JPS6018769A - Measurement of deterioration in insulation of power cable - Google Patents

Measurement of deterioration in insulation of power cable

Info

Publication number
JPS6018769A
JPS6018769A JP12597383A JP12597383A JPS6018769A JP S6018769 A JPS6018769 A JP S6018769A JP 12597383 A JP12597383 A JP 12597383A JP 12597383 A JP12597383 A JP 12597383A JP S6018769 A JPS6018769 A JP S6018769A
Authority
JP
Japan
Prior art keywords
cable
current
insulator
measured
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12597383A
Other languages
Japanese (ja)
Other versions
JPH0423224B2 (en
Inventor
Yasumitsu Ebinuma
康光 海老沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP12597383A priority Critical patent/JPS6018769A/en
Publication of JPS6018769A publication Critical patent/JPS6018769A/en
Publication of JPH0423224B2 publication Critical patent/JPH0423224B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To enable accurate measurement of insulation by applying a DC voltage rising in proportion to time to a cable to be measured to measure a charged current determined by the variation in the current flowing and the capacitance of the cable. CONSTITUTION:A DC power source 2 and a current measuring circuit 3 are connected in series to an insulator 1 of a cable to be measured. The current measuring circuit 3 is connected to a microcomputer 4 to have a measuring current value inputted thereinto. The computer 4 performs a computation while controlling output voltage of the DC power source 2. With the controlling action of the computer 4, a DC voltage rising in proportion to time is applied to an insulator 1 of the cable to be measured to measure a charged current IC determined by variation I in the current flowing of the cable through the insulator 1 and the electrostatic capacitance while changes in the ratio of these measured values is checked as a value corresponding to tandelta. Thus, very accurate measurement of insulation can be done.

Description

【発明の詳細な説明】 (発明の技術分野) 不発明は、電カケーブルの絶縁状態を判断する几めに用
いられる電カケーブルの絶縁劣化測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for measuring insulation deterioration of an electric power cable, which is used to judge the insulation state of the electric power cable.

(発明の技術的背景) この椙の測定方法としては、誘電緩和現象全利用する誘
電正接測定法が知られている。
(Technical Background of the Invention) As a method for measuring this temperature, a dielectric loss tangent measurement method that makes full use of the dielectric relaxation phenomenon is known.

この測定法は、被測定ケーブルに商用周波交流電圧を印
加し、標準コンデンサを組み込んだシエーリング会ブリ
ッジのφ衡をとるこによりtan gをめ、このjan
 8からケーブルの絶縁状態を利足する方法である。
This measurement method applies a commercial frequency AC voltage to the cable under test, and calculates tan g by balancing the φ of a Schering bridge incorporating a standard capacitor.
This is a method that takes advantage of the insulation condition of the cable from 8.

(背景技術の問題点) しかし、この測定法では、破測冗ケーブルが長尺化し、
ケーブルに大きな光′WL電流を流す8賛が生じると、
商用周波交流電圧を利用するため、容量の大きな変圧器
等の電源装置、即ち大形で重量の大きな電源装置を用意
しなければならない。また、このように商用周波数電圧
を利用すると、被測定ケーブルと並行する他の同一周波
利用ケーブルからのm磁誘導や近接する架空線からの静
電誘導により測定回路に誘導電圧が誘起されてしまい、
従って、測定誤差が生じてしまう。
(Problems with the background technology) However, with this measurement method, the cable becomes long and redundant.
When a large optical 'WL current flows through the cable,
Since commercial frequency AC voltage is used, a power supply device such as a large capacity transformer, that is, a large and heavy power supply device must be prepared. Additionally, when commercial frequency voltage is used in this way, induced voltage is induced in the measurement circuit due to magnetic induction from other cables using the same frequency running parallel to the cable under test and electrostatic induction from nearby overhead lines. ,
Therefore, measurement errors occur.

(発明の目的) 不発明の目的は、小形の電源装置を用いて、しかも他の
活線からの影41を受けずに正確に絶縁測定全行うこと
ができる盲、カケ−プルの絶縁劣化測定方法を提供する
ことにある。
(Object of the Invention) The object of the invention is to measure the insulation deterioration of blind and cable cables, which can accurately measure the insulation using a small power supply device and without being affected by the shadow 41 from other live wires. The purpose is to provide a method.

(発明の概要) 不発明は、商用周波交流電圧ではなく、直流電源により
時間的に比例して上昇する直流電圧を被測定ケーブルの
絶縁体に印77I] L 、この絶縁体に徐々に増加し
て流れる電流の変化量とケーブルの静電容量で決まる充
電電流とを測定し、これらの測定値から従来のtan 
gに対応する童をめることを特徴とする。 − (発明の実施例) 以下、本発明の実施例を図面を参照して説明する。
(Summary of the Invention) The invention is based on marking the insulator of the cable to be measured with a DC voltage that increases in proportion to time, not a commercial frequency AC voltage, but a DC voltage that gradually increases on this insulator. The amount of change in the current flowing through the cable and the charging current determined by the capacitance of the cable are measured, and from these measurements, the conventional tan
It is characterized by having a child corresponding to g. - (Embodiments of the invention) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図には不発明に係る測定方法に用いる装置の一例が
示され、測定すべき電カケーブルの絶縁体1はCR’(
r並列接続して成る等価回路で表わされている。
FIG. 1 shows an example of an apparatus used in the measuring method according to the invention, in which the insulator 1 of the electric power cable to be measured is CR'(
It is represented by an equivalent circuit formed by connecting r in parallel.

即ち、Rは?!縁体1の絶縁低抗を、又Cはケーブル自
体の靜宵容−1t’にそれぞれ示している。この絶縁体
1には直流電源2と電流測定回路3とが直列に接続され
ている。電流測定回路3はマイクロコンピュータ4と接
続され、その測定電流値が入力されるようになっている
That is, what about R? ! C indicates the insulation resistance of the rim 1, and C indicates the resistance of the cable itself. A DC power source 2 and a current measuring circuit 3 are connected in series to this insulator 1. The current measuring circuit 3 is connected to the microcomputer 4, and the measured current value is inputted thereto.

マイクロコンピュータ4は後に述べる演算ヲ行い、かつ
制御回路として直流電源2の出力電圧を制御する。
The microcomputer 4 performs calculations to be described later, and also controls the output voltage of the DC power supply 2 as a control circuit.

本発明に係る測定方法は、マイクロコンピュータ4の制
御NIr作により直流電源2から時間に比例して上昇す
るfc流電圧を出力させ、この直流電圧′(i″F3縁
体1に印加する。この直流電圧は、時間tの関数として
、■=αtで表わすことができる。
In the measurement method according to the present invention, an fc current voltage that increases in proportion to time is outputted from the DC power supply 2 by the control NIr operation of the microcomputer 4, and this DC voltage'(i'' is applied to the F3 edge 1. The DC voltage can be expressed as a function of time t by ■=αt.

但し、αは定数である。However, α is a constant.

このように絶縁体1に両流電圧V=αtを印加すると、
絶縁体1には、第2図に示すように、Rで決まるiVi
流IRと、Cで決まる充電電流ICとの合成電流■が流
れる。電流IRと充電電流ICは、次式で示す値になる
When a dual current voltage V=αt is applied to the insulator 1 in this way,
As shown in FIG. 2, the insulator 1 has iVi determined by R.
A composite current ■ of the current IR and the charging current IC determined by C flows. The current IR and the charging current IC have values shown by the following equations.

■R−−N−−−一α RRt・・・・・・・・・・・・・・・・・・・・・・
・・11C−」−(α1−C)α0曲・・四−叩…・ 
2t 従って合成電流■は、これらが加算さ几たものとなり、
次式で示す値になる。
■R--N---1α RRt・・・・・・・・・・・・・・・・・・・
・・11C-”-(α1-C)α0 song・・4-hit...・
2t Therefore, the composite current ■ is the sum of these,
The value is given by the following formula.

□α ■=αC+ t・・・・・・・・・・・・・−・・・・
・・・・・・・・・・・・・・・・・3上記した充を電
流ICと合成電流Iとは電流測定回fjP13にて測定
され、それぞれマイクロコンピュータ4に入力される。
□α ■=αC+ t・・・・・・・・・・・・−・・・・
3 The above-mentioned charge current IC and composite current I are measured at the current measurement circuit fjP13 and inputted to the microcomputer 4, respectively.

マイクロコンピュータ4は合成電IAt、 Iの入力で
、その直流電圧変化に伴う変化量を演算する。即ち、 1 (−−)=”−・・・・・・・・・・・・・・・・・・
・・・・・・・・・4at R 乞演算する。
The microcomputer 4 receives the input of the composite voltage IAt, I and calculates the amount of change due to the change in the DC voltage. That is, 1 (−−)=”−・・・・・・・・・・・・・・・・・・
・・・・・・・・・4at R Perform calculations.

そして、マイクロコンピュータ4は、この演算結果を利
用して、更にこの変化量と充電電流ICとの比をめる。
Then, the microcomputer 4 uses this calculation result to further calculate the ratio between this amount of change and the charging current IC.

x <−−−−) / i C−−−/αC−1・・・・・
・・・・・・・5dt RCR 尚、充電を流ICは理論的には限りなく小さい時間t→
()での電流値になるので、 Ic =I (t=o)=αC・・・・・・・・・・・
・・・・・・ 6の如く算出することができるが、実際
には安定するまで2〜3秒位かかるので、絶縁体1に電
圧を印加して2〜3秒後の電流値をICとして利用する
。さて5式でめた値1/CRは、従来のtanSが1/
 CRで表わすことができることから、このjan 3
に比例しているのが判る。
x <----) / i C---/αC-1...
・・・・・・・・・5dt RCR In addition, the charging time for IC is theoretically infinitely small →
The current value is at (), so Ic = I (t=o) = αC...
It can be calculated as shown in 6, but in reality it takes about 2 to 3 seconds to stabilize, so the current value 2 to 3 seconds after applying voltage to insulator 1 is used as IC. Make use of it. Now, the value 1/CR obtained from equation 5 is that the conventional tanS is 1/CR.
Since it can be expressed as CR, this jan 3
It can be seen that it is proportional to.

従って、この値1 /CRの大小によって従来同様に絶
縁体1の絶縁の状態を判定することができる。
Therefore, the insulation state of the insulator 1 can be determined based on the magnitude of this value 1/CR, as in the conventional case.

このように、不発明の測定方法では商用周波数を利用せ
ずに絶縁劣化測定を行うことができる。
In this manner, the uninvented measurement method allows insulation deterioration measurement to be performed without using commercial frequencies.

ところで、最近、新しい原理に基づく電カケーブル絶縁
劣化判定装置が開発された。その原理は、直流電圧でケ
ーブルを充電、しt後、充電用電源を開放して、ケーブ
ルの自己放電による残留電圧の変化を調べてケーブルの
劣化を判定するものである。そして、この判定装置は、
マイクロコンピュータ制御により所定の電圧まで昇圧さ
れる直流電源を備えるので、直流電圧の昇圧過程におけ
る絶縁体1に流れる電流の変化量(4)式参照)を利用
し、かつマイクロコンピュータに前記演算プログラムを
入力するだけで、装置不米の直流もれ電流に対応する量
の測定と不発明の測定方法による測定とを実行すること
ができる。
By the way, recently, an electric cable insulation deterioration determination device based on a new principle has been developed. The principle is to charge the cable with a DC voltage, then open the charging power source and check for changes in residual voltage due to self-discharge of the cable to determine whether the cable has deteriorated. And this determination device is
Since it is equipped with a DC power supply that is boosted to a predetermined voltage by microcomputer control, the amount of change in the current flowing through the insulator 1 during the boosting process of the DC voltage (see equation (4)) can be used, and the arithmetic program described above can be applied to the microcomputer. By just inputting the information, it is possible to measure the amount corresponding to the DC leakage current of the device and measure it using the inventive measuring method.

従って、ケーブルの絶縁劣化全両面からとらえることが
可能になるので、複雑な市カケーブルの絶縁状態を精度
よく判断することができる。
Therefore, it is possible to assess cable insulation deterioration from all sides, making it possible to accurately judge the insulation state of complex city cables.

(発明の効果) 不発明によれば、被測足ケーブルの絶縁体に時間に比例
して上昇する直流電圧を印訓し、絶縁体へ流れる電流の
変化量とケーブルの静電容量で決まる充電電流とを測定
すると共に従来のtan Sに対応する狛としてこれら
測定値の比の変化を調べることで、商用周波交流電圧を
利用することなく電カケーブルの絶縁劣化の判定を行う
ことができる。従って、誘導障害の無い、非常に精度の
高い測定結3I1.に基づく絶縁状態の判断が可能とな
る。
(Effect of the invention) According to the invention, a DC voltage that increases in proportion to time is applied to the insulator of the cable to be measured, and charging is determined by the amount of change in the current flowing to the insulator and the capacitance of the cable. By measuring the current and examining the change in the ratio of these measured values as a gauge corresponding to the conventional tan S, it is possible to determine the insulation deterioration of the power cable without using the commercial frequency AC voltage. Therefore, very accurate measurement result 3I1. with no induction disturbance. It becomes possible to judge the insulation state based on

また、直流電圧を印刀口することから、小形化が容易な
直流電源を用いることができ、従って、被測足ケーブル
が長尺化されても電圧装置をそれほど大形化する必をが
ないので、測定現場への運搬や移動が容易であり、又峰
済的でもある。
In addition, since the DC voltage is stamped, a DC power supply that can be easily miniaturized can be used, and therefore, even if the cable to be measured becomes long, there is no need to increase the size of the voltage device. It is easy to transport and move to the measurement site, and is also convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明に係る測定方法に用いる装置の回路構成
図、第2図はケーブル絶縁体に流れる電流変化を示す線
図である。
FIG. 1 is a circuit configuration diagram of a device used in the measuring method according to the invention, and FIG. 2 is a diagram showing changes in current flowing through a cable insulator.

Claims (1)

【特許請求の範囲】[Claims] 被測定ケーブルの絶縁体に、時間に比例して上昇する直
流電圧ケ印馴し、前記絶縁体へ流れる電流の変化量及び
前記ケーブルの静電容量で決まる充電電流を測定し、前
記電流の変化量と前記充電電流との比の変化を調べるこ
とf、特徴とする電カケーブルの絶縁劣化測定方法。
The insulator of the cable to be measured is exposed to a DC voltage that increases in proportion to time, and the charging current determined by the amount of change in the current flowing to the insulator and the capacitance of the cable is measured, and the change in the current is measured. A method for measuring insulation deterioration of an electric power cable, characterized in that the change in the ratio between the current and the charging current is examined.
JP12597383A 1983-07-11 1983-07-11 Measurement of deterioration in insulation of power cable Granted JPS6018769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12597383A JPS6018769A (en) 1983-07-11 1983-07-11 Measurement of deterioration in insulation of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12597383A JPS6018769A (en) 1983-07-11 1983-07-11 Measurement of deterioration in insulation of power cable

Publications (2)

Publication Number Publication Date
JPS6018769A true JPS6018769A (en) 1985-01-30
JPH0423224B2 JPH0423224B2 (en) 1992-04-21

Family

ID=14923571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12597383A Granted JPS6018769A (en) 1983-07-11 1983-07-11 Measurement of deterioration in insulation of power cable

Country Status (1)

Country Link
JP (1) JPS6018769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163369A (en) * 1989-11-22 1991-07-15 Hitachi Ltd Method and apparatus for measuring subscriber's line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163369A (en) * 1989-11-22 1991-07-15 Hitachi Ltd Method and apparatus for measuring subscriber's line

Also Published As

Publication number Publication date
JPH0423224B2 (en) 1992-04-21

Similar Documents

Publication Publication Date Title
JPH0495788A (en) Judging method of life for stationary lead accumulator
US4646248A (en) Insulation analyzer apparatus and method of use
US20090088995A1 (en) Method for determining the linear electrical response of a transformer, generator or electrical motor
JPS6018769A (en) Measurement of deterioration in insulation of power cable
JP5559638B2 (en) Degradation judgment method for power cables
US2302230A (en) Method and apparatus for measuring the power factor of electrical devices
JPH0528781B2 (en)
Hauschild et al. Measurement of Dielectric Properties
JPH09304467A (en) Method for diagnosing insulation deterioration of electric insulator
RU2073250C1 (en) Method and device for determining dynamic induction of reactor
US2481655A (en) Apparatus for locating faults in cables
SU731397A1 (en) Device for measuring current generator internal resistance
JP2612724B2 (en) Insulation resistance measurement method
JPS60214267A (en) Surface electrometer
JPH0755900A (en) Inverter device
JPS5745469A (en) Insulating resistance measuring device
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPH02106190A (en) Vector controller for induction motor
JP3376924B2 (en) Layer corona test circuit
JPS63281074A (en) Detecting method for water tree current of cv cable
SU941902A1 (en) Method of selecting measurement object substitution two-element circuit
RU2028625C1 (en) Device for determining active power of sine-wave current in complex-impedance circuit
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
SU834586A1 (en) Device for measuring ac voltage waveform coefficient
SU759993A1 (en) Method of determining location of current leaks in power mains