JPS6018620A - Ball for bearing use - Google Patents

Ball for bearing use

Info

Publication number
JPS6018620A
JPS6018620A JP59083682A JP8368284A JPS6018620A JP S6018620 A JPS6018620 A JP S6018620A JP 59083682 A JP59083682 A JP 59083682A JP 8368284 A JP8368284 A JP 8368284A JP S6018620 A JPS6018620 A JP S6018620A
Authority
JP
Japan
Prior art keywords
zirconia
ball
sintered body
tetragonal
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59083682A
Other languages
Japanese (ja)
Inventor
Yoshiki Masaki
孝樹 正木
Keisuke Kobayashi
小林 啓佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59083682A priority Critical patent/JPS6018620A/en
Publication of JPS6018620A publication Critical patent/JPS6018620A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To make mechanical strength, fatigueless abrasion resistance and durability all improvable, by manufacturing a ball for bearing use with a zirconia sintered body containing 5-70mol% of tetragonal zirconia consisting of cubic zirconia and the tetragonal zirconia. CONSTITUTION:A zirconia sintered body forming a bearing ball is one that makes both cubic and tetragonal zirconia into coexistence in a way of dissilving these oxides such as calcia, yttria, ytterbia, magnesia, lanthania, strontia, etc., in zirconia for a solid solution as a stabilizer. This zirconia sintered body is made up so as to contain 5-70mol% of tetragonal zirconia in design. With this constitution, the tetragonal zirconia is transformed into such a zirconia substance having a monoclinic system crystal structure whereby a compressive stress field is formed there, thus elastic strain energy by the mechanical force is well absorbed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、ジルコニア焼結体からなるベアリング用ボ
ールに関り゛る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a bearing ball made of a zirconia sintered body.

(ロ)従来の技術 ベアリング用ボール(以下、ボールという)はボールベ
アリングに使用されるもので、高荷重の下で、しかもあ
る程度摺動しながら使用されるために高い殴械的強度と
耐疲労摩耗性が要求されている。そのようなボールは、
従来、はとんど軸受鋼で作られている。軸受鋼製のボー
ルは、機械的強度や耐疲労摩耗性が比較的高く、高荷重
にも耐え得るという利点がある反面、熱的安定性が著し
く劣り、高温、高速下で使用するど硬庚が低下したり、
大きく熱膨張して寸法安定性が失われるという欠点があ
る。
(b) Conventional technology Balls for bearings (hereinafter referred to as balls) are used in ball bearings, and because they are used under high loads and while sliding to some extent, they have high mechanical strength and fatigue resistance. Abrasion resistance is required. Such a ball is
Traditionally, bearings are mostly made of bearing steel. Balls made of bearing steel have relatively high mechanical strength and fatigue wear resistance, and have the advantage of being able to withstand high loads. However, on the other hand, they have significantly poor thermal stability and cannot be used at high temperatures or high speeds. decreases or
The drawback is that it undergoes large thermal expansion and loses dimensional stability.

−13、近年、炭化ケイ素や窒化ケイ素、ノフルミナか
らなるボールも提案されている。しかしながら、これら
の、いわゆるセラミックス製ボールは、機械的強度、特
に靭性が劣るために脆く、使用中に欠けたり割れを発生
しやづいという、ベアリング用部材として致命的な欠点
をもっている。また、耐疲労摩耗性もそれほど高くない
-13. In recent years, balls made of silicon carbide, silicon nitride, and noflumina have also been proposed. However, these so-called ceramic balls are brittle due to poor mechanical strength, especially toughness, and are prone to chipping or cracking during use, which is a fatal drawback as a bearing member. Furthermore, the fatigue wear resistance is not so high.

(ハ)発明が解決しようとする問題点 この発明は、従来のボールの上記欠点を解決し、機械的
強度や耐疲労摩耗性が高く、耐久性が優れているばかり
か、熱的安定性の高いボールを提供することを目的とし
ている。
(c) Problems to be solved by the invention This invention solves the above-mentioned drawbacks of conventional balls, and not only has high mechanical strength, high fatigue wear resistance, and excellent durability, but also has excellent thermal stability. The aim is to provide a high ball.

(ニ)問題点を解決するための手段 上記目的を達成するためのこの発明は、立方晶系の結晶
構造をもつジルコニア(以下、立方晶ジル」ニアという
)と正方晶系の結晶構造をもつジルコニア(以下、正方
晶ジル6ニアという)が共・ 存して83す、かつ正方
晶ジルコニアが5〜70モル%含まれているジルコニア
焼結体からなるベアリング用ボールを特徴とりるbので
ある。
(d) Means for Solving the Problems In order to achieve the above object, the present invention is based on zirconia having a cubic crystal structure (hereinafter referred to as cubic zirconia) and zirconia having a tetragonal crystal structure. It features a ball for a bearing made of a zirconia sintered body in which zirconia (hereinafter referred to as tetragonal zirconia) coexists and contains 5 to 70 mol% of tetragonal zirconia. .

この発明をさらに詳細に説明づるに、この発明のボール
は、上述したような、特定の結晶構造をもつジルコニア
焼結体(以下、焼結体という)からなっている。Jなわ
ち、その焼結体は、ジルコニアにカルシア、イツトリア
、インテリビア、マグネシア、ランタニア、ストロンチ
ア、カルシア・マグネシア、マグネシア゛・イツトリア
、カルシア・マグネシア・イン1へリアなどの酸化物を
安定化剤として固溶させることににす、立方晶ジルコl
ニアと正方品ジルコニアを共存けじめICものである。
To explain the present invention in more detail, the ball of the present invention is made of a zirconia sintered body (hereinafter referred to as a sintered body) having a specific crystal structure as described above. In other words, the sintered body is made by adding a stabilizer to zirconia with an oxide such as calcia, yttria, intellivia, magnesia, lanthania, strontia, calcia-magnesia, magnesia-yttria, calcia-magnesia-in-1heria, etc. We decided to make a solid solution of cubic zirco as
It is an IC product that allows the coexistence of near and square zirconia.

しかも、−正方晶ジルコニアを5〜70モル%含/υで
いる。これにより、ボールが(幾械的な力を受けた場合
に正方品ジルコニアが単斜晶系の結晶構造をもつジルコ
ニア(以下、単斜晶ジルコニアという)に変態して圧縮
応力場が形成され、これが1幾械的な力による弾性歪エ
ネルギを吸収づるので機械的強度が向上づるのである。
Moreover, it contains 5 to 70 mol% of tetragonal zirconia. As a result, when the ball is subjected to a mechanical force, the tetragonal zirconia transforms into zirconia with a monoclinic crystal structure (hereinafter referred to as monoclinic zirconia), forming a compressive stress field. This absorbs the elastic strain energy due to mechanical force, improving mechanical strength.

機械的強度が高いということは、耐疲労摩耗性が高いと
いうことでもある。したがって、この発明のボールは耐
久性が優れている。また、ボールの温度が一ヒ昇づると
、正方晶ジルコニアがやはり単斜晶ジルコニアに変態し
、単斜晶ジルコニアまたはその近傍にマイクロクラック
を発生して破壊エネルギを吸収するようになる。そのた
め、ジルコニアの中ひも熱的に最も安定な立方晶ジルコ
ニアを含んでいるごどと相まっで、この発明のボールは
熱的安定性が高く、熱による機械的強度の低下や用法変
化の心配も少ない。
High mechanical strength also means high fatigue wear resistance. Therefore, the ball of this invention has excellent durability. Furthermore, when the temperature of the ball rises, the tetragonal zirconia transforms into monoclinic zirconia, and microcracks are generated in or near the monoclinic zirconia to absorb fracture energy. Therefore, together with the fact that the zirconia core contains cubic zirconia, which is the most stable thermally, the ball of this invention has high thermal stability, and there is no need to worry about a decrease in mechanical strength due to heat or changes in usage. few.

焼結体中における正方晶ジルコニアの量は、上述したよ
うに5〜70モル%でなりればならない。
The amount of tetragonal zirconia in the sintered body should be from 5 to 70 mol%, as mentioned above.

1なわち、正方晶ジルコニアが5モル%未満の場合には
、機械的な力や熱を受けて単斜晶ジルコニアに変態して
も、変態量があまりにも少なずぎて歪を十分に吸収する
ことができないばかりか、ボールに亀裂を生じた場合に
その伝播を防止することができなくなる。また、70モ
ル%を越えると、こんどは変態量があまりにも多くなり
すぎ、圧縮状態の領域がボール全体に広がり、わずかな
機械的力や熱でも簡単に破壊してしまうようになる。
1. In other words, if the content of tetragonal zirconia is less than 5 mol%, even if it is transformed into monoclinic zirconia by mechanical force or heat, the amount of transformation is too small to absorb strain sufficiently. Not only is it impossible to do so, but also it becomes impossible to prevent cracks from propagating if they occur in the ball. Moreover, if it exceeds 70 mol%, the amount of transformation becomes too large, the compressed region spreads over the entire ball, and even the slightest mechanical force or heat causes it to easily break.

このように、焼結体中における5〜70モル%という正
方晶ジルコニアの吊は、機械的強度が高く、耐疲労摩耗
性に優れ、耐久性に優れたボールを得るというこの発明
の目的を達成するうえで必須の要f]7:ある。
As described above, the suspension of 5 to 70 mol% of tetragonal zirconia in the sintered body achieves the purpose of this invention, which is to obtain a ball with high mechanical strength, excellent fatigue wear resistance, and excellent durability. [Required points f] 7: Yes.

ここにおいて、正方品ジルコニアの和は、焼結体の粉末
をX線回折法によって分析し、その回折パターンの面積
を積分して得た強度から次式ににって81算したもので
ある。
Here, the sum of square zirconia is 81 calculated from the intensity obtained by analyzing the powder of the sintered body by X-ray diffraction and integrating the area of the diffraction pattern using the following formula.

T= [(B十G>/ (A十B十C)! Xl 00
ただし、T:正方晶ジルコニアの@(モル%)△:立方
晶ジル:にノア400面の回 折強度 B:正方品ジルコニア004面の回 折強度 C:正方品ジルコニア220面の回 折強度 もつとも、この発明のボールにJ′3いては、70モル
%以下の範囲で単斜晶ジルコニアがさらに共存していて
もよいものである。70モル%以下の単斜晶ジルコニア
が共存しているど、単斜晶ジルコニアの粒界の隙間が熱
による歪を吸収するとともに、この部分にマイクロクラ
ックができて亀裂の伝播が防止されるようになり、ボー
ルの熱的安定性が一層向上する。なお、正方晶ジルコニ
アに加えて単斜晶ジルコニアをさらに共存させる場合に
は、正方晶ジルコニアを30〜70モル%とするのが好
ましい。なおまた、単斜晶ジルコニアの石は、上記正方
晶ジルコニアの場合と同様、X線回折法を用いて次式に
よってめる。
T= [(B0G>/ (A0B0C)! Xl 00
However, T: @ (mol %) of tetragonal zirconia △: Cubic Zir: Diffraction intensity of Noah's 400 plane B: Diffraction intensity of tetragonal zirconia 004 plane C: Diffraction intensity of 220 plane of tetragonal zirconia. In the ball J'3, monoclinic zirconia may further coexist within a range of 70 mol% or less. Although less than 70 mol% of monoclinic zirconia coexists, the gaps in the grain boundaries of monoclinic zirconia absorb the strain caused by heat, and microcracks are formed in these areas to prevent crack propagation. This further improves the thermal stability of the ball. In addition, when monoclinic zirconia is further coexisted in addition to tetragonal zirconia, it is preferable that the content of tetragonal zirconia is 30 to 70 mol %. Furthermore, the monoclinic zirconia stone is determined by the following formula using the X-ray diffraction method, as in the case of the above-mentioned tetragonal zirconia.

M−[(E+F)/(D+E+F)]x100ただし、
M:単斜晶ジルコニアの量(モル%)D=立方晶ジルコ
ニア111面の回 折強度 E:単斜晶ジルコニア111面の回 折強度 F:単斜晶ジルコニア111面の回 折強度 立方晶ジルコニアの爪は、上述した方法によってめた正
方品および単斜晶ジルコニアの量から次式によってめる
M-[(E+F)/(D+E+F)]x100 However,
M: Amount of monoclinic zirconia (mol%) D = Diffraction intensity of cubic zirconia 111 plane E: Diffraction intensity of monoclinic zirconia 111 plane F: Diffraction intensity of monoclinic zirconia 111 plane Cubic zirconia nails , is determined by the following formula from the amounts of the square pieces and monoclinic zirconia produced by the method described above.

C=100−T−M ただし、C:立方晶ジル:1ニアの聞(モル%)この発
明のボールにおいては、焼結体の気孔率が2〜10%で
あるのが好ましい。ここにおいて、気孔率は、式 1)=[1−(かさ密度/理論密度)]X100ただし
、P:気孔率(%) ぐ表わされるもので、気孔率が2%未満では破壊エネル
ギの伝播速度が速くなり、また10%を越えると、気孔
の存在はその部分への応力集中を招くことから、その気
孔の部分から破壊が進行し、また気孔を中心とした亀裂
が発生しや1くなり、しかもその伝播速度が速くなるか
ら、機械的強度の低下傾向が現われる。
C=100-T-M However, C: cubic dill: 1 nia (mol %) In the ball of the present invention, it is preferable that the porosity of the sintered body is 2 to 10%. Here, the porosity is expressed by the formula 1) = [1 - (bulk density/theoretical density)] x 100, where P: porosity (%). If the porosity is less than 2%, the propagation speed of fracture energy becomes faster, and when it exceeds 10%, the presence of pores causes stress concentration in that area, so destruction progresses from the pore area, and cracks are more likely to occur around the pores. Moreover, since the propagation speed becomes faster, the mechanical strength tends to decrease.

この発明のボールは、いろいろな方法によって製造する
ことができる。たとえば、状態図を参照しながら、所望
の割合でジルコニア粉末と安定化剤の粉末を混合し、似
焼、粉砕を繰り返し行って原料粉末を作り、周知のラバ
ープレス法などを用いC所望の大きさのボールの形状に
成形した後、1500〜1800℃で焼成し、その後2
00〜b 後1200〜1500℃の温度下に数時間保持した後上
記速度で徐冷または急冷覆ることによってまず焼結体を
製造づる。もっとも、焼成温度は安定化剤の種類などに
よって異なり、安定化剤としてマグネシアやカルシアを
使用する場合には1700〜1800℃であるのが好ま
しく、イツi−リアを使用する場合には1500〜16
00であるのが好ましい。なお、焼結体中における正方
晶ジルコニアの量や気孔率は、使用するジルコニア粉末
や安定化剤の純度、粒径、安定化剤の種類や量、焼成条
件、冷却条件などによって異なるので、製造にあたって
これらを注意深く選定する。
The balls of this invention can be manufactured by a variety of methods. For example, while referring to the phase diagram, mix zirconia powder and stabilizer powder in the desired proportions, repeat firing and pulverization to make a raw material powder, and use the well-known rubber press method etc. to obtain the desired size of C. After forming into the shape of a small ball, it is fired at 1500-1800℃, and then 2
00-b, the sintered body is first manufactured by holding the sintered body at a temperature of 1200-1500° C. for several hours and then gradually cooling or rapidly cooling it at the above-mentioned speed. However, the firing temperature varies depending on the type of stabilizer, and when magnesia or calcia is used as a stabilizer, it is preferably 1,700 to 1,800 degrees Celsius, and when ituria is used, it is preferably 1,500 to 1,600 degrees Celsius.
Preferably it is 00. The amount of tetragonal zirconia and porosity in the sintered body vary depending on the purity and particle size of the zirconia powder and stabilizer used, the type and amount of the stabilizer, firing conditions, cooling conditions, etc. These should be carefully selected.

次に、上記のようにして17だ、所望の大きさのボール
の形状をした焼結体を火車加工機やバレル加I ljl
 ”c仙磨加工し、所望の球径および真球度をもつボー
ルを得る。
Next, as described above, the sintered body in the shape of a ball of the desired size is processed using a fireworks processing machine or a barrel processing machine.
A ball with the desired diameter and sphericity is obtained by polishing.

(ホ)発明の効果 この発明のボールは、立方晶ジル:】ニアと正方晶ジル
コニアが共存しCおり、かつ正方晶ジルコニアが5〜7
0モル%含まれている焼結体からなるものであるからし
て、機械的強度が高く、したがって耐疲労摩耗性が高く
、また耐久性も高い。
(e) Effects of the invention The ball of this invention has cubic zirconia coexisting with tetragonal zirconia, and tetragonal zirconia of 5 to 7.
Since it is made of a sintered body containing 0 mol%, it has high mechanical strength, high fatigue wear resistance, and high durability.

ずなわら、正方晶ジルコニアを5〜70モル%含む焼結
体からなるボールは、機械的な力を受【プた場合に正方
晶ジルコニアが単斜晶ジルコニアに変態しC圧縮応力場
が形成され、これが機械的な力による弾性歪エネルギを
減少さけるように作用するの′cII械的強度が向上−
りる。しかも、使用中に温度が上背しても、同様に正り
品から単斜晶への結晶構造の変態が起こり、単斜晶ジル
コニアまたはイの近傍にマイクロクラックを発生して破
壊エネルギを吸収するようになるので、ジルコニアの中
でも最も熱的に安定な立方晶ジルコニアを含んでいるこ
とと相まって熱的安定性も高い。つまり、使用中に高温
になっても機械的強度が低下したり寸法変化が起こる心
配が少ない。かつまた、上記焼結体は本質的に酸化物で
あるから、特殊4T雰囲気で使用しても錆る心配がない
However, when a ball made of a sintered body containing 5 to 70 mol% of tetragonal zirconia is subjected to mechanical force, the tetragonal zirconia transforms into monoclinic zirconia, forming a C compressive stress field. This acts to reduce the elastic strain energy due to mechanical force, which improves mechanical strength.
Rir. Moreover, even if the temperature rises during use, the crystal structure of the regular product will similarly transform from monoclinic to monoclinic, generating microcracks near the monoclinic zirconia or A and absorbing the fracture energy. Therefore, since it contains cubic zirconia, which is the most thermally stable among zirconias, it also has high thermal stability. In other words, even if the temperature rises during use, there is little concern that mechanical strength will decrease or dimensional changes will occur. Furthermore, since the sintered body is essentially an oxide, there is no fear of rust even if it is used in a special 4T atmosphere.

特許出願人 東し株式会社Patent applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 立方晶系の結晶構造をもつジルコニアと正方晶系の結晶
構造をもつジルコニアが共存しており、かつ正方晶系の
結晶構造をもつジルコニアが5〜70モル%含まれてい
るジルコニア焼結体からなるベアリング用ボール。
From a zirconia sintered body in which zirconia with a cubic crystal structure and zirconia with a tetragonal crystal structure coexist, and 5 to 70 mol% of zirconia with a tetragonal crystal structure is contained. A ball for a bearing.
JP59083682A 1984-04-27 1984-04-27 Ball for bearing use Pending JPS6018620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083682A JPS6018620A (en) 1984-04-27 1984-04-27 Ball for bearing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083682A JPS6018620A (en) 1984-04-27 1984-04-27 Ball for bearing use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55182873A Division JPS6048471B2 (en) 1980-12-25 1980-12-25 Zirconia sintered body

Publications (1)

Publication Number Publication Date
JPS6018620A true JPS6018620A (en) 1985-01-30

Family

ID=13809257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083682A Pending JPS6018620A (en) 1984-04-27 1984-04-27 Ball for bearing use

Country Status (1)

Country Link
JP (1) JPS6018620A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256620A (en) * 1985-09-05 1987-03-12 Nippon Seiko Kk Rolling bearing
EP0218853A1 (en) * 1985-09-06 1987-04-22 Toray Industries, Inc. Method for manufacturing a sintered zirconia material
JPS63101519A (en) * 1986-10-17 1988-05-06 Toshiba Corp Rolling body made of ceramics
JPS63117960A (en) * 1986-11-04 1988-05-21 日立金属株式会社 Mold for manufacturing dry cell
US5242873A (en) * 1988-04-18 1993-09-07 Arch Development Corporation Electrically conductive material
US5502012A (en) * 1994-01-11 1996-03-26 Societe Europeenne Des Produits Refractaires Fused ceramic beads
NL1003141C2 (en) * 1996-05-15 1997-11-18 Skf Ind Trading & Dev Rolling bearing with improved wear characteristics, and rolling element for such a bearing.
US6117805A (en) * 1995-03-13 2000-09-12 Eastman Kodak Company Ceramic guide rails for photographic film and paper and polymeric web perforation
KR100428075B1 (en) * 2001-02-08 2004-04-27 이부락 method manufacture bearing of prevention rust
CN104728271A (en) * 2015-02-13 2015-06-24 佛山市新战略知识产权文化有限公司 Ceramic bearing roller body and preparation method thereof
WO2020158791A1 (en) * 2019-01-31 2020-08-06 京セラ株式会社 Plunger pump, liquid feeding device, and liquid chromatography
WO2022138579A1 (en) 2020-12-24 2022-06-30 株式会社 東芝 Ceramic ball material, ceramic ball manufacturing method using same, and ceramic ball
WO2023003040A1 (en) 2021-07-21 2023-01-26 株式会社 東芝 Rubber die for use in cold isotropic pressure molding, production method for material for ceramic balls, and production method for ceramic balls
WO2023054611A1 (en) 2021-09-29 2023-04-06 株式会社 東芝 Material for ceramic ball, ceramic ball, and production method therefor
WO2023190467A1 (en) 2022-03-28 2023-10-05 株式会社 東芝 Material for ceramic ball, method for producing ceramic ball using same, and ceramic ball

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERICHTE DER DEUTSCHEN KERAMISCHEN GESELLSCHAFT=1980 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256620A (en) * 1985-09-05 1987-03-12 Nippon Seiko Kk Rolling bearing
EP0218853A1 (en) * 1985-09-06 1987-04-22 Toray Industries, Inc. Method for manufacturing a sintered zirconia material
JPS63101519A (en) * 1986-10-17 1988-05-06 Toshiba Corp Rolling body made of ceramics
JPS63117960A (en) * 1986-11-04 1988-05-21 日立金属株式会社 Mold for manufacturing dry cell
JPH0458427B2 (en) * 1986-11-04 1992-09-17 Hitachi Metals Ltd
US5242873A (en) * 1988-04-18 1993-09-07 Arch Development Corporation Electrically conductive material
US5502012A (en) * 1994-01-11 1996-03-26 Societe Europeenne Des Produits Refractaires Fused ceramic beads
US6117805A (en) * 1995-03-13 2000-09-12 Eastman Kodak Company Ceramic guide rails for photographic film and paper and polymeric web perforation
EP0807761A1 (en) * 1996-05-15 1997-11-19 SKF Industrial Trading & Development Company, B.V. Rolling element bearing having improved wear characteristics, and rolling element for such bearing
US5967670A (en) * 1996-05-15 1999-10-19 Skf Industrial Trading & Development Company B.V. Rolling element bearing having at least one rolling element having a hardness greater than the hardness of the other rolling elements
NL1003141C2 (en) * 1996-05-15 1997-11-18 Skf Ind Trading & Dev Rolling bearing with improved wear characteristics, and rolling element for such a bearing.
KR100428075B1 (en) * 2001-02-08 2004-04-27 이부락 method manufacture bearing of prevention rust
CN104728271A (en) * 2015-02-13 2015-06-24 佛山市新战略知识产权文化有限公司 Ceramic bearing roller body and preparation method thereof
WO2020158791A1 (en) * 2019-01-31 2020-08-06 京セラ株式会社 Plunger pump, liquid feeding device, and liquid chromatography
WO2022138579A1 (en) 2020-12-24 2022-06-30 株式会社 東芝 Ceramic ball material, ceramic ball manufacturing method using same, and ceramic ball
WO2023003040A1 (en) 2021-07-21 2023-01-26 株式会社 東芝 Rubber die for use in cold isotropic pressure molding, production method for material for ceramic balls, and production method for ceramic balls
WO2023054611A1 (en) 2021-09-29 2023-04-06 株式会社 東芝 Material for ceramic ball, ceramic ball, and production method therefor
WO2023190467A1 (en) 2022-03-28 2023-10-05 株式会社 東芝 Material for ceramic ball, method for producing ceramic ball using same, and ceramic ball

Similar Documents

Publication Publication Date Title
JPS6018620A (en) Ball for bearing use
Becher et al. Effects of rare‐earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE2O3+ MgO additives: RE= La, Gd, and Lu
US4316964A (en) Al2 O3 /ZrO2 ceramic
JPH0413314B2 (en)
US5518673A (en) Silicon nitride ceramic having high fatigue life and high toughness
EP2173684B1 (en) Grinding beads and method of producing the same
Pillai et al. Effect of oxide dopants on densification, microstructure and mechanical properties of alumina-silicon carbide nanocomposite ceramics prepared by pressureless sintering
JPH09506155A (en) High fatigue life silicon nitride bearing balls
Dresch et al. Improving the flexural-strength-to-density ratio in alumina ceramics with the addition of silicon nitride
JPH10194824A (en) Zirconia-containing alumina sintered compact
Lee Densification, mass loss, and mechanical properties of low‐temperature pressureless‐sintered Si3N4 with LiYO2 additive: the effects of additive content and annealing
JP2810922B2 (en) Alumina-zirconia composite sintered body and method for producing the same
JPH11335159A (en) High-strength, high-hardness alumina ceramics and its production
JPS6065726A (en) Partially stabilized ziroconia body
JPS6265976A (en) Silicon iodide sintered body and its production
JP2004075425A (en) Partially stabilized zirconia sintered compact
KR102263516B1 (en) Ceramic bead producing method
CHAY et al. Microstructure and Room‐Temperature Mechanical Properties of Hot‐Pressed Magnesium Aluminate as Described by Quadratic Multivariable Analysis
Miller et al. Water‐Based Method for Processing Aluminum Oxynitride (AlON)
JPS6048471B2 (en) Zirconia sintered body
JPS58156577A (en) Strong and endurable zirconia sintered body
JPS6018667A (en) Mechanical seal
JPH06107454A (en) Alumina sintered body and production thereof
JP2001526175A (en) Dense refractories with improved heat shock resistance
JPS62265182A (en) High strength alumina-zirconia-silicon carbide composite sintered body