneously switch from high impedance to D level, which causes a malfunction of the device that generates noise in the same way as explained in Figure 1. invite

第シ図に、第5図の破線内の回路を対象とした本発明の
実施例を示す。ここでは第5図の16本のデータDを6
ビツトのDI、5ビツトのD2゜D3に分割し、Dlは
OEのタイミングで出力回路0UTDRVに入力し、D
2はOEよりもインバータ2段の遅延時間(約5ns)
だけ遅れたO E’ 2 テOU T D RV ニ入
力し、D3はOE2よりもインバータ2段の遅延時間(
約5ns)だけ遅れたOE3で0UTDRVに入力する
。したがって、出力回路はOEのタイミングで6個(O
UTI)、そ才しよりも5ns遅れたOE2のタイミン
グで5個(OUT2)、さらに5ns遅れたOE3で5
個(OUT3)が順次スイッチングしてゆく。この結果
、第3図と同様にノイズのピーク値を低減することがで
きる。
FIG. 5 shows an embodiment of the present invention targeting the circuit within the broken line in FIG. Here, the 16 pieces of data D in Figure 5 are
Divided into DI of bit, D2 and D3 of 5 bits, Dl is input to output circuit 0UTDRV at the timing of OE,
2 is the delay time of the 2nd stage of inverter (approx. 5ns) compared to OE.
OE' 2 TE OUT D RV 2 is inputted with a delay of
OE3 is input to 0UTDRV with a delay of approximately 5 ns). Therefore, there are six output circuits (O
UTI), 5 at the timing of OE2 (OUT2), which was 5 ns later than that, and 5 at OE3, which was further delayed by 5 ns.
(OUT3) are sequentially switched. As a result, the peak value of noise can be reduced as in FIG. 3.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、負荷駆動能力の大きい出力回路を有す
る高速のCMOS集積回路装置で、同一タイミングで切
り換わる出力信号の本数が多い装置において。
According to the present invention, in a high-speed CMOS integrated circuit device having an output circuit with a large load driving capacity, and in which a large number of output signals are switched at the same timing.

(1)出力回路の負荷駆動能力をそこなわず、(2)L
SI内の電源配線強化のためのチップ面積の増加および
信号ピン数の減少をまねくことなく、 (3)基板の電源配線を強化するという実装上の制約も
なく、 出力回路同時切換時の電源ノイズによる装置の誤動作を
回避することができ、(2)、(3)に係り廉価で、(
1)に係り高性能で、耐雑音性の面で信頼性の高いCM
O5集積回路装置を提供することができる。
(1) Do not damage the load driving ability of the output circuit; (2) L
without increasing the chip area or reducing the number of signal pins to strengthen the power supply wiring within the SI, (3) without mounting constraints such as strengthening the power supply wiring on the board, and reducing power supply noise when switching output circuits simultaneously. It is possible to avoid malfunction of the device due to
1) A CM with high performance and high reliability in terms of noise resistance.
An O5 integrated circuit device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の実施例の回路構成を示
す図、第3図は第2図のタイムチャート、第4図は本発
明の他の実施例の回S構成を示す図、第5図、第6図お
よび第7図は本発明の別な実施例の回路を示す図である
。 MAR,MARI〜MAR3・・・Dタイプフリップフ
ロップで構成されるメモリアドレスレジスタ。 0UTDRV、0UTDRVI〜0UTDRV3・・・
c’yos出力回路、INV・・・インバータ、OUT
、0UTI 〜OUT3−CMO8出力回路第 1 目 lN4 第 3 日 第1頁の続き [相]発 明 者 石 川 克 文 日立重大み、ルシ
ステム [相]発 明 者 大 沼 邦 彦 日立重大み;か工
場内 5=町5丁目2番1号 株式会社日立コントロース゛内
1 and 2 are diagrams showing the circuit configuration of an embodiment of the present invention, FIG. 3 is a time chart of FIG. 2, and FIG. 4 is a diagram showing the circuit configuration of another embodiment of the present invention. , FIG. 5, FIG. 6, and FIG. 7 are diagrams showing circuits of other embodiments of the present invention. MAR, MARI to MAR3...Memory address registers composed of D-type flip-flops. 0UTDRV, 0UTDRVI~0UTDRV3...
c'yos output circuit, INV...inverter, OUT
, 0UTI ~ OUT3-CMO8 output circuit 1st page lN4 3rd day, page 1 continuation [Phase] Inventor Katsu Ishikawa Written by Seiji Hitachi, System [Phase] Inventor Kunihiko Ohnuma Seiji Hitachi; Inside the factory 5 = 5-2-1 Town Hitachi Controls Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ■、複数のビットのデータを装置の外部に出力する複数
個の出力回路を備え、該出力回路への複数ビットの入力
データが同一タイミングで変化するCMO8集積回路装
置において、該出力回路へのデータの入力タイミングを
数ビットのデータごとに遅延させる手段を設けたことを
特徴とするCMO8集積回路装置。
(2) In a CMO8 integrated circuit device that is equipped with a plurality of output circuits that output multiple bits of data to the outside of the device, and in which multiple bits of input data to the output circuit change at the same timing, the data to the output circuit is A CMO8 integrated circuit device, characterized in that it is provided with means for delaying the input timing of every several bits of data.
JP59045471A 1984-03-12 1984-03-12 Cmos integrated circuit device Pending JPS60190020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045471A JPS60190020A (en) 1984-03-12 1984-03-12 Cmos integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045471A JPS60190020A (en) 1984-03-12 1984-03-12 Cmos integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60190020A true JPS60190020A (en) 1985-09-27

Family

ID=12720300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045471A Pending JPS60190020A (en) 1984-03-12 1984-03-12 Cmos integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60190020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073730A (en) * 1990-04-23 1991-12-17 International Business Machines Corporation Current transient reduction for vlsi chips
US5229657A (en) * 1991-05-01 1993-07-20 Vlsi Technology, Inc. Method and apparatus for controlling simultaneous switching output noise in boundary scan paths
WO2003071681A1 (en) * 2002-02-21 2003-08-28 Koninklijke Philips Electronics N.V. Integrated circuit having reduced substrate bounce

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539439A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Information gate system
JPS57168319A (en) * 1981-04-09 1982-10-16 Fujitsu Ltd Parallel output buffer circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539439A (en) * 1976-07-14 1978-01-27 Hitachi Ltd Information gate system
JPS57168319A (en) * 1981-04-09 1982-10-16 Fujitsu Ltd Parallel output buffer circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073730A (en) * 1990-04-23 1991-12-17 International Business Machines Corporation Current transient reduction for vlsi chips
US5229657A (en) * 1991-05-01 1993-07-20 Vlsi Technology, Inc. Method and apparatus for controlling simultaneous switching output noise in boundary scan paths
WO2003071681A1 (en) * 2002-02-21 2003-08-28 Koninklijke Philips Electronics N.V. Integrated circuit having reduced substrate bounce

Similar Documents

Publication Publication Date Title
Lin et al. A novel high-speed and energy efficient 10-transistor full adder design
US6272069B2 (en) LSI device with memory and logics mounted thereon
US6066965A (en) Method and apparatus for a N-nary logic circuit using 1 of 4 signals
Zhao et al. Low power and high speed explicit-pulsed flip-flops
US6069497A (en) Method and apparatus for a N-nary logic circuit using 1 of N signals
Li et al. An AND-type match-line scheme for high-performance energy-efficient content addressable memories
US6617902B2 (en) Semiconductor memory and holding device
KR20200019833A (en) Flip flop standard cell
US7557616B2 (en) Limited switch dynamic logic cell based register
US20220238144A1 (en) Systems and Methods for Controlling Power Management Operations in a Memory Device
WO2008072649A1 (en) Logic circuit, address decoder circuit, and semiconductor storage device
US6870776B2 (en) Data output circuit in combined SDR/DDR semiconductor memory device
JPS60190020A (en) Cmos integrated circuit device
US6938223B2 (en) Logic circuit having a functionally redundant transistor network
US7061782B2 (en) Content addressable memory (CAM) for data lookups in a data processing system
US7697314B2 (en) Data line layout and line driving method in semiconductor memory device
US6911846B1 (en) Method and apparatus for a 1 of N signal
US6285606B1 (en) Semiconductor memory device
US20090108875A1 (en) Structure for a Limited Switch Dynamic Logic Cell Based Register
JP4558172B2 (en) Power consumption reduction circuit
US6975546B2 (en) Signal line driver circuit which reduces power consumption and enables high-speed data transfer
CN111865291B (en) Latch capable of resisting double-node overturning
US11239832B1 (en) Low-skew complementary signal generator
US6990509B2 (en) Ultra low power adder with sum synchronization
US6701423B2 (en) High speed address sequencer