JPS6018580A - Lowering of nitrogen compound from heavy oil - Google Patents

Lowering of nitrogen compound from heavy oil

Info

Publication number
JPS6018580A
JPS6018580A JP12548883A JP12548883A JPS6018580A JP S6018580 A JPS6018580 A JP S6018580A JP 12548883 A JP12548883 A JP 12548883A JP 12548883 A JP12548883 A JP 12548883A JP S6018580 A JPS6018580 A JP S6018580A
Authority
JP
Japan
Prior art keywords
oil
zeolites
zeolite
heavy oil
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12548883A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Tetsuya Imai
哲也 今井
Takashi Ueda
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12548883A priority Critical patent/JPS6018580A/en
Publication of JPS6018580A publication Critical patent/JPS6018580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To lower nitrogen compound harmful to storage and modification of heavy oil, and to recycle zeolite, by bringing a heavy oil into contact with zeolite, heating the zeolite in an inert gas flow, recycling it to a contact process. CONSTITUTION:A heavy oil such as petroleum, shale oil, liquefied oil of coal, etc. having <=500 deg.C boiling point is brought into contact with zeolite preferably at 250-500 deg.C, so that basic compounds in the heavy oil are adsorbed and removed. The zeolite is heated in flow of inert gas such as nitrogen, etc. preferably at <=600 deg.C, and the heated zeolite is recycled to the contact process. A blending ratio of raw material oil to zeolite in the contact process is preferably <=3 by weight.

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は重質油の貯蔵や改質に悪影響を及ぼす重質油中
の窒素化合物を低減する方法に関する。ここでいう重質
油とは、石油、シエールオイル、石炭液化油等である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for reducing nitrogen compounds in heavy oil that adversely affect storage and reforming of heavy oil. The heavy oil referred to here includes petroleum, shale oil, coal liquefied oil, and the like.

〔背景技術〕[Background technology]

近年、石油代替エネルギーの開発の一環として石炭、オ
イルシェール、タールサンド等の化石燃料の有効利用が
行なわれている。これら化石燃料を熱処理することによ
シ得られる油は輸送用や燃焼用燃料として利用されるが
、これらの油は石油に比較し、窒素が多いのが特徴で、
貯蔵の際の安定性や、ダクンストリームでの水素化精製
触媒の活性に悪影響を及ばず。窒素化合物は主にピリジ
ンのような塩基性化合物と、ビロールのような酸性化合
物として存在することが知られており、特に塩基性窒素
化合物は、水素化精製触媒の酸性点を被毒し触媒性能の
低下を招く。従って、窒素化合物を低減させることによ
シ貯蔵安定性のアップ、水素化精製触媒への負荷を抑制
する方法の開発が望まれている。
In recent years, fossil fuels such as coal, oil shale, and tar sand have been effectively used as part of the development of energy alternatives to oil. The oils obtained by heat-treating these fossil fuels are used as transportation and combustion fuels, but these oils are characterized by higher nitrogen content than petroleum.
It does not adversely affect the stability during storage or the activity of the hydrorefining catalyst in the Dakun stream. It is known that nitrogen compounds mainly exist as basic compounds such as pyridine and acidic compounds such as virol. In particular, basic nitrogen compounds poison the acid sites of the hydrorefining catalyst and impair the catalyst performance. This results in a decrease in Therefore, it is desired to develop a method for improving storage stability and suppressing the load on the hydrorefining catalyst by reducing nitrogen compounds.

〔従来技術及びその欠点〕[Prior art and its drawbacks]

従来、これらの窒素化合物は高温下での水素化分解によ
ル除去されるため、過酷な反応条件が要求され、それに
伴い生成物の軽質化、水素消費量の増加という欠点があ
った。
Conventionally, these nitrogen compounds are removed by hydrogenolysis at high temperatures, which requires harsh reaction conditions, which has the drawback of lighter products and increased hydrogen consumption.

〔本発明の目的〕[Object of the present invention]

本発明者は、従来のシリカやアルミナ等に比較し、酸強
度の強いゼオライト類を使用することによシ、重質油か
ら窒素化合物特に塩基性窒素化合物が選択的に除去でき
ることを見い出した。重質油の最終沸点が500℃以上
の場合、分子サイズが大きくなフ、ゼオライト類への吸
着が充分でなく、窒素の低減効果が少ないことも見い出
した。本発明は、これらの知見に基づいてなされたもの
であって、前記従来法の欠点を解消することを目的とす
るものである。すなわち、本発明の目的は重質油中に含
まれている窒素化合物、特に塩基性窒素化合物を選択的
に低減させる方法を提供するにある。
The present inventors have discovered that nitrogen compounds, particularly basic nitrogen compounds, can be selectively removed from heavy oil by using zeolites that have stronger acid strength than conventional silica, alumina, etc. It has also been found that when the final boiling point of heavy oil is 500° C. or higher, the adsorption of nitrogen to zeolites is insufficient due to its large molecular size, and the nitrogen reduction effect is small. The present invention has been made based on these findings, and aims to eliminate the drawbacks of the conventional methods. That is, an object of the present invention is to provide a method for selectively reducing nitrogen compounds, particularly basic nitrogen compounds, contained in heavy oil.

〔本発明の構成〕[Configuration of the present invention]

そして本発明は上記目的を達成するために、重質油の接
触工程でゼオライト類を使用するものである。すなわち
、本発明は、沸点が500℃以下である重質油をゼオラ
イト類と接触せしめ、接触後、ゼオライト類を不活性ガ
ス気流中で加熱し、加熱後のゼオライト類を接触工程ヘ
リサイクルすることを特徴とする重質油からの窒素化合
物の低減法に関する。
In order to achieve the above object, the present invention uses zeolites in the heavy oil contact step. That is, the present invention involves bringing heavy oil having a boiling point of 500° C. or lower into contact with zeolites, heating the zeolites in an inert gas stream after the contact, and recycling the heated zeolites to the contacting step. This invention relates to a method for reducing nitrogen compounds from heavy oil, characterized by:

本発明で使用できるゼオライト類としては、モルデナイ
ト、クリノプチロライト、シャバサイト、ホージャサイ
ト、タバフッ石、エリオナイト等の天然ゼオライト、あ
るいはゼオライト−A、ゼオライト−x1ゼオライト−
Y5ゼオライト−L等の合成ゼオライト類があげられる
Zeolites that can be used in the present invention include natural zeolites such as mordenite, clinoptilolite, chabasite, faujasite, tabafluorite, and erionite, or zeolite-A, zeolite-x1 zeolite-
Examples include synthetic zeolites such as Y5 zeolite-L.

本発明をよシ詳細に説明すると、本発明は、不活性ガス
、重質油及びゼオライト類を接触させる工程、接触後の
不活性ガスと重質油をゼオライト類から分離する工程、
ゼオライト類を分離した後の不活性ガスと重質油を分離
する工程及び接触後のゼオライト類を再生する工程から
構成される。
To explain the present invention in more detail, the present invention includes a step of contacting an inert gas, heavy oil, and zeolites, a step of separating the inert gas and heavy oil from the zeolites after the contact,
It consists of a step of separating inert gas and heavy oil after separating the zeolites, and a step of regenerating the zeolites after contact.

本発明において、接触工程での温度は200〜600℃
、好ましくは250〜500℃である。この温度範囲で
重質油中の窒素化合物が充分除去できるが、低温下(2
00℃以下)では原料として使用する重質油(以下原料
油という。)の粘度増加に伴なう、ゼオライト類表面の
酸性点への原料油の拡散速度が遅いことと、ゼオライト
類の酸強度自体が低温下で低いことに起因して原料油中
の窒素化合物が充分除去できない。
In the present invention, the temperature in the contact step is 200 to 600°C.
, preferably 250 to 500°C. Nitrogen compounds in heavy oil can be sufficiently removed within this temperature range, but at low temperatures (2.
00℃), the viscosity of the heavy oil used as a raw material (hereinafter referred to as raw oil) increases, and the rate of diffusion of the raw oil to the acidic points on the surface of the zeolite is slow, and the acid strength of the zeolite increases. Nitrogen compounds in the feedstock oil cannot be removed sufficiently because the nitrogen content itself is low at low temperatures.

一方、高温下(600℃以上〕では、ゼオライト1iの
表面に若干コーキング物が認められ、このゼオライト類
を再生する際に問題となるため好ましくない。
On the other hand, at high temperatures (600° C. or higher), some caulking is observed on the surface of the zeolite 1i, which is not preferable because it causes problems when regenerating the zeolites.

また、本発明において、接触工程での原料油とゼオライ
ト類との混合比(重量比)は5以下、好ましくは3以下
であシ、このゼオライト類の使用量で原料油中の窒素化
合物が充分除去することができる。
In addition, in the present invention, the mixing ratio (weight ratio) of the raw material oil and zeolites in the contacting step is 5 or less, preferably 3 or less, and the amount of zeolites used is sufficient for nitrogen compounds in the raw material oil. Can be removed.

一方、−ゼオライト類は、高価であるため、リサイクル
使用が必要であシ、本発明においてもリサイクル使用を
意図するものであるが、このために本発明では接触工程
後のゼオライト類を加熱してゼオライト類の表面に付着
している油を除去するものである。そして、加熱手段と
しては、不溶性ガス気流中で600℃以下で行い、これ
によって、ゼオライト類の表面に付着した油を除去する
ことができる。この加熱温度は、原料油の沸点範囲によ
り上下するものである。
On the other hand, since zeolites are expensive, it is necessary to recycle them, and the present invention also intends to use them for recycling.For this purpose, in the present invention, the zeolites are heated after the contact step. This removes oil adhering to the surface of zeolites. The heating means is carried out at 600° C. or lower in an insoluble gas stream, thereby making it possible to remove oil adhering to the surface of the zeolites. This heating temperature varies depending on the boiling point range of the raw material oil.

また、本発明において、原料として使用する重質油とは
、石油、シエールオイル、石炭敢化油などであるが、こ
れらはいづれも沸点が500℃以下のものを対象とする
。これは重質油の最終沸点が500℃以下の場合、分子
サイズが大きくなり、ゼオライト類への吸着が充分でな
く、しかも窒素化合物の低減効果も少ないためである。
Further, in the present invention, the heavy oil used as a raw material includes petroleum oil, shale oil, coal oil, etc., and all of these oils have a boiling point of 500° C. or lower. This is because when the final boiling point of heavy oil is 500° C. or lower, the molecular size becomes large and adsorption to zeolites is insufficient, and the effect of reducing nitrogen compounds is also small.

〔第1図の説明〕 第1図は、本発明のフローチャートであり、この図に基
づいて本発明をよシ詳細に説明する。
[Description of FIG. 1] FIG. 1 is a flowchart of the present invention, and the present invention will be explained in more detail based on this figure.

窒素ガス等の不活性ガスはライン1から一部をライン2
に分岐させ、ライン16からのゼオライト類と混合し、
ライン3に送られる。予熱された原料油がライン4よシ
ライン3に送られ、ライン5を通シ、200℃ないし6
00℃に加熱された接触塔6へ供給される。接触後の油
とゼオライト類は、不活性ガスとともに、ライン7を通
シ、分離槽8へ送られ、不活性ガスと油がゼオライト類
から分離され、ライン9を通シ気液分離器1oにて、不
活性ガスがライン11よシ、油がラインにょシ取ル出さ
れる。一方、分離槽8にて分離されたゼオライト類は、
ライン13を通シ再生塔14へ送られる。再生塔14に
はライン1がら分岐した窒素等の不活性ガスが送られ、
6001:以下で加熱される。加熱後のゼオライト類は
ライン16を通シ、再度、ライン2に送られる。一方、
再生塔14で加熱されたガスはライン17より排出され
る。
Inert gas such as nitrogen gas is transferred from line 1 to line 2.
mixed with zeolites from line 16,
Sent to line 3. Preheated raw material oil is sent from line 4 to line 3, passed through line 5, and heated to 200°C to 6°C.
It is fed to a contact column 6 heated to 00°C. The oil and zeolites after contact are sent to a separation tank 8 through a line 7 along with an inert gas, where the inert gas and oil are separated from the zeolites, and then sent through a line 9 to a gas-liquid separator 1o. Then, inert gas is taken out through line 11 and oil is taken out through line 11. On the other hand, the zeolites separated in the separation tank 8 are
It is sent to the regeneration tower 14 through line 13. An inert gas such as nitrogen branched from line 1 is sent to the regeneration tower 14,
6001: Heated below. The heated zeolites are passed through line 16 and sent to line 2 again. on the other hand,
The gas heated in the regeneration tower 14 is discharged through a line 17.

実施例1 FMに供したゼオライト類はゼオライトとシリカを等量
混合した混合物で、比表面積280m2/1、細孔容積
0.298CC/f、平均粒径44ミク四ン、酸性度を
示すピリジン吸着量は、135μmat/yである。
Example 1 The zeolite subjected to FM was a mixture of equal amounts of zeolite and silica, with a specific surface area of 280 m2/1, a pore volume of 0.298 CC/f, an average particle size of 44 mm, and pyridine adsorption showing acidity. The amount is 135 μmat/y.

原料油には、石炭液化油を供した。この原料油の性状を
第1表に示す。
Coal liquefied oil was used as the raw material oil. The properties of this raw material oil are shown in Table 1.

第1表 接触塔(内容積O,St)及び再生塔(内容積50L)
での実験条件を第2表に示す。
Table 1 Contact tower (inner volume O, St) and regeneration tower (inner volume 50L)
The experimental conditions are shown in Table 2.

第2表 この実験結果を第2図に示す。第2図は窒素の除去率と
原料油/ゼオライト類(重量比)との、また、原料油中
窒素量/ゼオライト類へのピリジン窒素吸着量(重量比
)との相関関係図である。この図から明らかなように原
料油とゼオライト類との重量比が5以下、好ましくは6
以下であると、原料中の窒素が充分除去できることが判
明した。第2図にも示したようにピリジンで評価したゼ
オライト類の屋素吸着量に対し、原料油中の窒素が約7
倍量でも、充分、窒素が除去されていることがわかる。
Table 2 The results of this experiment are shown in FIG. FIG. 2 is a correlation diagram between the nitrogen removal rate and the feedstock oil/zeolites (weight ratio), and between the amount of nitrogen in the feedstock oil/the amount of pyridine nitrogen adsorbed onto the zeolites (weight ratio). As is clear from this figure, the weight ratio of raw material oil and zeolites is 5 or less, preferably 6.
It has been found that nitrogen in the raw material can be sufficiently removed if the amount is below. As shown in Figure 2, the amount of nitrogen adsorbed by zeolites evaluated using pyridine is approximately 7
It can be seen that nitrogen is sufficiently removed even with double the amount.

実施例2 実施例1に示したゼオライト類と石炭液化油を用い、第
2表に示す条件のうち、原料油供給量1kg/Hr、接
触塔温度を接触塔−6oo℃に変化させ、他の条件は同
一にして処理を行なった。実験結果を第3図に示す。第
3図は窒素除去率と接触塔温度との相関関係を示す図で
、この図から明らかなように、接触塔温度が250℃以
上で窒素が充分除去されていることがわかる。しかしな
がら接触塔温度が6oo℃ではゼオライト類表面で若干
コーテング物が認められ、再生上問題となるため接触塔
温度は600℃以下にする必要がある。
Example 2 Using the zeolites and coal liquefied oil shown in Example 1, the conditions shown in Table 2 were as follows: feedstock oil supply rate was changed to 1 kg/Hr, contact tower temperature was changed to contact tower -60°C, and other conditions were used. The processing was carried out under the same conditions. The experimental results are shown in Figure 3. FIG. 3 is a diagram showing the correlation between the nitrogen removal rate and the contact tower temperature. As is clear from this diagram, nitrogen is sufficiently removed when the contact tower temperature is 250° C. or higher. However, when the contact tower temperature is 60°C, some coating material is observed on the surface of the zeolite, which poses a problem in regeneration, so the contact tower temperature must be kept at 600°C or lower.

実施例3 実施例1に示したゼオライト類を用い沸点範囲の異なる
石炭液化油を表−2に示す条件で処理を行なった。但し
原料油供給11ti1 kg/Hr、接触塔温度は50
0℃、再生塔温度は600〜700℃に変化させた。使
用した石炭液化油の沸点範囲を第3表に示す。
Example 3 Using the zeolites shown in Example 1, coal liquefied oils having different boiling point ranges were treated under the conditions shown in Table 2. However, feedstock oil supply 11ti1 kg/Hr, contact tower temperature 50
The temperature of the regeneration tower was changed to 600-700°C. Table 3 shows the boiling point range of the coal liquefied oil used.

第 3 表 実験結果を第4図に示す。第4図は窒素除去率と蒸留終
点との相関関係図でかって、この図から明らかなように
沸点の低いもの程、窒素の除去率は高く沸点が500℃
までの試料でも約50俤の除去率が達成できる。しかし
ながら、沸点500℃以上の蒸留残渣分を含む試料では
窒素の除去率が極めて悪く効果がないことが明らかにな
った。これは重質分がゼオライト類の酸性点を被覆して
しまうためと考えられる。
Table 3 The experimental results are shown in Figure 4. Figure 4 is a correlation diagram between the nitrogen removal rate and the end point of distillation.As is clear from this figure, the lower the boiling point, the higher the nitrogen removal rate and the boiling point at 500°C.
A removal rate of about 50 yen can be achieved even with samples up to 100 yen. However, it has become clear that in samples containing distillation residue with a boiling point of 500° C. or higher, the nitrogen removal rate is extremely poor and there is no effect. This is thought to be because the heavy components cover the acidic points of the zeolites.

次に第3表に示す試料−1及び試料−3を用いた時の、
接触後のゼオライト類を再生塔温度を変化埒せ再生後、
ピリジン吸着量を測定した。
Next, when using Sample-1 and Sample-3 shown in Table 3,
After contacting the zeolites, the temperature of the regeneration tower is changed and the zeolites are regenerated.
The amount of pyridine adsorbed was measured.

結果を第4表に示す、1 第4表 この結果、原料油の最終沸点が高いもの程、再生温度を
上げる必要がある。又、最終沸点が500℃のものでは
再生温度を600℃にすれば、充分、ゼオライト類の活
性が回復することが明らかになった。
The results are shown in Table 4.1 Table 4 As a result, the higher the final boiling point of the feedstock oil, the more necessary it is to raise the regeneration temperature. In addition, it has been found that for zeolites with a final boiling point of 500°C, the activity of the zeolites can be sufficiently recovered by setting the regeneration temperature to 600°C.

以上の実施例に示した如く、本発明により、重質油から
窒素、特に塩基性窒素を効果的に低減できることが明ら
かになった。
As shown in the above examples, it has been revealed that the present invention can effectively reduce nitrogen, particularly basic nitrogen, from heavy oil.

なお、上記実施例においてゼオライト−シリカ混合物を
使用したが、他に粘結剤としてアルミナや粘土類も使用
できる。またゼオライト単独のものも使用できることは
言うまでもない。
Although a zeolite-silica mixture was used in the above embodiments, alumina or clay may also be used as a binder. It goes without saying that zeolite alone can also be used.

実施例4 比表面積3s o m”/ f %細孔容積(L!10
5cc/ 1 、平均粒径45ミクロン、酸性度を示す
ピリジン吸着量は180μmat/f のゼオライト単
独を用い、他は実施例1と同様にして実験した結果を第
5図に示す。
Example 4 Specific surface area 3s o m”/f% pore volume (L!10
Figure 5 shows the results of an experiment conducted in the same manner as in Example 1, except that zeolite alone with a particle size of 5 cc/1, an average particle size of 45 microns, and an adsorption amount of pyridine indicating acidity of 180 μmat/f was used.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したように、重質油中に含有されて
いる窒素化合物、特に塩基性窒素化合物を選択的に低減
できる顕著な効果が生ずるものでアシ、その結果、石油
、シエールオイル、石炭液化油などの重質油を安定に貯
蔵でき、また、水素化精製触媒への負荷を抑制できるす
ぐれた効果を奏するものである。
As detailed above, the present invention has a remarkable effect of selectively reducing nitrogen compounds, especially basic nitrogen compounds, contained in heavy oil. , heavy oil such as coal liquefied oil can be stored stably, and the load on the hydrorefining catalyst can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のフローチャートであり、第2図は実施
例1の実験結果を、第3図は実施例2の実験結果を、第
4図は実施例3の実験結果を、第5図は実施例4の実験
結果をそれぞれ示す。 6・・・接触塔 8・・・分離槽 10・・・気液分離器 14・・・再生塔 復代理人 内 1) 明 復代理人 萩 原 亮 − 児2図 尉1油中窒素量光オフイト類へのσリジ゛シ室舅」球稠
自量cw幅t)兜3図 J妾角虫1塔3M # (’C) 燕輩系冬点 じC)
Figure 1 is a flowchart of the present invention, Figure 2 shows the experimental results of Example 1, Figure 3 shows the experimental results of Example 2, Figure 4 shows the experimental results of Example 3, and Figure 5 shows the experimental results of Example 3. shows the experimental results of Example 4, respectively. 6...Contact tower 8...Separation tank 10...Gas-liquid separator 14...Regeneration tower agent 1) Akifuku agent Ryo Hagihara - Child 2 Officer 1 Nitrogen amount in oil Hikari σ Rigidity room for Ophytes "Global weight cw width t) Kabuto 3 figure J concubine hornworm 1 tower 3M # ('C) Swallow type winter point same C)

Claims (1)

【特許請求の範囲】[Claims] 沸点が500℃以下でおる重質油をゼオライト類と接触
せしめ、接触後、ゼオライト類を不活性ガス気流中で加
熱し、加熱後のゼオライト類を接触工程ヘリサイクルす
る゛ことを特徴とする重質油からの窒素化合物の低減法
Heavy oil having a boiling point of 500°C or less is brought into contact with zeolites, and after the contact, the zeolites are heated in an inert gas stream, and the heated zeolites are recycled to the contacting step. Method for reducing nitrogen compounds from quality oil.
JP12548883A 1983-07-12 1983-07-12 Lowering of nitrogen compound from heavy oil Pending JPS6018580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12548883A JPS6018580A (en) 1983-07-12 1983-07-12 Lowering of nitrogen compound from heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12548883A JPS6018580A (en) 1983-07-12 1983-07-12 Lowering of nitrogen compound from heavy oil

Publications (1)

Publication Number Publication Date
JPS6018580A true JPS6018580A (en) 1985-01-30

Family

ID=14911328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12548883A Pending JPS6018580A (en) 1983-07-12 1983-07-12 Lowering of nitrogen compound from heavy oil

Country Status (1)

Country Link
JP (1) JPS6018580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117508A (en) * 1988-10-21 1990-05-02 Nakanishi Kinzoku Kogyo Kk Car conveying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117508A (en) * 1988-10-21 1990-05-02 Nakanishi Kinzoku Kogyo Kk Car conveying device

Similar Documents

Publication Publication Date Title
RU2230608C2 (en) Sorbent composition, method for preparation thereof and applying it in desulfurization process
RU2225755C2 (en) Sorbent composition, method for preparation thereof, and its utilization in desulfurization
US2962435A (en) Hydrocarbon cracking process and catalyst
KR101606496B1 (en) Method for obtaining light fuel from inferior feedstock
JP2003513772A (en) Desulfurization and new sorbents therefor
JP2003510405A (en) Gasoline desulfurization in fluid catalytic cracking process.
HU228331B1 (en) Desulfurization and sorbents for same
JP4065201B2 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process.
JP2003512924A (en) New sorbent for desulfurization and desulfurization
CN103031143B (en) Method for simultaneously removing sulfides in gasoline and liquefied gas through single reactor
JPS5881438A (en) Sulfur adsorbent based on clay
US4256564A (en) Cracking process and catalyst for same containing indium to passivate contaminating metals
CN103031150B (en) Double-reactor removes the method for gasoline and liquefied gas medium sulphide content simultaneously
US4238320A (en) Denitrogenation of shale oil
JPS60238144A (en) Arsenic compound removing agent
CN106140294B (en) The method of the catalyst system and sulfur-bearing hydrocarbon desulfurization of sulfur-bearing hydrocarbon desulfurization
JPH0332743A (en) Method for reactivation of cracking catalyst contaminated by metal
US4341661A (en) Catalysts for reducing CO and SOx emissions from catalytic cracking units
JPS6018580A (en) Lowering of nitrogen compound from heavy oil
US4521299A (en) Removal of basic nitrogen compounds from hydrocarbon liquids
US4331563A (en) Producing increased yield of hydrogen by cracking petroleum with potassium-containing catalyst
CN112745934B (en) Catalytic cracking light product desulfurization method and device
CN109705899A (en) Inferior heavy oil processing-coke gasification combined method
JPS601283A (en) Hydrocarbon fluidized catalytic cracking process
JPS6018579A (en) Lowering of nitrogen compound from heavy oil