JPS6127066A - Grid for lead-acid battery and its manufacture - Google Patents

Grid for lead-acid battery and its manufacture

Info

Publication number
JPS6127066A
JPS6127066A JP59148041A JP14804184A JPS6127066A JP S6127066 A JPS6127066 A JP S6127066A JP 59148041 A JP59148041 A JP 59148041A JP 14804184 A JP14804184 A JP 14804184A JP S6127066 A JPS6127066 A JP S6127066A
Authority
JP
Japan
Prior art keywords
lead
alloy
tin
grid
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59148041A
Other languages
Japanese (ja)
Other versions
JPH0213425B2 (en
Inventor
Hiroshi Yasuda
博 安田
Naoto Hoshihara
直人 星原
Teruaki Ishii
輝秋 石井
Yasuhiko Suzui
鈴井 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59148041A priority Critical patent/JPS6127066A/en
Publication of JPS6127066A publication Critical patent/JPS6127066A/en
Publication of JPH0213425B2 publication Critical patent/JPH0213425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a grid to be used for a battery whose charge recovery in a ling period of storage after discharge is good, self discharge and decrease in electrolyte are minimized by bonding together Pb-Sn alloy or Pb-Ca-Sn alloy mainly comprising Sn on the surface of Pb-Ca-Sn alloy, and expanding the bonded sheet in a mesh shape. CONSTITUTION:A Pb-Sn alloy or Pb-Ca-Sn alloy layer containing 1.5-20% of Sn is bonded together at least one side of flat rolled material comprising Pb-Ca-Sn alloy. This bonded material is rolled so as to have a specified thickness and expanded in a mesh shape. A battery using this mesh plate as a grid has good charge recovery property in a lengthy period of storage after discharge without sacrifice of self discharge and leakage resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池用格子体及びその製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a grid for lead-acid batteries and a method for manufacturing the same.

従来例の構成とその問題点 アンチモンを含まない鉛合金で作られる格子体を使用し
た鉛蓄電池は、アンチモンを含んだ合金で作られた、そ
れよりも自己放電が少なく、使用中の電解液の減少が少
ないという特徴をもっている。
Conventional configurations and their problems Lead-acid batteries that use a lattice made of lead alloys that do not contain antimony have less self-discharge than those made of alloys that contain antimony, and are less susceptible to electrolyte during use. It is characterized by a small decrease.

このため長期保存が可能となり、又電池使用中の蒸留水
の補充という作業が不要となる。
Therefore, long-term storage is possible, and there is no need to replenish distilled water while the battery is in use.

アンチモンを含まない鉛合金としては、鉛−錫−カルシ
ウム三元合金(以下Pb−Ca−8n合金と云う)が一
般的に使用される。
As a lead alloy that does not contain antimony, a lead-tin-calcium ternary alloy (hereinafter referred to as Pb-Ca-8n alloy) is generally used.

格子体はこれまで主に鋳造により製造されていたが、溶
融状態のP b −Ca −S n合金はCaの酸化損
失が早いとともに、鋳型内の揚泥れが悪く、さらに凝固
後の機械的強度が小さい等、鋳造の作業性が劣っていた
Until now, lattice bodies have been mainly manufactured by casting, but the molten Pb-Ca-Sn alloy suffers from rapid oxidation loss of Ca, poor sludge retention in the mold, and mechanical problems after solidification. Casting workability was poor, such as low strength.

そこでPb−Ca−8n合金を圧延加工して、薄いシー
ト状としたのちにエキスパンド加工する方法が普及して
いる。
Therefore, a method in which a Pb-Ca-8n alloy is rolled to form a thin sheet and then expanded is widely used.

ところでPb−Ca−3n合金を用いた鉛蓄電池の短所
の一つとして放電状態で長時間放置された後は充電受入
性が悪く、充電できなくなり易いという傾向がある。
By the way, one of the disadvantages of lead-acid batteries using Pb-Ca-3n alloys is that they have poor charge acceptance after being left in a discharged state for a long time, and tend to become unchargeable.

この原因は、正極格子と活物質との界面に高抵抗の不働
態層が形成されるためである。
This is because a high-resistance passive layer is formed at the interface between the positive electrode lattice and the active material.

特に放置中の電解液、すなわち稀硫酸の比重が約1.0
5以下だとこの現象が起きやすい。
In particular, the specific gravity of the electrolyte, i.e., dilute sulfuric acid, while standing is approximately 1.0.
This phenomenon is more likely to occur if it is less than 5.

したがって電解液中の硫酸濃度を上げたり、電解液量を
増やすことにより、上記欠点を克服できるが、しかし硫
酸濃度を上げることは電池寿命の低下を招き、また電解
液量を増やすことは電池重量の増加を招くため、むやみ
に硫酸濃度を増やすことには限界がある。
Therefore, the above disadvantages can be overcome by increasing the sulfuric acid concentration in the electrolyte or increasing the amount of electrolyte.However, increasing the sulfuric acid concentration leads to a decrease in battery life, and increasing the amount of electrolyte also reduces the battery weight. There is a limit to increasing the sulfuric acid concentration unnecessarily, as this will lead to an increase in sulfuric acid concentration.

一方、格子界面に多量の錫をつけることにより格子と活
物質との界面に形成される高抵抗層の性質が変化し、過
放電後の回復性が飛躍的に向上することがわかってきた
。そのため格子表面にあらかじめ金属錫等を溶射するか
あるいは電解メッキ等の方法により付着させる方法が考
えられた。
On the other hand, it has been found that adding a large amount of tin to the lattice interface changes the properties of the high-resistance layer formed at the interface between the lattice and the active material, dramatically improving recovery after overdischarge. For this reason, methods have been considered in which metal tin or the like is deposited on the surface of the grid by thermal spraying or by electrolytic plating or the like.

しかしながら金属錫は電解液である硫酸に可溶であるた
め、その効果が持続しないばかりか、溶出した錫が負極
に吸収されて自己放電率が高くな9、あるいは電解液の
減少が多くなる等の問題を生じるだめ、この方法は実用
性にとぼしかった。
However, since metallic tin is soluble in sulfuric acid, which is an electrolytic solution, not only does the effect not last long, but the eluted tin is absorbed into the negative electrode, resulting in a high self-discharge rate9 or a large decrease in the electrolytic solution. This method was impractical due to the problems it caused.

発明の目的 本発明は、上記従来の欠点を改良し、過放電放置後の充
電回復性にすぐれ、なおかつ自己放電、電解液の減少が
少ない鉛蓄電池用の格子体を提供するものである。
OBJECTS OF THE INVENTION The present invention improves the above-mentioned conventional drawbacks, and provides a grid body for lead-acid batteries that has excellent charge recovery properties after being left over-discharged, and is less prone to self-discharge and loss of electrolyte.

発明の構成 本発明は、シート状素材を網目状に展開する、いわゆる
エキスパンド加工した格子体の素材として、Pb−Ca
−3n合金からなる基材の少なくとも片面にSnを主合
金成分とし、その含有量が1.r20重量%(以下係と
云う)のPb−8n合金層又はPb−Ca−3n合金層
を一体化したものを用いたことを特徴とする。
Structure of the Invention The present invention uses Pb-Ca as a material for a so-called expanded lattice body in which a sheet material is developed into a mesh shape.
At least one side of the base material made of -3n alloy contains Sn as a main alloy component, and its content is 1. It is characterized by the use of an integrated Pb-8n alloy layer or Pb-Ca-3n alloy layer containing 20% by weight of r (hereinafter referred to as the "layer").

又、本発明はP b −Ca −S n合金からなる扁
平圧延素材(以下スラブと云う)の少なくとも片面に、
Snを主成分としその含有量が1.6〜20%のPb−
5n合金層又はPb7Ca−3n合金層を一体化し、つ
いでこれを所定の厚さに圧延した後、網目状に展開する
エキスパンド加工を施すことを特徴とした格子体の製造
法を提供するものである。
Further, the present invention provides at least one side of a flat rolled material (hereinafter referred to as slab) made of a Pb-Ca-Sn alloy,
Pb- whose main component is Sn and whose content is 1.6 to 20%
This invention provides a method for manufacturing a lattice body characterized by integrating a 5n alloy layer or a Pb7Ca-3n alloy layer, rolling it to a predetermined thickness, and then performing an expanding process to develop it into a mesh shape. .

実施例の説明 以下本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

まず、Pb−Ca (0,05%)−8n(0,5%)
の組成の厚さ10wn1巾100咽の連続したスラブの
片面に、半田付で用いられる樹脂系のフラックスを塗布
した後12o℃で熱風乾燥を行なった。次に温度約30
0℃の溶融したPb−8n合金の中へ前記スラブのフシ
ックス処理した面が接するように約30秒間浸漬し、半
田メッキを行なった。
First, Pb-Ca (0,05%)-8n (0,5%)
A resin-based flux used in soldering was applied to one side of a continuous slab having a composition of 10 mm thick and 100 mm wide, and then dried with hot air at 12° C. Next, the temperature is about 30
The slab was immersed in a molten Pb-8n alloy at 0° C. for about 30 seconds so that the fusic-treated surface was in contact with it, and solder plating was performed.

なお、半田メッキの厚さは約0 、2 mmとなるよう
に概漬時間を調節した。その後イングロビルアルコール
によ夕残留フラックスをと9のぞいた後、圧延して厚さ
1調の鉛合金シートとし、これをエキスパンド加工して
格子体とした。Pb−3n合金中のSn濃度は1.1.
5,6,10,20,40゜60.80.100チとし
た。
The approximate soaking time was adjusted so that the thickness of the solder plating was approximately 0.2 mm. Thereafter, residual flux was removed with Inglobil alcohol, and then rolled into a lead alloy sheet with a thickness of 1, which was expanded to form a lattice. The Sn concentration in the Pb-3n alloy is 1.1.
5, 6, 10, 20, 40 degrees 60, 80, 100 degrees.

さらに比較のために上記半田メッキをほどこさない従来
方法で作製された格子を用意した。これはSn濃度0.
5%のものとした。
Furthermore, for comparison, a grid manufactured by the conventional method without applying the solder plating was prepared. This means that the Sn concentration is 0.
It was set as 5%.

これら用意した格子を用いてJIS規格に定められた5
5D23形の自動車用鉛蓄電池を作製し、比較テストを
行なった。
Using these prepared grids, the 5
A 5D23 type lead acid battery for automobiles was manufactured and a comparative test was conducted.

なお1セルあたりの正極活物質量は約6002、負極活
物質量は4oof、電解液比重は1.26でその量80
0S’とした。これらの電池の過放電放置後の充電回復
性を調べるためのテストとして12V1oW電球を接続
し40℃中で15日間放電させたのち、さらに15日日
間間路状態で放置した。
The amount of positive electrode active material per cell is approximately 6002, the amount of negative electrode active material is 400, and the specific gravity of the electrolyte is 1.26, which is 80.
It was set to 0S'. As a test to examine the charge recovery properties of these batteries after being left over-discharged, a 12V1oW light bulb was connected and the batteries were discharged at 40° C. for 15 days, and then left in an intermittent state for another 15 days.

この状態で電池は完全放電状態となり、電解液比重は約
1.02となった。
In this state, the battery was completely discharged, and the specific gravity of the electrolyte was approximately 1.02.

これらの電池を20℃下で15V定電圧(最大電流25
A)で6時間充電を行ない回復性能を調べた。充電時間
と充電電流の変化との関係を第1図に示す。この結果よ
り、Sn濃度が表面処理を行なわない0.6%のもの、
また表面処理を行なったSn 1.0%のものでは回復
性が悪いが、Sn1.5チ以上では過放電放置後の回復
性が改良されることがわかる。
These batteries were heated at 20°C with a constant voltage of 15V (maximum current 25V).
In A), the battery was charged for 6 hours and the recovery performance was examined. FIG. 1 shows the relationship between charging time and changes in charging current. From this result, the Sn concentration is 0.6% without surface treatment,
Further, it can be seen that the recovery property is poor in the surface-treated one with Sn content of 1.0%, but the recovery property after being left overdischarged is improved with Sn content of 1.5% or more.

次に電池を40u中で2ケ月放置した後の電解液中のS
n濃度を測定した。結果を第2図に示す。
Next, the S in the electrolyte after leaving the battery in 40U for 2 months
n concentration was measured. The results are shown in Figure 2.

この図より電解液中のSn濃度は、合金中のSn含有量
が20係を超すと急激に上昇し、60%以上でさらに急
に上昇することがわかる。放置中の自己放電量、又SA
E寿命試験中の電解液量の減少もほぼこの曲線と同様の
傾向を示し、Sn濃度が20%を超したところから悪く
なりはじめる。
This figure shows that the Sn concentration in the electrolyte increases rapidly when the Sn content in the alloy exceeds 20%, and increases even more rapidly when the Sn content exceeds 60%. Self-discharge amount while left unused, and SA
The decrease in the amount of electrolyte during the E-life test also showed a tendency similar to this curve, and started to deteriorate when the Sn concentration exceeded 20%.

したがってこの2つの試験から自己放電、減液特性を悪
化させることなく過放電放置後の回復性能を向上させる
Pb−8n合金中のSn濃度は1.5〜20チの間が適
切なことがわかる。
Therefore, from these two tests, it can be seen that an appropriate Sn concentration in the Pb-8n alloy is between 1.5 and 20 to improve the recovery performance after overdischarge without deteriorating the self-discharge and liquid reduction characteristics. .

この理由を考察すると、Snが約20%以下のPb−8
n合金ではpb中にSnが固溶したα固溶体がほとんど
であり、その中にSn中にpbが点在する金属結晶構造
をもつ。α固溶体での錫の硫酸中への溶解の速度はきわ
めておそく、又β固溶体はα固溶体につつみこ゛まれて
いるため、はとんど溶解しないものと考えられる。Sn
濃度が20チを超すと、α固溶体とβ固溶体との共晶組
織が現われ、それと上記の結晶組織が混ざった形となる
。この付近から電解液中のSn濃度が高くなることから
共晶組織の増加とともにSnの溶出が多くなると考えら
れる。そしてSn濃度が約60チを超すとこんどは共晶
組織とβ固溶体にα固溶体が包みこまれた結晶組織が混
ざった形となり、さらに溶解速度が増している。
Considering the reason for this, Pb-8 with Sn of about 20% or less
Most n-alloys are alpha solid solutions in which Sn is dissolved in solid solution in pb, and have a metal crystal structure in which pb is interspersed in Sn. The rate of dissolution of tin in sulfuric acid in the α solid solution is extremely slow, and since the β solid solution is surrounded by the α solid solution, it is thought that it hardly dissolves. Sn
When the concentration exceeds 20%, a eutectic structure of α solid solution and β solid solution appears, which is a mixture of the above-mentioned crystal structure. Since the Sn concentration in the electrolyte increases from around this point, it is thought that the elution of Sn increases as the eutectic structure increases. When the Sn concentration exceeds about 60 cm, a eutectic structure and a crystalline structure in which an α solid solution is wrapped in a β solid solution are mixed, and the dissolution rate is further increased.

このことから考えて、本発明のPb−Ca−8n合金基
材の表面に付けるPb−8n合金のSn量は1.5〜2
0%が適切でアリ、しかもそれが合金とじて存在するこ
とが重要なことがわかる。たとえば上記割合の金属混合
物を表面につけても溶出=を押さえることは期待できな
い。
Considering this, the amount of Sn in the Pb-8n alloy attached to the surface of the Pb-Ca-8n alloy base material of the present invention is 1.5 to 2.
It can be seen that 0% is appropriate, and it is important that it exists as an alloy. For example, even if a metal mixture with the above ratio is applied to the surface, it cannot be expected to suppress elution.

本実施例では基材の表面にPb−8n合金を付着させた
が、これは又Pb−Ca−8n合金でもよい。
In this example, a Pb-8n alloy was attached to the surface of the base material, but it may also be a Pb-Ca-8n alloy.

この場合の合金状態は厳密にはPb−8n合金と異なる
が、一般に使用されるCa 0.06%付近では上記の
考えがあてはまる。
Strictly speaking, the alloy state in this case is different from that of the Pb-8n alloy, but the above idea applies when the generally used Ca content is around 0.06%.

発明の効果 本発明によれば自己放電、減液特性をそこなうことなく
過放電放置後の充電回復特性のすぐれた鉛蓄電池を提供
することができる。
Effects of the Invention According to the present invention, it is possible to provide a lead-acid battery with excellent charge recovery characteristics after being left over-discharged without impairing its self-discharge and liquid-reducing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は格子体に表面処理する半田中の錫含有量と、充
電時間及び充電電流との関係を示す図、第2図は同格子
体を組込んだ電池の40℃2ケ月放置後における格子体
に表面処理する半田中の錫含有量と電解液中への溶出錫
量との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 Sn $4 (wta7t=z
Figure 1 shows the relationship between the tin content in the solder used to surface-treat the grid and the charging time and charging current. Figure 2 shows the relationship between the tin content in the solder used to surface-treat the grid, and the charging time and charging current. FIG. 3 is a diagram showing the relationship between the tin content in the solder surface-treated on the grid and the amount of tin eluted into the electrolytic solution. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Sn $4 (wta7t=z

Claims (4)

【特許請求の範囲】[Claims] (1)鉛−錫−カルシウム合金からなる基材の少なくと
も片面に、錫を主合金成分としその含有量が1.5〜2
0重量%の鉛−錫合金層又は鉛−錫−カルシウム合金層
を一体化し、網目状に展開した鉛蓄電池用格子体。
(1) At least one side of a base material made of a lead-tin-calcium alloy contains tin as a main alloy component and its content is 1.5 to 2.
A lattice body for a lead-acid battery in which a 0% by weight lead-tin alloy layer or a lead-tin-calcium alloy layer is integrated and developed into a mesh shape.
(2)鉛−錫−カルシウム合金からなる扁平圧延素材の
少なくとも片面に、錫を主合金成分としその含有量が1
.5〜20重量%の鉛−錫合金層又は鉛−錫−カルシウ
ム合金層を一体化し、ついでこれを所定の厚さに圧延し
た後、網目状に展開するエキスパンド加工を施すことを
特徴とする鉛蓄電池用格子体の製造法。
(2) At least one side of a flat rolled material made of a lead-tin-calcium alloy has tin as its main alloying component and its content is 1.
.. Lead characterized by integrating a lead-tin alloy layer or a lead-tin-calcium alloy layer of 5 to 20% by weight, then rolling this to a predetermined thickness, and then subjecting it to an expanding process to develop it into a mesh shape. A method for manufacturing a grid for storage batteries.
(3)扁平圧延素材ならびに、その少なくとも片面に一
体化される鉛−鉛−カルシウム合金層におけるカルシウ
ム含有量が0.01〜0.1重量%である特許請求の範
囲第2項に記載の鉛蓄電池用格子体の製造法。
(3) The lead according to claim 2, wherein the flat rolled material and the lead-lead-calcium alloy layer integrated on at least one side thereof have a calcium content of 0.01 to 0.1% by weight. A method for manufacturing a grid for storage batteries.
(4)カルシウム含有量が0.05重量%である特許請
求の範囲第3項に記載の鉛蓄電池用格子体の製造法。
(4) The method for producing a lattice for a lead-acid battery according to claim 3, wherein the calcium content is 0.05% by weight.
JP59148041A 1984-07-16 1984-07-16 Grid for lead-acid battery and its manufacture Granted JPS6127066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59148041A JPS6127066A (en) 1984-07-16 1984-07-16 Grid for lead-acid battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59148041A JPS6127066A (en) 1984-07-16 1984-07-16 Grid for lead-acid battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS6127066A true JPS6127066A (en) 1986-02-06
JPH0213425B2 JPH0213425B2 (en) 1990-04-04

Family

ID=15443800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148041A Granted JPS6127066A (en) 1984-07-16 1984-07-16 Grid for lead-acid battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS6127066A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213203A1 (en) * 1985-02-26 1987-03-11 Matsushita Electric Industrial Co., Ltd. Grid for lead storage batteries and a method of producing the same
EP0252189A2 (en) * 1986-06-06 1988-01-13 Matsushita Electric Industrial Co., Ltd. Process for producing a grid for use in lead acid batteries
JPS6366854A (en) * 1986-09-09 1988-03-25 Shin Kobe Electric Mach Co Ltd Lead acid battery
JPS63213264A (en) * 1987-02-27 1988-09-06 Shin Kobe Electric Mach Co Ltd Lead storage battery
JPS63244568A (en) * 1987-03-30 1988-10-12 Shin Kobe Electric Mach Co Ltd Lead-acid battery
EP1449269A1 (en) * 2001-09-26 2004-08-25 Elod Gyenge Current collector structure and methods to improve the performance of a lead-acid battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213203A1 (en) * 1985-02-26 1987-03-11 Matsushita Electric Industrial Co., Ltd. Grid for lead storage batteries and a method of producing the same
US4761356A (en) * 1985-02-26 1988-08-02 Matsushita Electric Industrial Co., Ltd. Grid for lead storage batteries
EP0252189A2 (en) * 1986-06-06 1988-01-13 Matsushita Electric Industrial Co., Ltd. Process for producing a grid for use in lead acid batteries
JPS6366854A (en) * 1986-09-09 1988-03-25 Shin Kobe Electric Mach Co Ltd Lead acid battery
JPS63213264A (en) * 1987-02-27 1988-09-06 Shin Kobe Electric Mach Co Ltd Lead storage battery
JPS63244568A (en) * 1987-03-30 1988-10-12 Shin Kobe Electric Mach Co Ltd Lead-acid battery
EP1449269A1 (en) * 2001-09-26 2004-08-25 Elod Gyenge Current collector structure and methods to improve the performance of a lead-acid battery
EP1449269A4 (en) * 2001-09-26 2007-11-28 Power Technology Inc Current collector structure and methods to improve the performance of a lead-acid battery

Also Published As

Publication number Publication date
JPH0213425B2 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
AU2003227501B2 (en) Lead-based alloy for lead-acid battery, substrate for lead-acid battery and lead-acid battery
JP2003520293A (en) Alloys for thin positive grids for lead-acid batteries and methods of manufacturing this grid
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
US5024908A (en) Lead storage battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
JP2003306733A (en) Lead based alloy for lead storage battery, and lead storage battery using the same
JPS6037663A (en) Manufacture of electrode base body for lead storage battery
JPH1197032A (en) Current collector made of aluminum foil for secondary cell
JPH05290857A (en) Manufacture of electrode plate for lead-acid battery
US2694628A (en) Grid metal alloy
JP2002175798A (en) Sealed lead-acid battery
JPH0212386B2 (en)
JPS609061A (en) Manufacture of lead alloy plate for lead storage battery substrate
JPH0326905B2 (en)
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JP4066496B2 (en) Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JP2000195524A (en) Sealed lead-acid battery
JP4972818B2 (en) Method for manufacturing grid for lead-acid battery
JPS58198860A (en) Lead storage battery
JPH07118321B2 (en) Lead acid battery
JPH01143150A (en) Manufacture of electrode plate for lead storage battery
JPS63108667A (en) Manufacture of strap for lead acid battery
JPH0320020B2 (en)
JPH01117272A (en) Lead-acid battery
JPS6191874A (en) Collection body for lead storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term