JPS60180921A - Manufacture of mixed solution of nickel chloride and cobalt chloride - Google Patents

Manufacture of mixed solution of nickel chloride and cobalt chloride

Info

Publication number
JPS60180921A
JPS60180921A JP59033712A JP3371284A JPS60180921A JP S60180921 A JPS60180921 A JP S60180921A JP 59033712 A JP59033712 A JP 59033712A JP 3371284 A JP3371284 A JP 3371284A JP S60180921 A JPS60180921 A JP S60180921A
Authority
JP
Japan
Prior art keywords
nickel
chloride
cobalt
water
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59033712A
Other languages
Japanese (ja)
Inventor
Toshimasa Iio
飯尾 利昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP59033712A priority Critical patent/JPS60180921A/en
Publication of JPS60180921A publication Critical patent/JPS60180921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To obtain a mixed soln. of NiCl2 and CoCl2 free from sulfuric acid radical without generation of gaseous chlorine by heating and calcining oxides and hydroxides of trivalent Ni and Co contg. sulfuric acid radical and thereafter dissolving the calcined compounds in hydrochloric acid. CONSTITUTION:The oxides and hydroxides of trivalent Ni and Co contg. sulfuric acid group which is obtained in Ni refining process or the like are heated at 750-900 deg.C in the atmosphere. The calcined compounds after said heating are washed with water to remove the remaining sulfuric acid radical. The compounds are dissolved in hydrochloric acid to obtain the mixed soln. of NiCl2 and CoCl2. By this method, the mixed soln. free from sulfuric acid radical is obtained without accompanying generation of gaseous chlorine, and Ni and Co can be extracted and treated effectively from the mixed soln.

Description

【発明の詳細な説明】 本発明は、硫酸根を含有する8価のニッケル、コバルト
の酸化物及び又は水酸化物から塩素ガスの発生を伴なわ
ず、可及的に硫酸根濃度の低い塩化ニッケルと塩化コバ
ルトの混合溶液を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the production of chloride with the lowest possible concentration of sulfate radicals without the generation of chlorine gas from octavalent nickel and cobalt oxides and/or hydroxides containing sulfate radicals. This invention relates to a method for producing a mixed solution of nickel and cobalt chloride.

硫酸根を含有する8価のニッケル、コバルトの酸化物及
び又は水酸化物は、例えば、硫酸ニッケルと塩化ニッケ
ルを含有する水溶液を電解液として粗金属ニッケルまた
はニッケルマットを電解精製するニッケル精錬工程で、
不純物としてのコバルトを除去するために、電解液に塩
素ガスやオゾンなどによる酸化処理と炭酸ニッケルなど
による中和処理とを施すことにより副生物として生成さ
れる沈殿物が挙げられ、この品位は、例えばN1:20
〜4Q、Oo:5〜20、硫酸根:lO以以下型重量%
ある′(以下、硫酸根を含有する3価のニッケル・コバ
ルトの酸化物及び又は水酸化物を単に副生物という)。
Octavalent nickel and cobalt oxides and/or hydroxides containing sulfate radicals are produced, for example, in a nickel refining process in which crude metal nickel or nickel matte is electrolytically refined using an aqueous solution containing nickel sulfate and nickel chloride as an electrolyte. ,
In order to remove cobalt as an impurity, the electrolyte is subjected to oxidation treatment using chlorine gas or ozone, and neutralization treatment using nickel carbonate, etc., resulting in a precipitate produced as a by-product. For example, N1:20
~4Q, Oo: 5-20, sulfate group: 1O or less type weight%
(hereinafter, trivalent nickel/cobalt oxides and/or hydroxides containing sulfate groups are simply referred to as by-products).

このような副生物を塩酸に溶解して、塩化ニッケルと塩
化コバルトの混合溶液を製造する際、有毒の塩素ガスが
発生する他、該副生物に含有されている硫酸根が全量該
混合溶液中に移行する。
When such by-products are dissolved in hydrochloric acid to produce a mixed solution of nickel chloride and cobalt chloride, toxic chlorine gas is generated, and all of the sulfate radicals contained in the by-products are dissolved in the mixed solution. to move to.

従来、塩素ガスの発生を伴わないで塩、化ニッケルと塩
化コバルトの混合溶液を得るには、反応塩酸溶液中に金
属ニッケル、金属コバルト、過酸化水素水などの還元剤
を添加して塩素ガスが発生しない程度までこの溶液の酸
化還元電位を減少させる方法が考えられるが、これらの
還元剤の使用はコストが高くなる問題点がある。また、
製造される塩化ニッケルと塩化コバルトの混合溶液中に
硫酸根が含有されると、例えば該混合溶液から8級アミ
ンを抽出溶媒とする溶媒抽出法によりニッケルとコバル
トとを分離する際に、分離された水相の方の塩化ニッケ
ル溶液中にそのま\残留するので、それは以後の例えば
塩化ニッケルの結晶製造などの処理において不純物とし
て残るので、該混合溶液中に含有されるのは好ましくな
い。そのために、従来、前記混合溶液あるいは前記塩化
ニッケル溶液に結晶分離法や塩化カルシウム、塩化バリ
ウム等を添加する沈殿分離法を、更には副生物にソーダ
焙焼法を適用するなどして硫酸根を除去する方法が考え
られる。しかしながら、これらの方法のうち、結晶分離
法は、分離が不完全で硫酸根の少ない結晶を得ようとす
るとニッケル及び又はコバルトの収率が不良となる問題
点がある。また\沈殿分離法は、カルシウムやバリウム
等が硫酸根の代わりに不純物となると共に得られる沈殿
中に塩化ニッケル及び、又は塩化コバルトが随伴してき
て、この沈殿中のニッケル及び又はコバルトを回収する
ための処理が必要となってくる問題点がある。更に、ソ
ーダ焙焼法は、焙焼物にナトリウムが混入する他、焙焼
物がガラス状となるためこの物の水浸出操作が困難であ
る問題点がある。
Conventionally, in order to obtain a mixed solution of salt, nickel chloride, and cobalt chloride without generating chlorine gas, a reducing agent such as metallic nickel, metallic cobalt, or hydrogen peroxide solution was added to the reaction hydrochloric acid solution to generate chlorine gas. Although it is possible to reduce the redox potential of this solution to such an extent that no oxidation-reduction potential occurs, the use of these reducing agents has the problem of high costs. Also,
If a sulfate radical is contained in the mixed solution of nickel chloride and cobalt chloride that is produced, it will be separated when nickel and cobalt are separated from the mixed solution by a solvent extraction method using an 8th class amine as an extraction solvent. Since it remains as it is in the nickel chloride solution in the aqueous phase, it remains as an impurity in subsequent processes such as the production of nickel chloride crystals, so it is not preferable for it to be contained in the mixed solution. To this end, conventionally, sulfate radicals have been removed by a crystal separation method or a precipitation separation method in which calcium chloride, barium chloride, etc. are added to the mixed solution or the nickel chloride solution, and also by applying a soda roasting method to the by-product. There are ways to remove it. However, among these methods, the crystal separation method has a problem in that the separation is incomplete and when trying to obtain crystals with few sulfate groups, the yield of nickel and/or cobalt is poor. In addition, in the precipitation separation method, calcium, barium, etc. become impurities instead of sulfate radicals, and nickel chloride and/or cobalt chloride accompany the resulting precipitate, and the nickel and/or cobalt in this precipitate is recovered. There are problems that require further processing. Furthermore, the soda roasting method has the problem that sodium is mixed into the roasted product and the roasted product becomes glassy, making it difficult to perform water leaching operations on the roasted product.

本発明の目的は、上記の問題点を解消し為副生物を塩酸
に溶解する際、塩素ガスの発生を伴わず、得られた塩化
ニッケルと塩化コバルトの混合溶液中に硫酸根が可及的
に含有されないような副生物の処理方法を提供すること
にある。
The purpose of the present invention is to solve the above-mentioned problems, and to dissolve the by-products in hydrochloric acid without generating chlorine gas, and to eliminate sulfuric acid radicals in the resulting mixed solution of nickel chloride and cobalt chloride. The object of the present invention is to provide a method for treating by-products that are not contained in.

この目的を達成するため本発明の方法は、副生物を75
0〜900 Cで加熱し、得られた焙焼物を水洗浄した
後、塩酸に溶解するというものである。
To achieve this objective, the method of the present invention reduces by-products to 75%.
The roasted product is heated at 0 to 900 C, washed with water, and then dissolved in hydrochloric acid.

以下、本発明方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明方法においては、副生物をまず750〜900C
で加熱する。副生物は、ニッケル電解液から得られた殿
物である場合、電解液成分である水溶性の2価のニッケ
/I/11コバルト成分が付着含有されているので、通
常加熱前に水洗浄してこれら成分を副生物から除去して
おく。しかし、これら成分が上記加熱の際、副生物中に
存在していても本発明の目的の達成に支障となるもので
はない。
In the method of the present invention, the by-product is first heated at 750 to 900C.
Heat it up. If the by-product is a precipitate obtained from a nickel electrolyte, it usually contains water-soluble divalent nickel/I/11 cobalt components that are components of the electrolyte, so it is usually washed with water before heating. These components are removed from the by-products. However, even if these components are present in the by-products during the above-mentioned heating, they do not interfere with achieving the object of the present invention.

副生物は水洗浄した後もなお硫酸根が残留するOこれは
明確ではないが、硫酸根が塩基性塩を形成しているため
と推定される。
Sulfate groups still remain in the by-products even after washing with water. Although this is not clear, it is presumed that the sulfate groups form basic salts.

副生物を750〜900Cで加熱することにより、力1
熱後の焙焼物の水洗浄で残留してし)た硫酸根を殆んど
洗浄水中に移行させ、洗浄残液から除去することができ
ると共に、水洗浄後にこの洗浄残液を塩酸に溶解する際
殆んど塩素ガスの生成をなくすることができる。
By heating the by-product at 750-900C, the force 1
Most of the sulfuric acid radicals remaining after washing the roasted product with water after heating can be transferred to the washing water and removed from the washing residue, and the washing residue can be dissolved in hydrochloric acid after washing with water. In fact, the generation of chlorine gas can be virtually eliminated.

これは明確ではないが、副生物を750〜900Cで加
熱することにより、塩基性塩を形成してし)た硫酸根が
分解して水溶性の2価のニッケルとコノくルトの硫酸塩
を形成すると共に、8価のニッケル、コバルトの酸化物
及び水酸化物が分解して2価のニッケル、コバルトの酸
化物になるためと推定される。
Although this is not clear, by heating the by-product at 750 to 900 C, the sulfate radicals that formed basic salts decompose and produce water-soluble divalent nickel and sulfate of cono-crut. It is presumed that this is because the oxides and hydroxides of octavalent nickel and cobalt decompose into divalent oxides of nickel and cobalt as they form.

副生物の加熱温度が750C未満では、この加熱後の水
洗浄で焙焼物から硫酸根を洗浄水中に充分移行させて除
去することができず、900Cを超えると、上記硫酸根
の除去及び塩酸溶解時の塩素ガスの発生の防止の点につ
いては満足すべき結果が得られるが、塩酸溶解時の溶解
性(溶解速度)が低下するので、750〜900Cで加
熱する必要があり)好ましくは800〜850Cである
If the heating temperature of the by-product is less than 750C, the sulfate radicals cannot be sufficiently transferred from the roasted product into the washing water and removed by washing with water after heating, and if it exceeds 900C, the sulfate radicals cannot be removed and dissolved in hydrochloric acid. Satisfactory results can be obtained in terms of preventing the generation of chlorine gas when dissolved in hydrochloric acid, but the solubility (dissolution rate) when dissolving in hydrochloric acid decreases, so it is necessary to heat at 750 to 900 C), preferably 800 to 900 C. It is 850C.

副生物の加熱時間は80分程度またはそれ以上で良い。The heating time for the by-product may be about 80 minutes or more.

また、加熱の雰囲気も特に限定する必要はなく、大気中
でも充分その目的を達成することができる。
Further, there is no need to particularly limit the heating atmosphere, and the purpose can be sufficiently achieved even in the atmosphere.

得られた焙焼物は水洗浄に供する0これによつ。The roasted product thus obtained is washed with water.

て、前述したように、加熱によって殆んどの硫酸根を洗
浄水へ移行させ、水洗浄残渣から除去することができる
。水洗浄の条件は特に限定する必要はなく、通常のもの
で良い。水洗浄によって得られた洗浄水には、若干のニ
ッケルやコバルトが含まれるが、これらは例えば、中和
沈殿法、イオン交換樹脂法などの公知の方法により回収
することができる。
As mentioned above, most of the sulfate radicals are transferred to the washing water by heating and can be removed from the water washing residue. Conditions for water washing do not need to be particularly limited, and normal conditions may be used. The washing water obtained by water washing contains some nickel and cobalt, which can be recovered by a known method such as a neutralization precipitation method or an ion exchange resin method.

水洗浄後、固液分離して得られた水洗浄残渣は、次に塩
酸に溶解する。塩−が副生物をそのま\溶解する場合に
必要とされる濃度よりも希薄な希塩酸でも、水洗浄残渣
は容易にしかも塩素ガスを殆んど発生−声ることなく溶
解する。
After water washing, the water washing residue obtained by solid-liquid separation is then dissolved in hydrochloric acid. Even with dilute hydrochloric acid at a concentration lower than that required if the salt were to directly dissolve the by-products, the water wash residue is easily and silently dissolved with little or no chlorine gas generation.

本発明によれば、簡便な操作で塩素ガスの発生を伴わず
、硫酸根が可及的に含有されない塩化ニッケルと塩化コ
バルトの混合溶液を得ることができ、この混合溶液を更
に次の例えば、ニッケルとコバルトとを分離する溶媒抽
出工程で効率よく処理することができる。
According to the present invention, a mixed solution of nickel chloride and cobalt chloride that does not generate chlorine gas and contains as little sulfate radical as possible can be obtained by a simple operation, and this mixed solution can be further processed, for example, by It can be efficiently processed through a solvent extraction step that separates nickel and cobalt.

以下、実施例について説明する。Examples will be described below.

実施例 ニッケル電解液からコバルトを除去するために、この電
解液に塩素ガスによる酸化処理と炭酸ニッケルによる中
和処理とを施して得られた殿物を水洗浄したNi 84
.4 、Oo 15.8 、硫酸根6.7各重量%(乾
量)の試料を60 g宛磁製角型灰皿に秤り取り、これ
を横型管状炉中、大気雰囲気で60分間加熱した。加熱
温度は700.800.900Cとした。
Example In order to remove cobalt from a nickel electrolyte, the electrolyte was subjected to oxidation treatment with chlorine gas and neutralization treatment with nickel carbonate, and the resulting precipitate was washed with water.Ni 84
.. 4, Oo 15.8, and 6.7% by weight (dry weight) of sulfate radicals were weighed into a 60 g square porcelain ashtray and heated in a horizontal tube furnace in an atmospheric atmosphere for 60 minutes. The heating temperature was 700.800.900C.

なお、この加熱中発生するSやOlを含有するガスは捕
集し中和処理した。
Note that the gas containing S and Ol generated during this heating was collected and neutralized.

上記加熱で得られた焙焼物をgo g宛500 tnl
ビーカーに秤り取り、これに水200m1を添加したの
ち、55Cで80分間機械攪拌することによって水洗浄
した。固液分離して得られた残渣を注水洗浄したOこう
して得られた水洗浄残渣を10g宛200m1ビーカー
に秤り取り、これに25重量%塩酸86.5mlを添加
したのち、常温で60分間機械攪拌することによって塩
酸溶解を行なった。
The roasted product obtained by the above heating is sent to gog for 500 tnl.
The mixture was weighed into a beaker, 200 ml of water was added thereto, and the mixture was washed with water by mechanical stirring at 55C for 80 minutes. The residue obtained by solid-liquid separation was poured with water and washed. 10 g of the water-washed residue thus obtained was weighed into a 200 ml beaker, and 86.5 ml of 25% by weight hydrochloric acid was added thereto. Hydrochloric acid dissolution was performed by stirring.

以上一連の操作によって得られた結果を加熱温度条件と
共に第1表に示す。
The results obtained through the above series of operations are shown in Table 1 together with the heating temperature conditions.

Claims (1)

【特許請求の範囲】[Claims] (1) 硫酸根を含有する8価のニッケル、コバルトの
酸化物及び又は水酸化物を750〜900 Cで加熱し
、得られた焙焼物を水洗浄した後、塩酸に溶解すること
を特徴とする塩化ニッケルと塩化コバルトの混合溶液の
製造方法。
(1) The method is characterized in that an oxide and/or hydroxide of octavalent nickel and cobalt containing a sulfate group is heated at 750 to 900 C, the roasted product obtained is washed with water, and then dissolved in hydrochloric acid. A method for producing a mixed solution of nickel chloride and cobalt chloride.
JP59033712A 1984-02-24 1984-02-24 Manufacture of mixed solution of nickel chloride and cobalt chloride Pending JPS60180921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033712A JPS60180921A (en) 1984-02-24 1984-02-24 Manufacture of mixed solution of nickel chloride and cobalt chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033712A JPS60180921A (en) 1984-02-24 1984-02-24 Manufacture of mixed solution of nickel chloride and cobalt chloride

Publications (1)

Publication Number Publication Date
JPS60180921A true JPS60180921A (en) 1985-09-14

Family

ID=12394020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033712A Pending JPS60180921A (en) 1984-02-24 1984-02-24 Manufacture of mixed solution of nickel chloride and cobalt chloride

Country Status (1)

Country Link
JP (1) JPS60180921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853692A (en) * 1993-07-02 1998-12-29 Pohang Iron & Steel Co., Ltd. Process for manufacturing high purity nickel chloride by recycling waste nickel anode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853692A (en) * 1993-07-02 1998-12-29 Pohang Iron & Steel Co., Ltd. Process for manufacturing high purity nickel chloride by recycling waste nickel anode

Similar Documents

Publication Publication Date Title
JP2018145473A (en) Lithium recovery method
JPS5952218B2 (en) Method for recovering gold from copper electrolytic slime
JP2019011518A (en) Lithium recovery method
CN106884093B (en) A kind of thick aurin smelting method
US4067952A (en) Leaching of copper-nickel concentrates
CN114349079A (en) Recycling treatment method for nickel slag solid waste in nitrogen trifluoride gas electrolysis production
JP2010138490A (en) Method of recovering zinc
JP6929240B2 (en) Manufacturing method of cobalt sulfate for batteries
US2046937A (en) Process for the preparation of copper compounds from metallic copper
CN103667706B (en) The separating and purifying method of gold in a kind of plation waste material
JPS60180921A (en) Manufacture of mixed solution of nickel chloride and cobalt chloride
JP3722254B2 (en) Manufacturing method of high purity nickel aqueous solution
JPS6059975B2 (en) Method for concentrating silver from copper electrolytic slime
JP2003105456A (en) Method for manufacturing silver
CN112981114A (en) Nickel-containing waste battery and nickel-containing waste residue recovery process
JP2011068528A (en) Method for recovering tellurium from copper electrolysis precipitation
CN112048615A (en) Method for recovering sulfate solution from waste ternary batteries
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
GB2238528A (en) Selectively recovering lead, zinc and calcium from insoluble oxides or salts
JPH0233777B2 (en)
JPH0257646A (en) Method of recovering cobalt
JP7135023B2 (en) Method for dissolving residue and method for recovering valuable metals
JP7188474B2 (en) Method and apparatus for recovering Li
JP2004123469A (en) Method for manufacturing cobalt solution having low manganese concentration
US1912590A (en) Indium recovery process