JPS60189379A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS60189379A
JPS60189379A JP59044355A JP4435584A JPS60189379A JP S60189379 A JPS60189379 A JP S60189379A JP 59044355 A JP59044355 A JP 59044355A JP 4435584 A JP4435584 A JP 4435584A JP S60189379 A JPS60189379 A JP S60189379A
Authority
JP
Japan
Prior art keywords
electrode
type
photoelectric conversion
signal
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59044355A
Other languages
Japanese (ja)
Inventor
Masato Yoneda
正人 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59044355A priority Critical patent/JPS60189379A/en
Publication of JPS60189379A publication Critical patent/JPS60189379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To drive a titled device by a low voltage, and to make it execute a photoelectric conversion of a high resolution by constituting it so that a signal sampling electrode or an area is divied into picture elements and coupled with a photoelectric converting layer by a local semiconductor junction. CONSTITUTION:A two phase driving CCD signal charge line 2 is provided on a p type semiconductor substrate 1, and a signal charge sampling area 3 and a signal read gate area 4 are formed. On the areas 3, 4, a CCD transfer electrode 6 and a combined wiring poly-crystalline silicon 7 are provided, and also a condensing electrode 8 is provided. As for a local semiconductor junction of a photoelectric converting part, an n type amorphous silicon 9 whose specific resistance is <=104OMEGAcm is formed on the whole surface, and thereafter, a little larger pattern than the electrode 8 is formed and brought to an etching processing. Subsequently, i type and p type amorphous silicon layers 10, 11 whose specific resistance is about 10<8>OMEGAcm are accumulated, and a transparent electrode 12 is provided. A signal charge 13 generated by a light l is divided easily into picture elements by an electric field pressure by the electrode 12 and an electric field by a junction built-in voltage of the layers 9, 10, and a photoelectric conversion of a high resolution can be executed by a low voltage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は信号サンプリング領域と信号走査回路部を有す
る半導体基板あるいは絶縁性基板上に光電変換層を積層
結合した固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device in which a photoelectric conversion layer is laminated and bonded on a semiconductor substrate or an insulating substrate having a signal sampling area and a signal scanning circuit section.

従来例の構成とその問題点 近年光電変換層を信号走査領域の上に積層した光電変換
装置は、集積度、光信号の開口率あるいは集光波長の最
適化等の点で特に光電膜積層型固体撮像装置として脚光
を浴びてきている。
Conventional configurations and their problems In recent years, photoelectric conversion devices in which a photoelectric conversion layer is laminated on a signal scanning region have been developed using a photoelectric film lamination type in particular in terms of integration degree, aperture ratio of optical signals, or optimization of condensed wavelength. It has been attracting attention as a solid-state imaging device.

以下管に光電変換装置の一例として光電膜積層型固体撮
像装置について説明する。
A photoelectric film stacked solid-state imaging device will be described below as an example of a photoelectric conversion device.

第1図は従来の2相駆動CCD走査光電膜積層型固体撮
像装置の2絵素の断面構造図を示すものであり、1はP
型半導体基板である。2は2相駆動COD信号電荷走査
ライン、3は信号サンプリング領域、4は信号読み込み
ゲート領域、5はチャンネルストッパー、eは2相駆動
CCD転送電極、7は結合配線多結晶シリコン、8は集
光用の3 任゛ 金属電極、9は光電変換層であり10は透明電極である
FIG. 1 shows a cross-sectional structural diagram of two pixels of a conventional two-phase drive CCD scanning photoelectric film stacked solid-state imaging device.
type semiconductor substrate. 2 is a two-phase drive COD signal charge scanning line, 3 is a signal sampling area, 4 is a signal reading gate area, 5 is a channel stopper, e is a two-phase drive CCD transfer electrode, 7 is a coupling wiring polycrystalline silicon, 8 is a light condenser 3 is an arbitrary metal electrode, 9 is a photoelectric conversion layer, and 10 is a transparent electrode.

以上のように構成された従来の2相駆動CCD走査光電
膜積層型固体撮像装置について以下その動作について説
明する。
The operation of the conventional two-phase drive CCD scanning photoelectric film stacked solid-state imaging device constructed as described above will be described below.

光の入射により光電変換層9で発生する信号電荷Qsi
gは透明電極1oと金属電極80間の初期設定電界によ
るドリフトフィールドにより金属電極8に集められ、更
に結合配線多結晶シリコン7をへて信号ザンプリング領
域3に蓄積され、2相駆動COD信号電荷走査ライン2
により転送出力される。
Signal charge Qsi generated in the photoelectric conversion layer 9 due to the incidence of light
g is collected on the metal electrode 8 by the drift field caused by the initial setting electric field between the transparent electrode 1o and the metal electrode 80, and further passes through the coupling wiring polycrystalline silicon 7 and is accumulated in the signal sampling region 3, and is used for two-phase drive COD signal charge scanning. line 2
It is transferred and output by.

しかしながら上記の構成に於て、光電変換層9は複数個
の金属電極8の上の全面にZn5eの高抵抗n型層を堆
積し次でP型ZnCdTeの感光層を形成し、この2層
へテロ接合により光電変換をおこなっており、複数個の
二次元配置をもつ金属電極8の互々に対応する光信号の
横方向分離のためにn型Zn5e層は10’Jcm程度
の高い抵抗層である必要がある。また感光層内での光信
号の横方向拡散を防ぐためにP型ZnCdTe層も10
 Qc1n以上の高抵抗であるため、結果として光信号
を全て有効に金属電極8に収集するためには高いドリフ
ト電界が必要となり、光電変換層9の駆動電圧が高くな
る。このため半導体基板上の信号電荷サンプリング領域
3の電位を高く設定することが不可欠となり、半導体信
号走査部のリーク電流の増大によるS/N比の低下およ
び近年のIC低消費電力化の傾向とも相入れない大きな
問題を有する。
However, in the above structure, the photoelectric conversion layer 9 is formed by depositing a high-resistance n-type layer of Zn5e on the entire surface of the plurality of metal electrodes 8, then forming a photosensitive layer of P-type ZnCdTe, and then depositing the photosensitive layer on these two layers. Photoelectric conversion is performed by a terojunction, and the n-type Zn5e layer is a high resistance layer of about 10'Jcm in order to horizontally separate the optical signals corresponding to the plurality of metal electrodes 8 having a two-dimensional arrangement. There needs to be. In addition, a P-type ZnCdTe layer of 10
Since the resistance is as high as Qc1n or more, a high drift electric field is required in order to effectively collect all optical signals on the metal electrode 8, and the driving voltage of the photoelectric conversion layer 9 becomes high. For this reason, it is essential to set the potential of the signal charge sampling region 3 on the semiconductor substrate high, which is compatible with the decrease in the S/N ratio due to the increase in leakage current in the semiconductor signal scanning section and the recent trend toward lower IC power consumption. I have a big problem that I can't get into.

発明の目的 本発明は上記従来の問題点を解消するもので、信号電荷
サンプリング領域と信号電荷走査手段を半導体活性領域
に形成した半導体基板あるいは絶縁性基板上に光電変換
層を積層した高感度高集積低電圧駆動の固体撮像装置を
提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems of the conventional technology. An object of the present invention is to provide an integrated low-voltage driven solid-state imaging device.

発明の構成 本発明は信号サンプリング領域と信号走査部を有する半
導体基板あるいは絶縁性基板と、これに積層されたる光
電変換部を備えた光電変換装置であり、前期信号サンプ
リング領域またそれ自身と近傍の光電変換部が他の光電
変換部領域の半導体伝導型と異なる構造をもち、局部的
な半導体接合により低電圧で高解像度の効果をうろこと
ができるものである。
Structure of the Invention The present invention is a photoelectric conversion device comprising a semiconductor substrate or an insulating substrate having a signal sampling region and a signal scanning section, and a photoelectric conversion section laminated thereon. The photoelectric conversion section has a structure different from the semiconductor conduction type of other photoelectric conversion section regions, and the local semiconductor junction allows high resolution effects to be achieved at low voltage.

実施例の説明 第2図は本発明の第1の実施例における光電変換装置の
単位絵素の断面図を示すものである。第2図において、
1はP型半導体基板、2は2相駆動CCD信号電荷走査
ライン、3は信号電荷サンプリング領域、4は信号読み
込みゲート領域、6はチャンネルストッパー、6は2相
駆動CCD転送電極、7は結合配線多結晶シリコン、8
は集光用の金属電極、9はn型非晶質シリコン部、10
はi型非晶質シリコン層、11はP型非晶質シリコン層
、12は透明電極であり、光電変換部は一例として非晶
質シリコンを上げる。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a cross-sectional view of a unit pixel of a photoelectric conversion device according to a first embodiment of the present invention. In Figure 2,
1 is a P-type semiconductor substrate, 2 is a two-phase driving CCD signal charge scanning line, 3 is a signal charge sampling area, 4 is a signal reading gate area, 6 is a channel stopper, 6 is a two-phase driving CCD transfer electrode, 7 is a coupling wiring Polycrystalline silicon, 8
9 is a metal electrode for focusing light, 9 is an n-type amorphous silicon portion, 10 is
11 is an i-type amorphous silicon layer, 11 is a p-type amorphous silicon layer, and 12 is a transparent electrode, and the photoelectric conversion section is made of amorphous silicon as an example.

光電変換部の局部的な半導体接合の形成のためには比抵
抗10’z 以下のn型非晶質シリコン9を全面に形成
した後に金属電極8より少し大きい6、、、y パターンを出しエツチング処理を行い局部的なn型非晶
質シリコン部を形成する。次いで比抵抗1o8Ωα程度
のi型およびP型非晶質シリコン層10.11を連続堆
積する。この時n型とi型の界面に存在する自然酸化膜
等は非晶質シリコン堆積装置と結合をもってなる高周波
スパッタ装置等でエツチング処理を行い、スパッタダメ
ージ等は水素プラズマアニール等により回復させること
が可能である。
In order to form a local semiconductor junction in the photoelectric conversion section, n-type amorphous silicon 9 with a specific resistance of 10'z or less is formed on the entire surface, and then a 6,...y pattern slightly larger than the metal electrode 8 is formed and etched. A treatment is performed to form local n-type amorphous silicon portions. Next, i-type and P-type amorphous silicon layers 10 and 11 having a specific resistance of about 108 Ωα are successively deposited. At this time, the natural oxide film existing at the interface between the n-type and i-type is etched using a high-frequency sputtering device coupled with an amorphous silicon deposition device, and sputter damage can be recovered by hydrogen plasma annealing. It is possible.

以上のように構成された本実施例の光電変換装置につい
て以下その動作を説明する。
The operation of the photoelectric conversion device of this embodiment configured as described above will be described below.

第3図は光信号の動きを概念的に示すもので、a図は素
子の断面図、b図はその半導体ノくンドモデルを表し、
1は半導体基板、8は集光用の金属電極を示し、第2図
の半導体上の走査回路は省略しである。次に9はn型非
晶質シリコン部、10はi型非晶質シリコン層、11は
P型非晶質シリコン層、12は透明電極であり、13は
入射光℃によって発生した信号電荷である。光fにより
発生する信号電荷13は透明電極12に印加される7・
に 、〜 電位によるドリフト電界E1 と、局部的An型非晶質
シリコン部9とi型非晶質シリコン層1oの接合による
ビルトイン電圧による電界E2により各々の金属電極8
への力を受ける。即ち、第3図すのように局部的な接合
による部分的な電位ポケットが存在することになり、金
属電極8間の電気的分離が可能となり光信号の横方向へ
の拡散が折制された従来例のように横方向分離のだめの
比抵抗1oQcrn程度の高抵抗層が不必要となる。
Figure 3 conceptually shows the movement of an optical signal, where figure a is a cross-sectional view of the element, figure b is its semiconductor model,
Reference numeral 1 indicates a semiconductor substrate, 8 indicates a metal electrode for focusing light, and the scanning circuit on the semiconductor shown in FIG. 2 is omitted. Next, 9 is an n-type amorphous silicon part, 10 is an i-type amorphous silicon layer, 11 is a P-type amorphous silicon layer, 12 is a transparent electrode, and 13 is a signal charge generated by the incident light °C. be. The signal charge 13 generated by the light f is applied to the transparent electrode 12.
To, each metal electrode 8 is caused by a drift electric field E1 due to the electric potential and an electric field E2 due to a built-in voltage due to the junction between the local An-type amorphous silicon portion 9 and the i-type amorphous silicon layer 1o.
Receive the power to. In other words, as shown in Figure 3, a partial potential pocket exists due to local junctions, making it possible to electrically separate the metal electrodes 8 and suppress the lateral diffusion of the optical signal. Unlike the conventional example, a high resistance layer with a specific resistance of about 1oQcrn for lateral separation is unnecessary.

以上のように本実施例によれば、局部的な比抵抗109
m以下のn型非晶質シリコン部をn型非晶質シリコンの
パターニングにより設けることにより、局部的半導体接
合が形成され光信号の横方向分離のための高抵抗層を設
けることなく接合ビルトイン電圧による横方向の絵素分
離を容易におこなえ、光電変換層を解像度をおとすこと
なく低電圧で駆動することが可能となり、走査回路を有
する半導体基板あるいは絶縁基板の低電圧化によりS/
N比の改善ならびに低消費電力化もおこなうことができ
る。
As described above, according to this embodiment, the local resistivity 109
By patterning n-type amorphous silicon to form an n-type amorphous silicon region of less than m, a local semiconductor junction is formed and the junction built-in voltage can be reduced without providing a high-resistance layer for lateral separation of optical signals. It is now possible to easily separate picture elements in the lateral direction, and the photoelectric conversion layer can be driven at low voltage without reducing resolution.
It is also possible to improve the N ratio and reduce power consumption.

なお実施例においてn型非晶質シリコン部9はn型非晶
質シリコンを全面に堆積した後にパターニングにより局
部的に形成しているが、n型非晶質シリコン部9はn型
多結晶シリコンをパターニングして形成するか、あるい
は更に水素化処理をほどこしたn型多結晶シリコンで形
成してもよい。
In the embodiment, the n-type amorphous silicon portion 9 is formed locally by patterning after depositing n-type amorphous silicon on the entire surface, but the n-type amorphous silicon portion 9 is formed using n-type polycrystalline silicon. It may be formed by patterning or may be formed from n-type polycrystalline silicon which has been further hydrogenated.

また、n型非晶質シリコン部9は集光用の金属電極8に
燐などのn型不純物をドープした後にi型非晶質シリコ
ンを堆積して、金属電極8からの拡散により局部的なn
型非晶質シリコン部を形成しても良い。
In addition, the n-type amorphous silicon portion 9 is formed by doping the metal electrode 8 for condensing light with an n-type impurity such as phosphorus, and then depositing i-type amorphous silicon to form a localized area by diffusion from the metal electrode 8. n
A mold amorphous silicon portion may also be formed.

また実施例における結合配線多結晶シリコン7あるいは
集光用金属電極8は必ずしも必要ではなく、光電変換部
と信号電荷サンプリング領域3が結合をしていれば良い
。また実施例としてCCD2相駆動信号走査方式のもの
を例としたが、特にこの走査方式に限らずMOS型の信
号走査方式等の他のものでも良いことは言うまでもない
Further, the coupling wiring polycrystalline silicon 7 or the condensing metal electrode 8 in the embodiment is not necessarily necessary, and it is sufficient if the photoelectric conversion section and the signal charge sampling region 3 are coupled. Furthermore, although the CCD two-phase drive signal scanning method was used as an example, it goes without saying that the scanning method is not limited to this, and other methods such as a MOS type signal scanning method may be used.

発明の効果 本発明の光電変換装置は信号電荷サンプリング9・i 
、+ 電極あるいは領域に接する光電変換層の部分のみがサン
プリング電極あるいは領域と同一の導電型をもち且つ絵
素ごとに分離されており、他の光電変換層の領域は前記
導電型以外の導電性を示す局部的な半導体接合をもって
なる光電変換層を信号走査回路上に積層することにより
、光信号の横方向分離のために高抵抗層を設けることな
く低電圧でしかも解像度の低下をきたすことなく集光率
の良い高感度低電圧駆動のS/Nの良い光電変換装置を
実現することができその実用的効果は太きい0
Effects of the Invention The photoelectric conversion device of the present invention performs signal charge sampling 9.i
, + Only the portion of the photoelectric conversion layer in contact with the electrode or region has the same conductivity type as the sampling electrode or region and is separated for each picture element, and the other regions of the photoelectric conversion layer have conductivity of a conductivity type other than the above-mentioned conductivity type. By stacking a photoelectric conversion layer with localized semiconductor junctions on top of the signal scanning circuit, it is possible to perform lateral separation of optical signals at low voltage without providing a high-resistance layer and without deteriorating resolution. It is possible to realize a photoelectric conversion device with good light collection efficiency, high sensitivity, low voltage drive, and good S/N, and its practical effects are 0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像装置の2絵素の断面図、第2図
は本発明の一実施例における固体撮像装置の単位絵素の
断面図、第3図は光信号の動きの概念図であり、同図a
は素子断面図、同図すはその半導体バンドモデル図であ
る。 1・・・・・・半導体基板、9・・・・・・n型非晶質
シリコン部、1o・・・・・・l型非晶質シリコン層、
11・・・・・・P型非晶質シリコン層、12・・・・
・・透明電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
Fig. 1 is a cross-sectional view of two picture elements of a conventional solid-state imaging device, Fig. 2 is a cross-sectional view of a unit pixel of a solid-state imaging device according to an embodiment of the present invention, and Fig. 3 is a conceptual diagram of the movement of an optical signal. , and the figure a
is a cross-sectional view of the device, and the same figure is a semiconductor band model diagram thereof. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 9... N-type amorphous silicon part, 1o... L-type amorphous silicon layer,
11... P-type amorphous silicon layer, 12...
...Transparent electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板あるいは絶縁性基板上に複数個の信号
サンプリング電極あるいは領域と半導体活性領域に形成
した信号走査回路部を具備し、かつ前記信号サンプリン
グ電極あるいは領域と結合をもってなる光電変換層が局
部的な半導体接合により、おのおのの前記信号サンプリ
ング電極あるいは領域が絵素分離されてなる固体撮像装
置。
(1) A semiconductor substrate or an insulating substrate is provided with a plurality of signal sampling electrodes or regions and a signal scanning circuit portion formed in a semiconductor active region, and a photoelectric conversion layer formed by coupling with the signal sampling electrodes or regions is locally formed. A solid-state imaging device in which each of the signal sampling electrodes or regions is separated into picture elements by a semiconductor junction.
(2)局部的な半導体接合は、信号電荷サンプリング電
極あるいは領域に接する前記光電変換層の部分のみが前
記信号サンプリング電極あるいは領域毎に分離されてお
り、かつ前記信号サンプリング電極あるいは領域と同一
の導電型(n型又はpaの導電性を示し比抵抗は104
Ω(7)以下でがっ他の光電変換層領域は前記導電型以
外の導電性を示すことを特徴とする特許請求の範囲第(
1)項記載の固体撮像装置。
(2) In a local semiconductor junction, only the portion of the photoelectric conversion layer that is in contact with a signal charge sampling electrode or region is separated for each signal sampling electrode or region, and has the same conductivity as the signal sampling electrode or region. type (n-type or pa conductivity and specific resistance is 104
The other photoelectric conversion layer region exhibits conductivity of a conductivity type other than the above-mentioned conductivity type.
1) The solid-state imaging device described in section 1).
JP59044355A 1984-03-08 1984-03-08 Solid-state image pickup device Pending JPS60189379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044355A JPS60189379A (en) 1984-03-08 1984-03-08 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044355A JPS60189379A (en) 1984-03-08 1984-03-08 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS60189379A true JPS60189379A (en) 1985-09-26

Family

ID=12689203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044355A Pending JPS60189379A (en) 1984-03-08 1984-03-08 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS60189379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250935A (en) * 1999-12-28 2001-09-14 Xerox Corp Amorphous silicon layer sensor and method of forming sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724171A (en) * 1980-07-18 1982-02-08 Matsushita Electric Ind Co Ltd Solid state image sensor
JPS57106083A (en) * 1980-12-23 1982-07-01 Toshiba Corp Amorphous silicon diode array
JPS57187976A (en) * 1981-05-13 1982-11-18 Matsushita Electric Ind Co Ltd Semiconductor photoelectric converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724171A (en) * 1980-07-18 1982-02-08 Matsushita Electric Ind Co Ltd Solid state image sensor
JPS57106083A (en) * 1980-12-23 1982-07-01 Toshiba Corp Amorphous silicon diode array
JPS57187976A (en) * 1981-05-13 1982-11-18 Matsushita Electric Ind Co Ltd Semiconductor photoelectric converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250935A (en) * 1999-12-28 2001-09-14 Xerox Corp Amorphous silicon layer sensor and method of forming sensor
JP2012199563A (en) * 1999-12-28 2012-10-18 Dpix Llc Amorphous silicon layer sensor and method of forming sensor

Similar Documents

Publication Publication Date Title
US5235198A (en) Non-interlaced interline transfer CCD image sensing device with simplified electrode structure for each pixel
JP4384416B2 (en) Image sensor with performance enhancement structure
US20100230729A1 (en) Pixel sensor cell including light shield
WO2008093834A9 (en) Solid-state imaging device and method for manufacturing the same
JP4304927B2 (en) Solid-state imaging device and manufacturing method thereof
JPH03505028A (en) Interline transfer type CCD image sensor with electrode structure for each pixel
JPH02275670A (en) Photoelectric converter and image reader
US5101255A (en) Amorphous photoelectric conversion device with avalanche
JP2000156522A (en) Photoelectric converter
JP4545387B2 (en) Photodetector array with isolated pixels and storage grid hybridized on readout circuit
TWI278231B (en) Solid-state imaging device, method of producing the same, and camera
JPS60189379A (en) Solid-state image pickup device
JPS6057780A (en) Solid-state image pickup device and its manufacture
JPS59178769A (en) Solid-state image pickup device
JPH02128468A (en) Solid-state image sensing device and manufacture thereof
JP3150050B2 (en) Charge coupled device and method of manufacturing the same
TWI246189B (en) Active pixel sensor
JP3047965B2 (en) Solid-state imaging device
JPS6213066A (en) Photoelectric converter
JP2000208750A (en) Photoelectric converter and its manufacture
JP3603438B2 (en) Amplification type solid-state imaging device and manufacturing method thereof
JPH07335936A (en) Optoelectric transducer
JPH08204164A (en) Multilayered solid-state image sensing device and its manufacture
JPH0682821B2 (en) Solid-state imaging device
KR840001604B1 (en) Method for fabrication a solid - state imaging device