JPS60187649A - Lead-base alloy for battery plate - Google Patents

Lead-base alloy for battery plate

Info

Publication number
JPS60187649A
JPS60187649A JP4211284A JP4211284A JPS60187649A JP S60187649 A JPS60187649 A JP S60187649A JP 4211284 A JP4211284 A JP 4211284A JP 4211284 A JP4211284 A JP 4211284A JP S60187649 A JPS60187649 A JP S60187649A
Authority
JP
Japan
Prior art keywords
alloy
lead
content
battery plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211284A
Other languages
Japanese (ja)
Inventor
Yukihiro Nagata
永田 幸広
Yuichi Suzuki
雄一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4211284A priority Critical patent/JPS60187649A/en
Publication of JPS60187649A publication Critical patent/JPS60187649A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To decrease the content of Sb as far as possible and to develop a Pb alloy material for a battery plate having excellent mechanical strength and workability by incorporating a specific amt. of As, Sn, Se, S and Cu into a battery plate material made of a Pb alloy contg. Sb. CONSTITUTION:A Pb alloy contg. 0.4-3.5% Sb, 0.04-0.35% As, 0.04-0.30% Sn, 0.006-0.11% Se, 0.002-0.025% S and 0.01-0.15% Cu is used as a Pb alloy for the plate of a battery. The content of Sb is lower than the content of Sb in the conventional Pb-Sb alloy and the amt. of Sb to elute in the electrolyte of the battery decreases, by which the defects as a plate with the elution of Sb are decreased. The mecanical strength is improved by the other additive elements and the mechanical workability is improved. The Pb alloy material for the battery plate which is easily workable to the battery plate is obtd.

Description

【発明の詳細な説明】 本発明は蓄α池極板用船基台金、特に圧延方式、回転ド
ラム方式等によって得られる薄板状の鉛基合金をエクス
パンド或いは打抜きして所望形状の極板用基板に加工、
成形する機械加工方式による極板用基板の製造に適する
蓄電池極板用鉛基合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a ship base metal for α battery electrode plates, in particular, a thin plate-shaped lead-based alloy obtained by a rolling method, a rotating drum method, etc. is expanded or punched to form an electrode plate of a desired shape. Processed into a substrate,
The present invention relates to a lead-based alloy for storage battery electrode plates that is suitable for manufacturing electrode plate substrates by a molding machining method.

従来、この種鉛基台金としては、機械加工に耐え得る機
械的強度を得るために、Sb 4〜7%を含む鉛基合金
が知られているが、該合金を蓄−電極板として用いた場
合、電解液中でsbがm出し、これが負極板に析出して
自己放電が促進され容量低下を起こすと共に充電に際し
ては、充電完了が近い状態や過充成状態において+tC
流の流量が大きくなってガツシングを起こして水の補給
が必要となり、補水等を必要としないメンテナンスフリ
ー電池の極板用としては不適当であるという不都合を有
する。そこでsbの含有量を可及的に少なくすることが
望まノ]、るが、sbの含有量を3.5tII以下とす
ると極板用の素板の製造速度が遅くなると共に機械的強
jWが低下するという不都合を有する。
Conventionally, as this type of lead-based metal, a lead-based alloy containing 4 to 7% Sb has been known in order to obtain mechanical strength that can withstand machining. If it is, sb is emitted in the electrolyte, which is deposited on the negative electrode plate, promoting self-discharge and causing capacity reduction. At the same time, when charging is nearing completion or in an overcharged state, +tC
This has the disadvantage that the flow rate increases, causing gassing and requiring water replenishment, making it unsuitable for use as a maintenance-free battery electrode plate that does not require water replenishment. Therefore, it is desirable to reduce the sb content as much as possible], but if the sb content is set to 3.5tII or less, the manufacturing speed of the blank plate for the electrode plate will be slow and the mechanical strength jW will be reduced. This has the disadvantage of decreasing.

本発明はかかる不都合を解消し、可及的にsbの含有量
を少なくし且つ所要の機械的強度が得られ、しかも極板
用の素板の製造速度が向上した機械的加工に適する蓄亀
池極板用船基台金を提供することを目的とするもので、
5b(1,4〜3.5%、As O,04〜0.35%
、Sn0.04〜0、30 %、Se O,006〜0
.11%、80.002〜0.025%、 Cu 0.
01〜0.15%並びにpb残部とから成ることを特徴
とする。
The present invention eliminates such disadvantages, reduces the content of sb as much as possible, provides the required mechanical strength, and provides a storage pond suitable for mechanical processing that improves the manufacturing speed of blank plates for electrode plates. The purpose is to provide base metal for polar plates,
5b (1,4-3.5%, As O,04-0.35%
, Sn0.04~0, 30%, SeO,006~0
.. 11%, 80.002-0.025%, Cu 0.
01 to 0.15% and the remainder PB.

ここで、Sb を添加するのは鉛基合金に連続鋳造によ
る製条等の機械加工に馴え得る機械的強度全与えるため
であり、配合量全0.4〜3.5%としたのは配合量が
0.4%未満の場合には機械的強度が不十分であシ、ま
た格子基板について所望の機械的強度を得るためには熱
処理を必要とし製造紅費が嵩み、3゜5%金越える場合
にはsb含有量の増加に従い自己放電量が多くなり、ガ
ス発生邦が増加するからである。
Here, Sb is added to give the lead-based alloy full mechanical strength that can be used for machining such as continuous casting, and the total amount added is 0.4 to 3.5%. If the blending amount is less than 0.4%, the mechanical strength will be insufficient, and in order to obtain the desired mechanical strength of the grid substrate, heat treatment will be required, increasing manufacturing costs, and % gold, the amount of self-discharge increases as the sb content increases, and the amount of gas generated increases.

Asを添加するのは連続鋳造時の凝固に際して鉛基合金
の結晶粒を揃えて機械的強度のノ々ラツキケなくすため
であり、配合量全0.04〜0.35饅としたのは0.
04%未満の場合にはかかる効果がなく、0.35%を
越える場合には配合彊ヲこ几よジ多くしてもかかる効果
を同程度にしか得らnないからである。
The purpose of adding As is to align the crystal grains of the lead-based alloy during solidification during continuous casting to eliminate unevenness in mechanical strength, and the total amount of As added is 0.04 to 0.35.
This is because if the content is less than 0.04%, no such effect is obtained, and if it exceeds 0.35%, the effect will only be obtained to the same extent even if the blending ratio is increased.

Sn f添加するのは鉛基合金の耐食性を向上させると
共に薄板の製造速度を向上させるためであり、配合量を
0.04〜0.30%としたのは0.04 %未満の場
合には耐食性を与える効果がなく、0.30%を越える
場合には配合量をこれより多くしても耐食性の効果は同
程度であり向板の製造速度の向上効果もほとんど認めら
れないからである。
The purpose of adding Snf is to improve the corrosion resistance of lead-based alloys and to increase the manufacturing speed of thin plates. This is because it has no effect on imparting corrosion resistance, and if the amount exceeds 0.30%, the effect on corrosion resistance will be the same even if the amount is increased beyond this range, and the effect of improving the manufacturing speed of facing plates will hardly be observed.

Se を添加するのは鉛基合金の結晶粒を微細にして機
械的強度を高めるためであり、配合量ゲ0.006〜0
.11 % (!:したのflo、006%未満の場合
にはかかる効果が認められず、0.11%を越える場合
には配合量をこれよシ多くしてもかかる効果が同程度に
しか得られないからである。
The purpose of adding Se is to make the crystal grains of the lead-based alloy finer and increase its mechanical strength.
.. 11% (!: If the flo content is less than 0.06%, no such effect will be observed, and if it exceeds 0.11%, the effect will only be the same even if the amount is increased. This is because it cannot be done.

Sを添加するのは鉛基合金の結晶粒を微細にして機械的
強度を向上させ、特に連続鋳造圧延による材料亀裂発生
を防止し薄板の製産性を向上させるためであり、配合量
′ft0.002〜α025チとしたのは0.002%
未満の場合にはかかる効果が認めらn、ず、0.025
チを越える場合には鉛基合金が脆くなるからである。
The purpose of adding S is to make the crystal grains of the lead-based alloy finer and improve its mechanical strength. In particular, it prevents the occurrence of material cracks during continuous casting and rolling, and improves the productivity of thin sheets. .002~α025chi is 0.002%
No such effect is observed when the value is less than n, 0.025.
This is because the lead-based alloy becomes brittle if it exceeds 1.

Cuを添加するのは鉛基合金の結晶粒を微細にして機械
的強度を向上させ、Sとの併用によって連続鋳造におけ
る材料亀裂の発生を更に効果的に防止して生産性を向上
させると共に、薄板の製造時における勢造速度を向上さ
せるためである。配合量を0.01〜0.15 %とし
たのは0.01%未満の場合にはかかる効果が得られず
、0.15%を越える場合には鉛基合金が脆くなるから
である。
The addition of Cu makes the crystal grains of the lead-based alloy finer and improves its mechanical strength, and when used in combination with S, it more effectively prevents the occurrence of material cracks during continuous casting and improves productivity. This is to improve the stamping speed when manufacturing thin plates. The reason for setting the blending amount to 0.01 to 0.15% is that if it is less than 0.01%, such effects cannot be obtained, and if it exceeds 0.15%, the lead-based alloy becomes brittle.

本発明の鉛基合金の製法は、鉛基合金の上記配合割合を
除いては従来の製法と特に変わるものではなく、鉛を溶
解し、この鉛溶湯中にSb、As。
The manufacturing method of the lead-based alloy of the present invention is not particularly different from the conventional manufacturing method except for the above-mentioned blending ratio of the lead-based alloy. Lead is melted, and Sb and As are added to the molten lead.

Sn、 Se、 S及びCuの所定線を単体または母合
金の形で添加して得られるものであり、これを用いて蓄
電池極板を得るには、前記溶解された鉛基合金を用いて
連続鋳造圧延方法等により得る。
It is obtained by adding predetermined lines of Sn, Se, S, and Cu either singly or in the form of a master alloy. Obtained by casting and rolling methods.

尚、本発明合金は、上記薄板用に限定するものではなく
、従来の鋳造法による格子基板の鉛合金として、またス
トラップ、極柱、セル間接続体、その他の部品の鉛合金
としても、その用途を有することは云うまでもない。
The alloy of the present invention is not limited to the above-mentioned thin plates, but can also be used as a lead alloy for lattice substrates made by conventional casting methods, as well as for straps, poles, intercell connections, and other parts. Needless to say, it has its uses.

次に、本発明をその性能特性線図を用いて説明する。Next, the present invention will be explained using its performance characteristic diagram.

第1図は、溶湯から直接連続鋳造圧延によって作製した
厚さ0.9■の鉛合金条の引張強さ並びに連続鋳造圧延
の製造速度に及はすsb 含有i、tの影響を示す性能
特性線図である。図中曲iAはsbを含有する合金のs
b を含有しない合金に対する室温での引張強さの比率
を表わし、曲線Bはsb を含有する合金のsb を含
有しない合金に対する外観の良好な薄板を作るときの最
大製造速度の比率を表わす。これらの曲線A、Bからs
b 含有量が0.4%未満では引張強さ及び製造速度に
及ぼすsb含有量の影響がほとんどなく、また3、5%
を越えた場合には、その効果がsb含有量が35%の場
合とほぼ同程度であることがわかる。かかる特性はsb
以外の元素組成が本発明の範囲内で変動してもほとんど
変わらなかった。
Figure 1 shows the tensile strength of a lead alloy strip with a thickness of 0.9 cm produced directly from molten metal by continuous casting and rolling, and the performance characteristics showing the influence of sb contents i and t on the production speed of continuous casting and rolling. It is a line diagram. In the figure, curve iA is s of an alloy containing sb.
Curve B represents the ratio of the tensile strength at room temperature to the alloy without b 2 , and curve B represents the ratio of the maximum production rate of the alloy containing sb 2 to the alloy without sb 2 to produce thin sheets with good appearance. These curves A, B to s
When the b content is less than 0.4%, there is almost no effect of the sb content on the tensile strength and manufacturing speed, and when the sb content is less than 3.5%
It can be seen that when the sb content exceeds 35%, the effect is almost the same as when the sb content is 35%. Such characteristics are sb
There was almost no change even if the other elemental compositions were varied within the range of the present invention.

第2図は、溶湯から直接連続鋳造圧延によって作製した
厚さ0.9期の鉛合金条の引張強さのバラツキ度合い、
即ち分散に及ぼf As含有量の影響を示す性能特性線
図でめる。図中曲線CはAs を含有する合金のAs 
を含有しない合金に対する分散の比率を表わす。かかる
曲線CからAs 含有酸が0.04%未満では引張強度
のバラツキが大きく、また0、35%を越えた場合には
そ119以上添加してもバラツキに与える効果が同程度
であることがわかる。かかる特性はAs以外の元素組成
が本発明の範囲内で変動してもほとんど変わらなかった
Figure 2 shows the degree of variation in the tensile strength of lead alloy strips with a thickness of 0.9 stage produced by direct continuous casting and rolling from molten metal.
That is, a performance characteristic diagram showing the influence of fAs content on dispersion is drawn. Curve C in the figure shows As of the alloy containing As.
It represents the ratio of dispersion to alloys that do not contain. From this curve C, it can be seen that when As containing acid is less than 0.04%, the variation in tensile strength is large, and when it exceeds 0.35%, the effect on the variation is about the same even if more than 119% is added. Recognize. These characteristics hardly changed even if the composition of elements other than As varied within the range of the present invention.

第3図は8湯から直接連続鋳造圧延によって作製した厚
さ0.75 wmの鉛合金条の腐食試験における腐食減
量及び連続鋳造圧延の製造速度に及ぼすSn含有量の影
響ケ示す性能特性線図である。
Figure 3 is a performance characteristic diagram showing the influence of Sn content on the corrosion loss and production speed of continuous casting and rolling in a corrosion test of a lead alloy strip with a thickness of 0.75 wm produced by direct continuous casting and rolling from 8-molten metal. It is.

図中曲線りはSn を含有する合金のSn を含有(7
ない合金に対する腐食減量の比率を表わし電曲線EはS
n を含有する合金のsb を含有しない合金に対する
外観の良好な条を作るときの最大製造速度の比率を表わ
す。これらの曲線り。
The curved line in the figure shows the Sn content of the Sn-containing alloy (7
The electric curve E represents the ratio of corrosion loss for alloys with no
It represents the ratio of the maximum manufacturing speed of an alloy containing n to an alloy not containing sb when producing strips with good appearance. These curves.

EからSn 含有量が0,04%未満では耐食性に及び
製造速度に及ばすSn含有量の影響がほとんどなく、ま
た0、30%を越えた場合にはその効果がSn 含有量
が0.30%の場合とほぼ四作度であることがわかる。
When the Sn content is less than 0.04%, the Sn content has almost no effect on corrosion resistance and manufacturing speed, and when it exceeds 0.30%, the effect is reduced. It can be seen that the number of crops is almost four compared to the case of %.

かかる特性はSn以外の元素組成が本発明の範囲内で変
動してもほとんど変わらなかった。
These characteristics hardly changed even if the composition of elements other than Sn varied within the range of the present invention.

第4図は溶湯から直接連続、祷造圧延によって作製した
厚さ0.7mの鉛合金条のマイクロヴイッカース硬さの
値に及ばすSe 含有酸の影#を示す性能特性線図であ
る。図中曲線Fld:se を官有する合金のSe ’
c金含有ない合金に対′1−るマイクロヴイツカース硬
さの比率を表わす。がかる曲線FからSe つ゛有量が
0.006%未満では硬さに及ばず効果はほとんどなく
、また0、 11 %を越えた場合には硬さへの寄与は
ほとんど沈いことがわかる。かかる特性は3 e以外の
元素組成が本発明の範囲内で変動してもほとんど変わら
なかった。
FIG. 4 is a performance characteristic diagram showing the influence of Se-containing acid on the micro-Vickers hardness of a 0.7 m thick lead alloy strip produced by direct rolling from molten metal. Curve Fld in the figure: Se' of the alloy having se
c Represents the ratio of microvitskars hardness to that of an alloy containing no gold. From the curve F, it can be seen that when the Se content is less than 0.006%, it does not improve hardness and has almost no effect, and when it exceeds 0.11%, its contribution to hardness is almost negligible. These characteristics remained almost unchanged even when the elemental composition other than 3e was varied within the range of the present invention.

第5図及び第6図は溶湯から直接連続鋳造出廷によって
作製した厚さ0.70w+oの鉛合金条のエツジ部に発
生する亀裂の深さに及ぼすS及びCu含壱財の影響を示
す性能特性線図である。
Figures 5 and 6 show performance characteristics showing the influence of S and Cu-containing substances on the depth of cracks that occur at the edge of a lead alloy strip with a thickness of 0.70 W+O produced by direct continuous casting from molten metal. It is a line diagram.

第51中曲iIMGはS全含有する合金のSを含有しな
い合金に対する亀裂の深さ、即ち条長10m中に発生し
た亀裂の深さの平均値の比率を表わす。かかる曲線Gか
らSの含有量が0.002%未満では材料の亀裂発生の
防止効果はほとんどなく、また0、025%を越えた場
合には材料が脆くなるので合金条のエツジ部に深い亀裂
が入り易くなることがわかる。
The 51st curve iIMG represents the ratio of the crack depth of an alloy containing all S to that of an alloy not containing S, that is, the average value of the depth of cracks occurring in a strip length of 10 m. From this curve G, if the S content is less than 0.002%, there is almost no effect in preventing the occurrence of cracks in the material, and if it exceeds 0.025%, the material becomes brittle, resulting in deep cracks at the edges of the alloy strip. You can see that it becomes easier to enter.

同様に第5図中曲線HはCu を官有する合金のCu 
を含有しない合金に対する亀裂の深さの比\ 率を底ねす。かかる曲&!1(からCuの含有量が()
01%未満では桐材の亀裂発生の防止効果はほとんどな
く、また0、15俤を越えた場合には材料が脆化して亀
裂が入易くなることがわかる。
Similarly, the curve H in Fig. 5 indicates Cu of the alloy containing Cu.
Figure out the crack depth ratio for alloys that do not contain Songs that take &! 1 (from Cu content ()
It can be seen that if it is less than 0.01%, there is almost no effect of preventing the occurrence of cracks in paulownia wood, and if it exceeds 0.15%, the material becomes brittle and cracks are likely to occur.

また図中曲線IはCuを含有する合金に更KS10.0
1チ添加した合金のこれらCu 及びSを官有しない合
金に対する亀裂深さの比率を表わす。かかる曲線■から
Cu含有量0.01〜0,15係の範囲内でSとの併用
が亀裂深さを小さくするのに有効であることがわかる。
In addition, curve I in the figure shows that the alloy containing Cu has a KS10.0
It represents the ratio of the crack depth of the alloy containing 1% Cu and S to the alloy containing no Cu or S. From the curve (2), it can be seen that the combined use of S in a Cu content range of 0.01 to 0.15 is effective in reducing the crack depth.

かかる・14性はS及びCu 以外の元素組成が本発明
の範18J1りで変動してもほとんど変わらなかった。
Such 14 properties remained almost unchanged even when the composition of elements other than S and Cu varied within the range of 18J1 according to the present invention.

このように、本発明は、SbO,4〜3.5係、八80
、04%〜0.35%、Sn0.04%〜0.30 %
、Se O,006〜0.11%、S O,OU2〜0
.025%、Cu O,01〜0.15%並びにpb 
残部とから成るために、Sb含有量が少なくメンテナン
スフリー電池にも使用し得、しかも所要の機械的強度が
得られ且つ極板用の素板の製造速IAt ’a−向上せ
しめ機械的加工にも適する効果ケ有する。
Thus, the present invention provides SbO, 4-3.5, 880
, 04%~0.35%, Sn0.04%~0.30%
, SeO,006~0.11%, SO,OU2~0
.. 025%, CuO, 01-0.15% and pb
Since the Sb content is low and it can be used for maintenance-free batteries, the required mechanical strength can be obtained, and the manufacturing speed of blank plates for electrode plates can be improved. It also has suitable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明鉛基台金中に配合される各元
素の鉛基合金に及ばす影響を示す性能特性線図である。 特許出願人 古河屯池株式会社 第1図 第2図 第3図 第4図
1 to 6 are performance characteristic diagrams showing the influence of each element incorporated in the lead-based metal of the present invention on the lead-based alloy. Patent applicant: Kogatunike Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] Sb O,4〜3.5%、As O,04〜0.35%
、Sn O,04〜0.30%、Se O,006〜0
.11 %、S O,002〜0.025%、 Cu 
O,01−0,15%並びにpb残部とから成る蓄′1
池極板用鉛基合金。
Sb O, 4-3.5%, As O, 04-0.35%
, SnO, 04~0.30%, SeO, 006~0
.. 11%, SO, 002~0.025%, Cu
Accumulation '1 consisting of O,01-0,15% and the remainder of PB
Lead-based alloy for pond electrode plates.
JP4211284A 1984-03-07 1984-03-07 Lead-base alloy for battery plate Pending JPS60187649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211284A JPS60187649A (en) 1984-03-07 1984-03-07 Lead-base alloy for battery plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211284A JPS60187649A (en) 1984-03-07 1984-03-07 Lead-base alloy for battery plate

Publications (1)

Publication Number Publication Date
JPS60187649A true JPS60187649A (en) 1985-09-25

Family

ID=12626868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211284A Pending JPS60187649A (en) 1984-03-07 1984-03-07 Lead-base alloy for battery plate

Country Status (1)

Country Link
JP (1) JPS60187649A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226876A (en) * 1987-03-16 1988-09-21 Yuasa Battery Co Ltd Lead storage battery
JPS63226877A (en) * 1987-03-16 1988-09-21 Yuasa Battery Co Ltd Lead storage battery
JPS63231871A (en) * 1987-03-18 1988-09-27 Yuasa Battery Co Ltd Lead-acid battery
JPS63231870A (en) * 1987-03-18 1988-09-27 Yuasa Battery Co Ltd Lead-acid battery
JPS643959A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-antimony alloy current collector
JPH02170939A (en) * 1988-12-23 1990-07-02 Japan Storage Battery Co Ltd Lead alloy for storage battery
US5508125A (en) * 1994-03-21 1996-04-16 Globe-Union Inc. Battery straps made of a lead-based alloy containing antimony, arsenic, tin and selenium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025427A (en) * 1973-03-15 1975-03-18
JPS50108125A (en) * 1974-01-28 1975-08-26
JPS58185739A (en) * 1982-04-21 1983-10-29 Furukawa Battery Co Ltd:The Lead alloy for lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025427A (en) * 1973-03-15 1975-03-18
JPS50108125A (en) * 1974-01-28 1975-08-26
JPS58185739A (en) * 1982-04-21 1983-10-29 Furukawa Battery Co Ltd:The Lead alloy for lead storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226876A (en) * 1987-03-16 1988-09-21 Yuasa Battery Co Ltd Lead storage battery
JPS63226877A (en) * 1987-03-16 1988-09-21 Yuasa Battery Co Ltd Lead storage battery
JPS63231871A (en) * 1987-03-18 1988-09-27 Yuasa Battery Co Ltd Lead-acid battery
JPS63231870A (en) * 1987-03-18 1988-09-27 Yuasa Battery Co Ltd Lead-acid battery
JPS643959A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-antimony alloy current collector
JPH02170939A (en) * 1988-12-23 1990-07-02 Japan Storage Battery Co Ltd Lead alloy for storage battery
US5508125A (en) * 1994-03-21 1996-04-16 Globe-Union Inc. Battery straps made of a lead-based alloy containing antimony, arsenic, tin and selenium

Similar Documents

Publication Publication Date Title
CN101675175B (en) Lead-tin-silver-bismuth containing alloy for positive grid of lead acid batteries
US3993480A (en) Lead-antimony alloy
US3801310A (en) Lead alloy for battery grid
JPS60187649A (en) Lead-base alloy for battery plate
CN1076058A (en) Positive and negative plate grid alloy material for sealed lead-acid accumulator
US5401278A (en) Method of making battery plates for lead acid storage batteries
JP2000077076A (en) Lead base alloy for storage battery
JPH0212385B2 (en)
JP3113895B2 (en) Lead alloy for storage battery
JPS609061A (en) Manufacture of lead alloy plate for lead storage battery substrate
JPS59208035A (en) Lead alloy for storage battery
JPH0212386B2 (en)
JP2000315519A (en) Lead acid storage battery
JP4423837B2 (en) Rolled lead alloy for storage battery and lead storage battery using the same
JPS6127066A (en) Grid for lead-acid battery and its manufacture
US20180248171A1 (en) Corrosion Resistant Positive Grid for Lead-Acid Batteries
JPH0326905B2 (en)
JP3252443B2 (en) Manufacturing method of lead alloy sheet for expanded grid of lead-acid battery
JPS6074266A (en) Manufacture of lattice substrate for lead storage battery
CN1619867A (en) Battery plate grid material having excellent performance
JPS6325061B2 (en)
JPS63141263A (en) Lead-base alloy for storage battery
JP2002134116A (en) Lead-base alloy for lead-acid battery
CN1033398C (en) Slab lattice alloy material for sealed lead accumulater
JPH0147862B2 (en)