JPS60187269A - Power recovery controller - Google Patents

Power recovery controller

Info

Publication number
JPS60187269A
JPS60187269A JP59043078A JP4307884A JPS60187269A JP S60187269 A JPS60187269 A JP S60187269A JP 59043078 A JP59043078 A JP 59043078A JP 4307884 A JP4307884 A JP 4307884A JP S60187269 A JPS60187269 A JP S60187269A
Authority
JP
Japan
Prior art keywords
circuit
regeneration
power
rectification
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59043078A
Other languages
Japanese (ja)
Inventor
Masakatsu Ogami
正勝 大上
Shoko Yamamoto
山本 勝公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59043078A priority Critical patent/JPS60187269A/en
Publication of JPS60187269A publication Critical patent/JPS60187269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To continue operating even when a regenerative current abruptly increases due to an instantaneous power interruption or a variation in a load by stopping the regenerative operation for the prescribed period when the regenerative current becomes the specified value or higher. CONSTITUTION:When a regenerative current flows in the amount of the set value or higher of a comparator 14, i.e., of the specified value or higher due to an instantaneous power interruption or a variation in a load, an electric value drive signal is not applied from an electric value switching sequence circuit 12 to amplifiers 181-186 only diring a time decided by the output of a one shoft multivibrator 21. Accordingly, the all transistors Tr1-Tr6 are not closed to stop the regenerative operation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は電力回生制御装置、特に交流電力から直流電
源としての平滑コンデンサへ、また外部から平滑コンデ
ンサを充電する時や停電等によって直流電源側の方が交
流電源側よシ高電位になったときには、直流電源として
の平滑コンデンサから交流電源へと電力を回生ずる電力
回生制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power regeneration control device, particularly a power regeneration control device that converts AC power to a smoothing capacitor as a DC power source, and also when charging a smoothing capacitor from the outside or when a power outage occurs. The present invention relates to a power regeneration control device that regenerates power from a smoothing capacitor serving as a DC power source to an AC power source when the AC power source has a higher potential than the AC power source.

〔従来技術〕[Prior art]

第1図は従来の電力回生制御装置の回路図であシ、第1
図において、1は強制転流のできる電気弁としてのトラ
ンジスタTri〜Tr6とダイオードD1〜D6を互い
に逆並列に接続した複数の複合体Q1〜Q6で構成した
整流兼回生回路、2は整流兼回生回路1の交流側を多相
交流電源3に接続する接続路に設けた交流リアクトル、
4は前記整流兼回生回路1の直流側に並列接続した直流
電源としての平滑コンデンサ、5は前記平滑コンデンサ
4と並列接続した分圧抵抗、6はダイオードD7〜D1
2で構成し、交流側を絶縁トランス22を介して前記多
相交流電源3に接続したブリッジ形整流回路、7.8は
前記ブリッジ形整流回路−6の直流側に並列接続した平
滑コンデンサと分圧抵抗、10は前記分圧抵抗5,8の
出力電圧を加算する加算回路、11は加算回路10の出
力を入力とするハンチング防止用のヒステレシス回路、
12は多相交流電源3の出力を入力し前記複合体Q1〜
Q6と同数の出力端子を有する電気弁開閉順序回路、1
3は前記平滑コンデンサ4から前記多相交流電源3への
回生直流電流を検出する直流変流器、14は直流変流器
13の出力電圧と基準電圧発生源150基準電圧とを比
較する比較回路、161〜166は前記電気弁開閉順序
回路12の各出力端子を入力端子に接続し、他方の入力
端子に前記ヒステレシス回路11の出力端子および前記
比較回路14の出力を入力とするラッチ回路11の出力
端子が接続されたアントゲ−)、181〜186はアン
トゲ−目61〜166の出力を増幅して、前記電気弁と
してのトランジスタTri〜Tr6のベースに供給する
増幅回路である。ここで、電気弁開閉順序回路12、ア
ンドゲート161〜166、増幅回路181〜186と
け電気弁駆動回路を構成している。19は前記平滑コン
デンサ4の直流電圧を交流電圧に変換するインバータ回
路19に接続した交流負荷である。
Figure 1 is a circuit diagram of a conventional power regeneration control device.
In the figure, 1 is a rectification/regeneration circuit composed of a plurality of complexes Q1 to Q6 in which transistors Tri to Tr6 and diodes D1 to D6 are connected in antiparallel to each other as electric valves capable of forced commutation, and 2 is a rectification and regeneration circuit. an AC reactor provided in a connection path connecting the AC side of the circuit 1 to the multiphase AC power supply 3;
4 is a smoothing capacitor as a DC power supply connected in parallel to the DC side of the rectifier/regeneration circuit 1, 5 is a voltage dividing resistor connected in parallel with the smoothing capacitor 4, and 6 is a diode D7 to D1.
2, the AC side is connected to the polyphase AC power supply 3 via the isolation transformer 22, and 7.8 is a smoothing capacitor connected in parallel to the DC side of the bridge rectifier circuit 6. a piezoresistor; 10 is an adder circuit for adding the output voltages of the voltage dividing resistors 5 and 8; 11 is a hysteresis circuit for hunting prevention that receives the output of the adder circuit 10;
12 inputs the output of the multiphase AC power supply 3 and connects the complex Q1 to
Electric valve opening/closing sequence circuit with the same number of output terminals as Q6, 1
3 is a DC current transformer that detects the regenerative DC current from the smoothing capacitor 4 to the multiphase AC power supply 3; 14 is a comparison circuit that compares the output voltage of the DC transformer 13 with the reference voltage of the reference voltage source 150; , 161 to 166 are latch circuits 11 each of which connects each output terminal of the electric valve opening/closing sequence circuit 12 to an input terminal, and whose other input terminal receives the output terminal of the hysteresis circuit 11 and the output of the comparison circuit 14. Reference numerals 181 to 186 denote amplifying circuits to which output terminals are connected, which amplify the outputs of the antagonists 61 to 166 and supply the amplified outputs to the bases of the transistors Tri to Tr6 serving as the electric valves. Here, the electric valve opening/closing sequence circuit 12, AND gates 161 to 166, and amplifier circuits 181 to 186 constitute an electric valve drive circuit. 19 is an AC load connected to an inverter circuit 19 that converts the DC voltage of the smoothing capacitor 4 into AC voltage.

従来の電力回生制御装置は上記のように構成され、分圧
抵抗5の出力電圧が分圧抵抗8の出力電圧よシ低いカ行
時は、ヒステレシス回路11の出力がないため、アンド
ゲート161〜166のいずれからも出力がなく、従っ
て、電気弁としてのトランジスタTri〜Tr6は閉(
導通)されない。
The conventional power regeneration control device is configured as described above, and when the output voltage of the voltage dividing resistor 5 is lower than the output voltage of the voltage dividing resistor 8, there is no output from the hysteresis circuit 11, so that the AND gates 161 to There is no output from any of the transistors 166 and therefore the transistors Tri to Tr6 as electric valves are closed (
conduction) is not established.

一方、負荷変動などによって、第2図aに示すように平
滑コンデンサ4の充電電圧Vcが多相交流電源電圧Vp
(相聞電圧のピーク値)よシ大きくなシ、分圧抵抗5の
出力電圧が分圧抵抗8の出力電圧よシ高くなると、ヒス
テレシス回路11の出力がアンドゲート161〜166
に印加されるため、′電気弁開閉順序回路12の出力が
アンドゲート161〜166、増幅回路181〜186
を介して順次電気弁であるトランジスタTri〜Tr6
のベースに印加される。このとき、トランジスタTri
〜Tr6に第2図すに示す電圧が印加されているため、
トランジスタTri〜Tr6は順次に導通して第2図C
に示す回生電流を流す。この結果、仁の導通したトラン
ジスタを通じて直流電源としてのコンデンサ4側から多
相交流電源3側へ電力を回生する。
On the other hand, due to load fluctuations, as shown in FIG.
When the output voltage of the voltage dividing resistor 5 becomes higher than the output voltage of the voltage dividing resistor 8, the output of the hysteresis circuit 11 becomes higher than the output voltage of the AND gates 161 to 166.
Since the output of the electric valve opening/closing sequence circuit 12 is applied to
The transistors Tri to Tr6, which are electric valves,
is applied to the base of At this time, the transistor Tri
~Since the voltage shown in Figure 2 is applied to Tr6,
The transistors Tri to Tr6 are sequentially turned on and shown in FIG. 2C.
Apply the regenerative current shown in . As a result, power is regenerated from the capacitor 4 side serving as a DC power source to the multiphase AC power source 3 side through the transistor that is turned on.

第3図は3相交流電源の3相出カR,T、Sの区間A、
B、C’、D、E、F’IC対シテ、トランジスタTr
i〜Tr6の開閉順序を示す図で、上記の開閉順序にょ
シ、相間電圧の最も高い相間に回生ずることになる。
Figure 3 shows section A of three-phase outputs R, T, and S of a three-phase AC power supply.
B, C', D, E, F' IC vs. transistor, transistor Tr
This is a diagram showing the opening/closing order of Tr i to Tr6. In the above opening/closing order, regeneration occurs between the phases with the highest phase-to-phase voltage.

しかるに、上記従来の回路構成では、例えば瞬間停電(
以下、瞬停と称す)があった場合、コンデン?4、導通
したトランジスタ、交流リアクトル2、降下トランス9
、交流リアクトル2、降下トランス9、交流リアクトル
2、導通したトランジスタ、コンデンサ4の経路に流れ
る回生電流が規定値以上になると、この回生電流値を検
出した直流変流器13の出力電圧が基準電圧発生源15
の基準電圧よシ高くなシ、比較回路14の出方でラッチ
回路17を作動させてその出方を低下させる。このため
、電気弁駆動回路から電気弁駆動信号の発生がなくなシ
、トランジスタTri〜Tr6の全てが閉(導通)され
なくなって回生動作を停止する。
However, with the above conventional circuit configuration, for example, momentary power outage (
If there is a momentary power outage (hereinafter referred to as a momentary power outage), will the condensation? 4. Conductive transistor, AC reactor 2, drop-down transformer 9
, AC reactor 2, step-down transformer 9, AC reactor 2, conductive transistor, and capacitor 4, when the regenerative current flowing through the path exceeds the specified value, the output voltage of the DC current transformer 13 that detected this regenerative current value becomes the reference voltage. Source 15
When the reference voltage is higher than the reference voltage, the latch circuit 17 is activated by the output of the comparator circuit 14 to lower the output. Therefore, the electric valve drive signal is no longer generated from the electric valve drive circuit, and all of the transistors Tri to Tr6 are no longer closed (conducted), thereby stopping the regeneration operation.

つまシ、回生動作が過電流で停止して瞬停を乗シ切れな
い場合がある。また、何らかの負荷変動で回生電力が急
増した場合にも運転続行ができないという欠点があった
In some cases, the regenerative operation may stop due to overcurrent and be unable to overcome a momentary power outage. Another drawback is that even if the regenerated power suddenly increases due to some kind of load change, operation cannot be continued.

〔発明の概要〕[Summary of the invention]

この発明は係る欠点を改善するためになされたもので、
回生電流が規定値以上になると自動的に所定時間1回生
動作を停止させることによシ、瞬停を乗り切り運転続行
可能、また、負荷変動による回生電流急増時にも運転続
行可能な電力回生制御装置を提案するものである。
This invention was made to improve such drawbacks,
A power regeneration control device that automatically stops regenerative operation for a predetermined period of time when the regenerative current exceeds a specified value, allowing it to survive momentary power outages and continue operation.Also, it can continue operating even when the regenerative current suddenly increases due to load fluctuations. This is what we propose.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の1実施例を示すものであシ、前記第
1図におけるラッチ回路1Tの代りに単安定マルチバイ
ブレータ(以下、ワンショットマルチと称す)21を設
けた以外は該第1図と同一の構成である。なお、第4図
中、点線部分は省略してもよいことを示す。
FIG. 4 shows one embodiment of the present invention, except that a monostable multivibrator (hereinafter referred to as one-shot multi) 21 is provided in place of the latch circuit 1T in FIG. It has the same configuration as the figure. Note that the dotted line portion in FIG. 4 indicates that it may be omitted.

力行動作および回生動作は前記第1図の従来装置と同じ
である。しかし、第5図に示すように、瞬停または何ら
かの負荷変動によって、回生電流がコンパレータ14の
セット値v8以上つまり規定値以上流れると、ワンショ
ットマルチ21の出力(第5図)で決定される時間T1
だけ自動的に回生動作を停止する。従って、上記コンパ
レータ14のセット値を電気弁としてのトランジスタの
定格電流以内に設定しておくことによシ、瞬停時には、
回生停止1回生開始を自動的に繰返して運転停止を生ず
るととがない。なお、第5図中、では回生側の負荷増大
域を示す。
The power operation and regeneration operation are the same as those of the conventional device shown in FIG. However, as shown in Fig. 5, if the regenerative current flows beyond the set value v8 of the comparator 14, that is, above the specified value, due to an instantaneous power failure or some kind of load fluctuation, the output of the one-shot multi 21 (Fig. 5) is determined. Time T1
only automatically stops regeneration operation. Therefore, by setting the set value of the comparator 14 within the rated current of the transistor as an electric valve, in the event of a momentary power failure,
There is no point in automatically repeating regeneration stop and regeneration start to cause an operation stop. In addition, in FIG. 5, the area where the load increases on the regeneration side is shown.

上記時間Tはトランジスタのスイッチングスピードが大
きくなシ、スイッチングロスによ#)トランジスタが破
壊するのを防いでいる。この時間Tは適当でよいが、長
すぎると、コンデンサの充電電圧が高くなって、トラン
ジスタのスイッチング回数が多くなりすぎるので注意を
要する。
The above time T prevents the transistor from being destroyed due to switching loss since the switching speed of the transistor is high. This time T may be any suitable value, but care must be taken because if it is too long, the charging voltage of the capacitor will become high and the number of times the transistor will be switched will become too large.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおシ、回生電流が規定値以上
になると自動的に所定時間2回生動作を停止させること
によシ、瞬停または負荷変動による回生゛電流急増によ
っても運転続行が可能である。
As explained above, this invention automatically stops the regenerative operation for a predetermined period of time when the regenerative current exceeds a specified value, thereby making it possible to continue operation even when the regenerative current suddenly increases due to momentary power outages or load fluctuations. be.

また、回生電流を規定値以上流さないから、電気弁とし
てのトランジスタなどの回路素子の破壊を未然に防止で
きるという効果がある。
Furthermore, since the regenerative current does not exceed a specified value, it is possible to prevent damage to circuit elements such as transistors serving as electric valves.

なお、実施例は多相交流電源として3相交流電源を例示
したが、単相または3相以上の多相であってもよい。ま
た、電気弁としては実施例のトランジスタの他サイリス
タ、電力用MO8FETなどでもよい。さらに、実施例
のブリッジ形整流回路6、平滑コンデンサ7、分圧抵抗
8の代りに別個独立の基準電圧発生回路を用いることも
できる。
In the embodiment, a three-phase AC power source is used as an example of the polyphase AC power source, but it may be a single-phase power source or a polyphase power source having three or more phases. Further, the electric valve may be a thyristor, a power MO8FET, or the like in addition to the transistor of the embodiment. Furthermore, a separate reference voltage generating circuit may be used in place of the bridge rectifier circuit 6, smoothing capacitor 7, and voltage dividing resistor 8 of the embodiment.

実施例は回生動作一時停止のためにブリッジ回路1の電
気弁であるトランジスタの全てを閉(導通)させないよ
うにしているが、対をなすトランジスタ例えばTriと
Tr4 、 Tr2とTr5 、 Tr3とTr6の一
方のみを閉させないようにしてもよい。
In the embodiment, in order to temporarily stop the regenerative operation, all of the transistors that are the electric valves of the bridge circuit 1 are not closed (conducted). Only one side may not be closed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力回生制御装置を示す回路図、第2図
はその回路による回生動作説明図、第3図は電気弁開閉
順序回路の動作説明図、第4図はこの発明の1実施例を
示す回路図、第5図はその回路による回生動作説明図で
ある。 図において、1・・・整流兼回生回路、2・・・交流リ
アクトル、3・・・多相交流電源、4・・・平滑コンデ
ンサ、5,8・・・分圧抵抗、6・・・ブリッジ形整流
回路、り噌61.箭生0ツn7キバスゴ1ノーA−なお
、各図中同一符号は同一または相当部分を示す。 特許出願人 三菱電機株式会社 第1図 、/1 第2図 第3図 A BCDEF A BC 第4図 第6図
Fig. 1 is a circuit diagram showing a conventional power regeneration control device, Fig. 2 is an explanatory diagram of the regeneration operation by the circuit, Fig. 3 is an explanatory diagram of the operation of the electric valve opening/closing sequence circuit, and Fig. 4 is an embodiment of the present invention. FIG. 5 is a circuit diagram showing an example, and is an explanatory diagram of regeneration operation by the circuit. In the figure, 1... Rectifier and regeneration circuit, 2... AC reactor, 3... Multiphase AC power supply, 4... Smoothing capacitor, 5, 8... Voltage dividing resistor, 6... Bridge Shape rectifier circuit, Riso 61. Kyo 0 Tsu n 7 Ki Basu Go 1 No A - Note that the same reference numerals in each figure indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Corporation Figure 1, /1 Figure 2 Figure 3 A BCDEF A BC Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 強制転流のできる電気弁とダイオードを互いに逆並列に
接続した複数の複合体でブリッヂ構成した整流兼回生回
路と、前記整流兼回生回路の交流側を多相交流電源に接
続する接続路に設けた交流リアクトルと、前記整流兼回
生回路の直流側に並列接続した平滑コンデンサと、前記
平滑コンデンサの充電電圧と基準電圧を比較して回生開
始信号を発生する回生開始信号発生回路と、前記回生開
始信号を受けて前記整流兼回生回路の電気弁に順次に開
閉駆動信号を供給する電気弁駆動回路と、前記平滑コン
デンサから前記多相交流電源への回生電流が規定値以上
になったとき、一定時間回生動作を停止させる回生動作
一時停止回路と、を備えたことを特徴とする電力回生制
御装置。
A rectification/regeneration circuit configured as a bridge with a plurality of complexes in which electric valves and diodes capable of forced commutation are connected in antiparallel to each other, and a connection path that connects the AC side of the rectification/regeneration circuit to a multiphase AC power source. an AC reactor, a smoothing capacitor connected in parallel to the DC side of the rectification and regeneration circuit, a regeneration start signal generation circuit that compares the charging voltage of the smoothing capacitor with a reference voltage and generates a regeneration start signal, and the regeneration start signal. an electric valve drive circuit that receives a signal and sequentially supplies an opening/closing drive signal to the electric valves of the rectification and regeneration circuit; A power regeneration control device comprising: a regeneration operation temporary stop circuit that stops a time regeneration operation.
JP59043078A 1984-03-07 1984-03-07 Power recovery controller Pending JPS60187269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043078A JPS60187269A (en) 1984-03-07 1984-03-07 Power recovery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043078A JPS60187269A (en) 1984-03-07 1984-03-07 Power recovery controller

Publications (1)

Publication Number Publication Date
JPS60187269A true JPS60187269A (en) 1985-09-24

Family

ID=12653807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043078A Pending JPS60187269A (en) 1984-03-07 1984-03-07 Power recovery controller

Country Status (1)

Country Link
JP (1) JPS60187269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323582A (en) * 1986-05-21 1988-01-30 コ−ネ・エレベ−タ−・ゲ−エムベ−ハ− Method and apparatus of controlling brake resistance of freouency converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323582A (en) * 1986-05-21 1988-01-30 コ−ネ・エレベ−タ−・ゲ−エムベ−ハ− Method and apparatus of controlling brake resistance of freouency converter

Similar Documents

Publication Publication Date Title
MXPA06014379A (en) Inverter bridge controller implementing short-circuit protection scheme.
JPS61112583A (en) Power converter
JP3237719B2 (en) Power regeneration controller
JPS60187269A (en) Power recovery controller
JP4423949B2 (en) Control device for AC / AC direct conversion device
JPH04138063A (en) Power converter
JPS5837774B2 (en) Inverter no Kadenriyuhogosouchi
JPH07107751A (en) Inverter circuit
JPS6341315B2 (en)
JP3252603B2 (en) Inverter current limit loss increase prevention method
JPH0530756A (en) Converter circuit
JPH0214319Y2 (en)
JPH0546192B2 (en)
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
JPH08331862A (en) Uninterruptible power supply
JPH0724950Y2 (en) Transistor converter
JP2922269B2 (en) Thyristor converter
JPS60187268A (en) Power recovery controller
JPS596158Y2 (en) Inverter device
JPS63228916A (en) Air harmonizer protector
JPS6350957B2 (en)
JPH0614561A (en) Current detecting method for voltage type inverter unit
JPS6364573A (en) Protection circuit of inverter
JPS62126870A (en) Protecting circuit for power converter circuit
JPH1052051A (en) Pulse width modulation converter device