JPS60187187A - Solid-state image pickup device and its driving method - Google Patents

Solid-state image pickup device and its driving method

Info

Publication number
JPS60187187A
JPS60187187A JP59043337A JP4333784A JPS60187187A JP S60187187 A JPS60187187 A JP S60187187A JP 59043337 A JP59043337 A JP 59043337A JP 4333784 A JP4333784 A JP 4333784A JP S60187187 A JPS60187187 A JP S60187187A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion elements
transferred
ccd
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59043337A
Other languages
Japanese (ja)
Inventor
Takao Kuroda
黒田 隆男
Sakaki Horii
堀居 賢樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP59043337A priority Critical patent/JPS60187187A/en
Publication of JPS60187187A publication Critical patent/JPS60187187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a high horizontal resolution by a small number of picture elements, by placing positions of the horizontal direction belonging to each adjacent row of plural photoelectric converting elements arranged in a shape of matrix, so that they are different from each other. CONSTITUTION:Signal charges accumulated in each photoelectric converting element 5 are transferred simultaneously to a vertical transfer CCD(V-CCD) 6 as shown with an arrow, and thereafter, furthermore transferred to a horizontal transfer CCD(H-CCD) 7. In this case, a signal charge obtained from photoelectric converting elements of two rows which are adjacent to each other in the upper and lower parts is transferred to the H-CCD7, transferred successively to a charge detector 8, and detected and outputted. That is to say, a signal of the two row portion is read out in one horizontal period, and it becomes what is called a simultaneously two row read-out method. Accordingly, a space sampling frequency in the horizontal direction becomes two times, and the horizontal resolution is improved remarkably.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置およびその駆動方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device and a method for driving the same.

従来例の構成とその問題点 固体撮像素子は、撮像管と比較して多くの利点を有する
ため盛んに開発が進められてきた。なかでもインターラ
イン転送方式CCD(以下IT−CCDと略記する。)
は原理的に低雑音であるため特に有望視されている。
Conventional Structures and Problems Solid-state imaging devices have been actively developed because they have many advantages over image pickup tubes. Among these, interline transfer type CCD (hereinafter abbreviated as IT-CCD)
is considered particularly promising because it has low noise in principle.

以下に従来の■T−CCDの全体構成図を示す第1図を
用いて説明する。
A description will be given below with reference to FIG. 1, which shows the overall configuration of a conventional T-CCD.

この構成において光電変換素子1のそれぞれに蓄7債さ
れた信号電荷は矢印のごとく垂直転送CCD2(以下V
 −C−CDと略記する。)へ転送された後、史に水平
転送CCD3 (以下H−CCDと略記する。)へ転送
され、電荷検知部4へlllll次転送され、検知、出
力される。これがIT−CCUの基本動作である。この
様に光電変換素子1を正方行列状に配列した場合、素子
の水平解像度はその水平方向の画素数で定まる。例えば
、現状よく使われる水平画素数380程度の素子では水
平解像度は28OTV本程度であり、水平解像度の向上
が望捷れている。
In this configuration, the signal charges stored in each of the photoelectric conversion elements 1 are transferred to the vertical transfer CCD 2 (hereinafter referred to as V
It is abbreviated as -C-CD. ), then transferred to the horizontal transfer CCD 3 (hereinafter abbreviated as H-CCD), and then transferred to the charge detection section 4, where it is detected and output. This is the basic operation of the IT-CCU. When the photoelectric conversion elements 1 are arranged in a square matrix in this manner, the horizontal resolution of the elements is determined by the number of pixels in the horizontal direction. For example, the horizontal resolution of a currently commonly used device with a horizontal pixel count of about 380 is about 28 OTV lines, and there is great hope for an improvement in the horizontal resolution.

解像度を高める方法としては画素数を増せばよいが、微
細加工技術上の問題や、感度、ダイナミックレンジの低
下といった問題があるため必ずしも簡単に実現できない
One way to increase resolution is to increase the number of pixels, but this is not always easy to achieve because of problems with microfabrication technology and problems such as reductions in sensitivity and dynamic range.

発明の目的 本発明は、感度、ダイナミックレンジ等の’l’6”l
<l。
Purpose of the Invention The present invention provides improvements in sensitivity, dynamic range, etc.
<l.

を殆んど犠性にすることなく、水平解像度の高いインタ
ーライン転送方式COD固体撮像装置、およびその駆動
方法を提供するものである。
The present invention provides an interline transfer type COD solid-state imaging device with high horizontal resolution and a method for driving the same without sacrificing much.

発明の構成 上記目的を達成するためVこ、本発明は行列状に配列さ
れた複数の光電変換素子の互いに隣接した行に属する前
記光電変換素子の水平方向の位置が互いに異なるように
配置されているとともに垂直転送手段が蛇行状に配置さ
れた固体撮像装置及びその駆動方法であって、少い画素
数で高い水平解像度を得ることができる。
Structure of the Invention In order to achieve the above object, the present invention provides a plurality of photoelectric conversion elements arranged in a matrix, in which the photoelectric conversion elements belonging to mutually adjacent rows are arranged such that the positions in the horizontal direction are different from each other. The present invention provides a solid-state imaging device in which vertical transfer means are arranged in a meandering manner, and a method for driving the same, whereby high horizontal resolution can be obtained with a small number of pixels.

実姉例の説明 本発明の一実殉例で垂直画素数6.水平画素数4の場合
の全体構成図を示す第2図を用いて説明する。本実施例
では同図に示すように光電変換素子5を一行おきに水平
方向に半画素分ずらせた配列に在っている。(以下画素
ずらし配列と略記する。)各光電変換素子5に蓄積され
た信号電荷は矢印の如く一斉(lこV−CCD6に転送
された後、更VこH−CCD7へ転送される。このとき
、」二下で力いに隣(とじた工費の光電変換子から得ら
れた信号電荷がHCCDへ転送され順次電荷検知器8へ
転送され、検知、出力されろ。すなわち、工費分の信号
が一水−ゝ1111JJ間中に読み出され、いわゆる同
時工費読み出し法となる。同じ水平画素数の場合画素ず
らし配列では正方配列に比べて、水平方向の空間サンプ
リング1^J波数が2倍になり水平庁c像度が大11e
に向−1ニすることがわかる。
Explanation of a practical example This is a practical example of the present invention with a vertical pixel count of 6. This will be explained with reference to FIG. 2, which shows an overall configuration diagram when the number of horizontal pixels is 4. In this embodiment, as shown in the figure, the photoelectric conversion elements 5 are arranged in an array in which every other row is shifted by half a pixel in the horizontal direction. (Hereinafter abbreviated as pixel shifted arrangement.) The signal charges accumulated in each photoelectric conversion element 5 are transferred to the V-CCD 6 and then further transferred to the H-CCD 7 as shown by the arrow. At this time, the signal charge obtained from the photoelectric converter that was closed next to the power source is transferred to the HCCD, and sequentially transferred to the charge detector 8, where it is detected and output. In other words, the signal charge corresponding to the construction cost is It is read out during 1111JJ from 1st water, which is the so-called simultaneous construction cost readout method.For the same number of horizontal pixels, the horizontal spatial sampling 1^J wave number is doubled in the pixel shifted array compared to the square array. The horizontal magnification is 11e.
It can be seen that the direction is -1 d.

この実姉例における更に詳しい構造を示す第3図を用い
て説明する。同図は、六つの光電変換素子を含みv−c
cDとして4相駆動埋め込みチ4・ンネルCCOを用い
だ撮像部の一部荀示している。
The detailed structure of this actual sister example will be explained using FIG. 3. The figure includes six photoelectric conversion elements, v-c
A portion of the imaging unit is shown using a four-phase drive embedded channel CCO as the CD.

同図で10はチトンネルストッパー等による分1す11
領域、12−1と12−2は一層目のポリシリコンで形
成され、4相駆動に用いる4つのクロックパルスφ■1
.φ■2.φV3tφV41のうちのφV2が印加され
る転送電極である。同じ(14−O。
In the same figure, 10 is the division by tunnel stopper etc. 11
Regions 12-1 and 12-2 are formed of the first layer of polysilicon, and four clock pulses φ■1 used for four-phase drive
.. φ■2. Of φV3tφV41, φV2 is the transfer electrode to which voltage is applied. Same (14-O.

14−1は一層目ポリシリコンで形成され、φV4が印
加される転送電極である。11−1.11−2及び13
−1は二層目ポリシリコンで形成され、それぞれφV1
.及びφV3が印加される。光電変換素子16,17.
18に蓄積されていた信月電荷は、φV2?φv4を読
み出し用の旨い′重圧状態とすることによって、表面チ
ャンネルゲート領域19が開き、それぞれ右下の転送電
極12−1.14−1.12−2のチャンネルに転送さ
れる3、このときも実姉例の様に、全ての光電変換素子
G′こ隣4イシた表「r11チャンネルゲート領域19
が同一方向にあると各光′iL変換変換動らの転送条件
が雪価Vこなり、フリッカ−等が発生しにくい。撮像素
子で(d通常垂直解罹度を向上さぜるため(Cインター
レース走査を行なう。本実施例では、例えばAフィール
ドでは光電変換素子16と17の二つの行を一水千期間
に読み出し、その次の一水平期間には光′電変換素子1
8とその下の二つの行を読み出すという様に工性ずつを
一水平期間に読み出してゆく。一方Bフィールドでは光
電変換素子16とその上の杓を一水゛r期間中にHしみ
出1−1次の一水平期間には光電変換素子17ど18の
工性を読み出す。以トのよう(fこフィールドごとに一
水≦に期間に読み出すに下工費のホ1■み合わせを考え
ることによってインターレース走査を実行する。各光電
変換素子から信づ電荷をV−CCDのチャンネルに転送
する寸では、AB共同じ駆jJjυであるが以後のV−
CODの駆動はフィールドによって異なる。その翳合の
jj47動パルスの一例を第4図に示して説明する。同
図で20i:パフイールドにおける光′屯変摸索イから
の転送11421はBフィールドにおける光電変換素子
からの転送時、22r1¥r両方向へ一般転送する時の
j、jig勤パルス例である。パフイールドでd。
14-1 is a transfer electrode formed of first layer polysilicon and to which φV4 is applied. 11-1.11-2 and 13
-1 is formed of second layer polysilicon, and each φV1
.. and φV3 are applied. Photoelectric conversion elements 16, 17.
The Shinzuki charge accumulated in 18 is φV2? By putting φv4 under a good pressure state for reading, the surface channel gate region 19 opens and the signals are transferred to the channels of the lower right transfer electrodes 12-1, 14-1, and 12-2. As in the real sister example, all the photoelectric conversion elements G'
If they are in the same direction, the transfer conditions for each light 'iL conversion movement will be different from the snow value V, and flicker etc. will be less likely to occur. In this embodiment, for example, in the A field, two rows of photoelectric conversion elements 16 and 17 are read out in a period of 1,000 seconds. In the next horizontal period, the photoelectric conversion element 1
8 and the two lines below it are read out one by one in one horizontal period. On the other hand, in the B field, the photoelectric conversion elements 17 and 18 are read out during one horizontal period of H seepage from the photoelectric conversion element 16 and the ladle thereon during one water period. Interlaced scanning is performed by considering the combination of construction costs to read out each field in a period of ≤ 1 as described below. Charges transmitted from each photoelectric conversion element are transferred to the V-CCD channel. In the dimension transferred to , both AB and JJjυ are the same, but the subsequent
The driving of COD differs depending on the field. An example of the jj47 motion pulse of this combination is shown in FIG. 4 and will be explained. In the same figure, 20i: Transfer from the optical conversion element in the puff field 11421 is an example of j, jig pulses when transferring from the photoelectric conversion element in the B field and general transfer in both directions of 22r1\r. d in puff field.

φV2とφV4への最大’@ F、Lの印)711時に
光電変換素子から1舌号電荷をφV2とφV4を印加す
る転送電極のチャンネルに転送した後、φV40チヤン
ネルにあっ/こ伯創電荷を上の行のφV2とφV3を印
加する電極のチャンネルへ転送する。同じくBフィール
ドでは光電変換素子から転送した後φ■4が印加される
電極のチャンネルにあったイハ号電荷を一行下のφV2
とφV3が印加される転送′I−z極のチャンネルに転
送する。第3図に12111.て説明すると、パフイー
ルドでは転送電極14−1のチャンネルにある信号電荷
が転送電極12−1と13−1のチャンネルに転送され
る。同じくBフィールドては転送電極14−1の下にあ
る信−弓電荷か転送電極12−2及0:12−2の下の
φV3が印加される転送電極のチャンネル(/C転送さ
れる。このことは転送電極j4−0のチャンネルVCあ
る信け11−y i7rか転送電極12−1と13−1
のチャンネル(で転送される。このようにパフイールド
と13フイールドでに1上下に隣接する二つの行の組み
合わせを変えた光電変換素子から得られた(Pj ”i
 7’X荷がφV2とφV3が印加される転送電極のチ
ャンネルに蓄積された状態になる。
Maximum to φV2 and φV4 (marked by F, L) At 711 hours, after transferring the 1-signal charge from the photoelectric conversion element to the channel of the transfer electrode to which φV2 and φV4 are applied, the φV40 channel receives an A/Kohaku creation charge. φV2 and φV3 in the upper row are transferred to the channels of the applied electrodes. Similarly, in the B field, after being transferred from the photoelectric conversion element, the Ih charge that was in the channel of the electrode to which φ■4 is applied is transferred to φV2 one row below.
and φV3 are applied to the transfer 'I-z pole channel. 12111 in Figure 3. To explain, in the puff field, signal charges in the channel of the transfer electrode 14-1 are transferred to the channels of the transfer electrodes 12-1 and 13-1. Similarly, in the B field, the signal charge under the transfer electrode 14-1 is applied to the transfer electrode channel (/C) to which φV3 under the transfer electrode 12-2 and 0:12-2 is applied. I believe that the channel VC of transfer electrode j4-0 is 11-y i7r or transfer electrodes 12-1 and 13-1.
(Pj ”i
The 7'X charge is accumulated in the channel of the transfer electrode to which φV2 and φV3 are applied.

上Vこ述べた実姉例ではV−CODの最大転送電荷量を
大きくとるためφV2とφV3が印加される転送電極の
チャンネルに蓄積されているが、φV1とφV21φV
2とφV31φv3とφ!4.φv4とφV1 とどの
組合わせでもbJ能である。
In the above example, in order to increase the maximum transfer charge amount of V-COD, φV2 and φV3 are accumulated in the channel of the transfer electrode to which they are applied, but φV1 and φV21φV
2 and φV31φv3 and φ! 4. Any combination of φv4 and φV1 has bJ function.

更に上の紹合わせのそれぞれに対し、V−CCDの」°
μ終転送電4;k(H−CCDの直前)がそれぞれφV
49φV1?φV2.φV3 ?であれはV−CCDと
H−CCD (D Jf2界にV−CCDから、1[−
CCD ヘの11シ;送を制御卸するための渦°別な′
1Lj(−+は不安である。
Furthermore, for each of the above introductions, V-CCD's
μ final transfer voltage 4; k (just before H-CCD) is φV
49φV1? φV2. φV3? That is V-CCD and H-CCD (D Jf2 field from V-CCD, 1[-
11. Separate vortices for controlling the feed to the CCD
1Lj (-+ means anxiety.

i/ζ最J(転送電荷)+4を1“;9す必要がなけれ
ば、φV2又はφV4だけでもかまわ々い。
If it is not necessary to increase i/ζ maximum J (transfer charge) + 4 by 1'', it is sufficient to use only φV2 or φV4.

以上のようにφV2とφV3にM!6された工費分のf
計づ電彷J附、水平帰線期間中に平面方向に一段ずつ転
送さね、るとともにV−CCDの#終段に蓄積されてい
た信号電荷υよH−CC’l)に転送され、H−CCD
Iyこjiすく送さ、11だ信号電荷は続く一水・1′
−期間に胴次市、4“[検知器へも、送さJtて検知出
力される。
As mentioned above, M! to φV2 and φV3! 6 f of the construction cost
During the horizontal retrace period, the signal charge υ accumulated in the final stage of V-CCD is transferred to H-CC'l), H-CCD
Iy this is sent quickly, 11 signal charges continue 1 water 1'
- During the period, it was sent to the detector and output as a detection output.

とのように、本発明りこよれは一水乎期間中に素子の水
)1/方向の画素数の2倍のサンフリンク周波数の信−
じかイ好られ水平解像灰が著しく向上する。
As shown in the above, the present invention is capable of transmitting a signal with a Sunflink frequency twice as many as the number of pixels in the water direction of the element during one water period.
The horizontal resolution is significantly improved.

」メ十の説明てはV−CCDは4相、駆φbであったが
2相、駆動でも本発明の主旨に沿った内容汀実現゛2で
きる。また、ポリシリコン二層溝j−4で説明したが、
微S加工技術上煎しい場合は、例えに1転送電極11−
1.11−2は二層目のポリノリコンで形成され、13
−1id二層目のポリシリコンで形成される構造りこし
てもか捷わない。
In the above explanation, the V-CCD is a four-phase drive φb, but it is also possible to realize the contents according to the gist of the present invention with a two-phase drive. Also, although it was explained using the polysilicon double layer groove j-4,
If the micro S processing technology is advanced, for example, 1 transfer electrode 11-
1.11-2 is formed from the second layer of polynolycone, 13
-1id The structure formed from the second layer of polysilicon does not deteriorate even if it is reused.

以上の説明はどんな基扱上に素子か形成されでいるかr
↓述べていないが、pJI!半樽体)JL板上VC設け
られたnチャンネル素子、もしくはn塑゛1〈心棒基板
上に形成されたいわゆるpウェル内に設けら ゛れだn
チャンネル素子のどちらもLiJ能である。またこの極
性を逆にしたpチャンネル素7ももちろん可能である。
The above explanation explains on what basis the element is formed.
↓Although not mentioned, pJI! (Half-barrel body) JL N-channel device provided with VC on the board, or n-channel device (provided in the so-called p-well formed on the mandrel substrate)
Both channel elements are LiJ functional. Of course, a p-channel element 7 with the polarity reversed is also possible.

寸だJTi:的転送方手段として′i[暮1重結合・素
子の1易合を説明したが、BBD等、他の転送手段でも
よい。
JTi: As a means of transferring data, we have explained the simple case of a single bond/element, but other transfer means such as BBD may be used.

寸だ、光電変換素子からの読み出し手段としてMOSF
ET VCよるスイッチを用い、垂直転送手段として金
属層を用いたいわゆるMOS型の受光部を有するMOS
型、CPD型、その他の固体撮像素子においでも有効で
ある。
In fact, MOSF is used as a reading means from photoelectric conversion elements.
ET A MOS that uses a VC switch and has a so-called MOS type light receiving section that uses a metal layer as a vertical transfer means.
It is also effective for solid-state imaging devices such as type, CPD type, and others.

発明の効宋 以上のように本発明は、行列状に配列された複数の光電
変換素子の互いに隣接した行に属する前記光電変換素子
の水平方向の位1!が互いに異なる第 ように配置されているとともに、垂直転送手段が蛇行状
に配置ffされていることによって少い画素数で高い水
平M’l像度を得ることができその工業」二の価値は大
きい。
EFFECTS OF THE INVENTIONSONG As described above, the present invention provides a horizontal position 1! of the photoelectric conversion elements belonging to mutually adjacent rows of a plurality of photoelectric conversion elements arranged in a matrix. The vertical transfer means are arranged in different directions, and the vertical transfer means are arranged in a meandering manner, so that a high horizontal M'l image resolution can be obtained with a small number of pixels. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図附−介来例を説明するだめの概略図、第2図は本
発明の実姉例の全体構成図、第31凶は本発明の実砲例
をすJに詳しく説明するだめの部分Ft4成図、第4図
は本発明による519ス動パルス例を示すパルス図であ
る。 5・・・・・光電変換素子、6・・・・短面転送CCD
。 7 ・・水51(転送CCD、8・・・・・・電荷検知
部、1Q・・・・・・分1□;4[r領域、1−1−1
.11−2.12−1゜12−2.13−j 、14−
0 、14−1 ・・・4相、駆動CODの各転送電極
、16,17.18−・・・・光電変換素子、19・・
・表面チャンネル領域、20.21.22・・・・・・
駆動ハルス例。 1図 ? 第 2 図 6 に 7 第 31図
Fig. 1 is a schematic diagram for explaining an example of the invention, Fig. 2 is an overall configuration diagram of an actual sister example of the present invention, and Fig. 31 is a schematic diagram for explaining the actual gun example of the present invention in detail. Ft4 diagram, FIG. 4 is a pulse diagram showing an example of 519 motion pulses according to the present invention. 5...Photoelectric conversion element, 6...Short surface transfer CCD
. 7...Water 51 (transfer CCD, 8...charge detection section, 1Q...minute 1□; 4 [r area, 1-1-1
.. 11-2.12-1゜12-2.13-j, 14-
0, 14-1...4 phase, each transfer electrode of drive COD, 16, 17.18-...photoelectric conversion element, 19...
・Surface channel area, 20.21.22...
Driving Hals example. Figure 1? Figure 2 Figure 6 to 7 Figure 31

Claims (5)

【特許請求の範囲】[Claims] (1)行列状(fこ配列された複数の光電変換素子と、
この光電変換素子に蓄積された信号電荷を垂直方向に転
送する手段を有し、たがいに隣接した行に属する前記光
電変換素子の水平方向の位置が互いに異なるよう1(配
置されるとともに、前記垂直方向に転送する手段が蛇行
状に配置されていることを特徴とする固体撮像装置。
(1) A plurality of photoelectric conversion elements arranged in a matrix (f),
The photoelectric conversion elements have means for vertically transferring the signal charges accumulated in the photoelectric conversion elements, and the photoelectric conversion elements belonging to adjacent rows are arranged so that the horizontal positions of the photoelectric conversion elements are different from each other, and the vertical A solid-state imaging device characterized in that means for transmitting data in a direction is arranged in a meandering manner.
(2)光電変換素子−もしくは垂直方向ゐ転送する手段
が垂直方向に対し90度以下の角度をもつ辺を有すると
七を特徴とする特Wr1箔求の範I’11第1 、fJ
i記載の固体撮像装置。
(2) The photoelectric conversion element or the means for vertically transferring data has a side having an angle of 90 degrees or less with respect to the vertical direction.
The solid-state imaging device according to i.
(3)光電変換素子から信号電荷を転送する手段が全て
の前記光電変換素子に対し同一方形に形成されているこ
とを特徴とする特許請求の範囲第1項もしくは第2項に
記載の固体撮像装置。
(3) The solid-state imaging device according to claim 1 or 2, wherein the means for transferring signal charges from the photoelectric conversion elements is formed in the same shape for all the photoelectric conversion elements. Device.
(4)垂直に転送する手段が電荷結合素子によって構成
されていることを特徴とする特許請求の範囲第1項、第
2項もしくは第3項に記載の11J・1体撮像装置。
(4) The 11J one-piece imaging device according to claim 1, 2, or 3, wherein the vertical transfer means is constituted by a charge-coupled device.
(5)行列状に配列された複数の光電変摸索rとこの光
電変換素子に蓄積された信号型Aを垂直方向に転送する
手段を有し、たがいに隣接した行に属する前記光電変換
素子の水モ方向のfi′1.、 i@(が力いに異なる
ように配置されるとともに、前記了1j自刃向に転送す
る手段として電?Wr結合素lを有しこの電荷結合素子
が蛇イア状に配置されている固体撮像素子の全ての前記
光電変換素子に蓄積された(7p−、?屯fifを前記
電荷結合素子に転送された状態(lζし7だ後、全ての
11J配信f4.71: 、Q:rが同一の駆動パルス
が印加される転送電4硯のチャンネルに転送すると吉を
・′1ヶ1″;□りとする固体撮像装置の駆動方法。
(5) It has a plurality of photoelectric converters r arranged in a matrix and a means for vertically transferring the signal type A accumulated in the photoelectric conversion elements, and the photoelectric conversion elements belonging to adjacent rows are connected to each other. fi′1 in the water direction. , i@( are arranged in different directions, and the charge-coupled devices are arranged in a serpentine shape. The state (lζ and 7, then all 11J distribution f4.71:, Q:r are the same) accumulated in all the photoelectric conversion elements of the device A method for driving a solid-state imaging device in which a transfer voltage is transferred to four channels to which a driving pulse is applied to make the signal ``1 piece 1'';
JP59043337A 1984-03-06 1984-03-06 Solid-state image pickup device and its driving method Pending JPS60187187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043337A JPS60187187A (en) 1984-03-06 1984-03-06 Solid-state image pickup device and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043337A JPS60187187A (en) 1984-03-06 1984-03-06 Solid-state image pickup device and its driving method

Publications (1)

Publication Number Publication Date
JPS60187187A true JPS60187187A (en) 1985-09-24

Family

ID=12661020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043337A Pending JPS60187187A (en) 1984-03-06 1984-03-06 Solid-state image pickup device and its driving method

Country Status (1)

Country Link
JP (1) JPS60187187A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266869A (en) * 1986-05-15 1987-11-19 Nippon Hoso Kyokai <Nhk> Solid-state image sensing device
JPS6489363A (en) * 1987-09-29 1989-04-03 Toshiba Corp Solid state image sensing device
JPH05326913A (en) * 1992-05-20 1993-12-10 Sharp Corp Solid-state image sensing device
US5488239A (en) * 1994-07-14 1996-01-30 Goldstar Electron Co., Ltd. Solid state image sensor with shaped photodiodes
US5656835A (en) * 1992-06-01 1997-08-12 Matsushita Electric Industrial Co., Ltd. Solid state imager and its driving method
US5793071A (en) * 1996-09-27 1998-08-11 Kabushiki Kaisha Toshiba Solid-State imaging device
JP2001244450A (en) * 2000-02-29 2001-09-07 Fuji Film Microdevices Co Ltd Solid-state image pick-up device
JP2002043559A (en) * 2000-07-21 2002-02-08 Fuji Film Microdevices Co Ltd Solid-state imaging device and driving method thereof
US6674094B2 (en) 2001-06-20 2004-01-06 Kabushiki Kaisha Toshiba CMOS image sensor
US8208052B2 (en) 2008-12-19 2012-06-26 Panasonic Corporation Image capture device
US8253818B2 (en) 2008-10-02 2012-08-28 Panasonic Corporation Pixel shift type imaging device
US8537256B2 (en) 2009-10-07 2013-09-17 Panasonic Corporation Image pickup device and solid-state image pickup element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266869A (en) * 1986-05-15 1987-11-19 Nippon Hoso Kyokai <Nhk> Solid-state image sensing device
JPS6489363A (en) * 1987-09-29 1989-04-03 Toshiba Corp Solid state image sensing device
JPH05326913A (en) * 1992-05-20 1993-12-10 Sharp Corp Solid-state image sensing device
US5656835A (en) * 1992-06-01 1997-08-12 Matsushita Electric Industrial Co., Ltd. Solid state imager and its driving method
US5488239A (en) * 1994-07-14 1996-01-30 Goldstar Electron Co., Ltd. Solid state image sensor with shaped photodiodes
US5793071A (en) * 1996-09-27 1998-08-11 Kabushiki Kaisha Toshiba Solid-State imaging device
JP2001244450A (en) * 2000-02-29 2001-09-07 Fuji Film Microdevices Co Ltd Solid-state image pick-up device
JP2002043559A (en) * 2000-07-21 2002-02-08 Fuji Film Microdevices Co Ltd Solid-state imaging device and driving method thereof
US6674094B2 (en) 2001-06-20 2004-01-06 Kabushiki Kaisha Toshiba CMOS image sensor
US8253818B2 (en) 2008-10-02 2012-08-28 Panasonic Corporation Pixel shift type imaging device
US8208052B2 (en) 2008-12-19 2012-06-26 Panasonic Corporation Image capture device
US8537256B2 (en) 2009-10-07 2013-09-17 Panasonic Corporation Image pickup device and solid-state image pickup element

Similar Documents

Publication Publication Date Title
US4816916A (en) CCD area image sensor operable in both of line-sequential and interlace scannings and a method for operating the same
JPS6153766A (en) Interline-type electric charge transferring image pick-up sensor
US5539536A (en) Linear imaging sensor having improved charged transfer circuitry
US4803710A (en) Storage registers with charge packet accumulation capability, as for solid-state imagers
JPS60187187A (en) Solid-state image pickup device and its driving method
US4581652A (en) Charge transfer device
JP2838611B2 (en) CCD image element
US4443818A (en) Solid-state imaging device
US5748232A (en) Image sensor and driving method for the same
JP2008512052A (en) Image sensor for still or video photography
JP3102557B2 (en) Solid-state imaging device and driving method thereof
US4862487A (en) Solid-state imaging device
JP2856854B2 (en) Solid-state imaging device
EP0520605B1 (en) A solid-state imaging device and a method for driving same
EP0522436B1 (en) CCD linear sensor
JPH0522667A (en) Solid-state image pickup device
JP3397151B2 (en) Driving method of solid-state imaging device
JP2017103575A (en) Two-dimensional ccd imaging apparatus
JP3057898B2 (en) Solid-state imaging device and driving method thereof
JPS61269368A (en) Solid-state image pickup element
JPS59128876A (en) Solid-state image pickup device
JPS6258593B2 (en)
JP2630492B2 (en) Solid-state imaging device
JPH11331706A (en) Solid-state image-pickup element, its drive method and camera system
JPH06343143A (en) Driving method of solid-state image pickup element