JPS60180685A - Clad material - Google Patents

Clad material

Info

Publication number
JPS60180685A
JPS60180685A JP3538084A JP3538084A JPS60180685A JP S60180685 A JPS60180685 A JP S60180685A JP 3538084 A JP3538084 A JP 3538084A JP 3538084 A JP3538084 A JP 3538084A JP S60180685 A JPS60180685 A JP S60180685A
Authority
JP
Japan
Prior art keywords
cladding
welding
base metal
laminate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3538084A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamauchi
清 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3538084A priority Critical patent/JPS60180685A/en
Publication of JPS60180685A publication Critical patent/JPS60180685A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • B23K20/08Explosive welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces

Abstract

PURPOSE:To obtain a clad material having improved corrosion resistance and exfoliation resistance in a clad material made by explosion welding a cladding material on a base metal, by interposing an intermediate material having lower melting point than at least one of the base metal and cladding material between the base metal and cladding material. CONSTITUTION:After interposing an intermediate material 16 having lower melting point than at least one of the base metal 1 and cladding material 9 between the base metal 1 and cladding material 9, explosion welding is made by exploding an explosive 10. As the cladding material 9 is joined to the base metal 1 firmly and closely, a clad material having improved corrosion resistance and adhesion can be obtained. Necessary thickness of the cladding material 9 before explosion is about 0.2mm. or more, and practical thickness of the intermediate material is about 0.5mm. or more.

Description

【発明の詳細な説明】 この発明は耐食性、接合性に優れたクラツド材に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cladding material with excellent corrosion resistance and bondability.

ある金属を他の金属で全面的に被覆する方法は金属の耐
食性を増加させる等の手段として利用されている。この
うちこれらの金属の境界面が冶金的に接合しているもの
をクラッドと称し肉盛法、圧延法、爆着法等により形成
される。
A method of completely covering a certain metal with another metal is used as a means to increase the corrosion resistance of the metal. Of these, the metallurgically bonded interface between these metals is called cladding, and is formed by overlaying, rolling, explosion bonding, or the like.

例えば原子炉圧力容器の内面に対しては腐食損傷防d−
,を目的として肉盛溶接施工がなされることが多い。こ
の肉盛溶接施工の代表的従来技術であるサブマージドア
ーク溶接を第1図に示す。
For example, corrosion damage prevention d-
Overlay welding is often performed for the purpose of . FIG. 1 shows submerged arc welding, which is a typical conventional technique for overlay welding.

第1図は圧力容器の母材1上にステンレス鋼のワイヤ2
を用いて肉盛溶接を行っている状態を示したものである
。電極はワイヤ2であり、フラツクス3の中でアーク溶
解して、溶着金属4となる。ところが素材としてのワイ
ヤ2に比べ、それを肉盛溶接した後の溶着金属4の結晶
粒界の耐食性は低下していることが多く、肉盛溶接施工
の本来の目的を達していないことが多い。なお図中符号
5は溶接電源、6はワイヤ給送用ローラ、7はモータ、
8はコントローラである。
Figure 1 shows stainless steel wire 2 on the base material 1 of the pressure vessel.
This figure shows the state in which overlay welding is performed using The electrode is a wire 2, which is arc melted in a flux 3 to become a weld metal 4. However, compared to the wire 2 as a material, the corrosion resistance of the grain boundaries of the weld metal 4 after overlay welding is often lower, and the original purpose of overlay welding is often not achieved. . In the figure, numeral 5 is a welding power source, 6 is a wire feeding roller, 7 is a motor,
8 is a controller.

下記の第1表は低合金@5A508013の肉材上に、
肉盛したステンレス鋼溶接金属の成分をワイヤの成分と
共に示したものである。肉盛溶接金風の1層目材はJ工
S規格のZ 3221のD 309Lに相当する溶接材
料であり、2層目材は同じ規格のD 308LまたはJ
工S規格の23322のYB 304L相当の材料であ
る。
Table 1 below shows that on the meat of low alloy @5A508013,
The composition of the overlaid stainless steel weld metal is shown together with the composition of the wire. The first layer material of overlay welding metal style is a welding material equivalent to D 309L of Z 3221 of J Engineering S standard, and the second layer material is D 308L or J of the same standard.
It is a material equivalent to YB 304L of the engineering S standard 23322.

第1表 第1表の炭素量を見て分るように、1層目材のワイヤl
−Aの炭素量は低く、o、018重量%であるが、溶着
された後には0.055重量%と増大している。2層目
材についてもワイヤ2−Aの炭素量は0.014重量%
と叶いにもかかわらす溶着金属では0.03’7重量%
と2倍になっている。
Table 1 As you can see from the carbon content in Table 1, the first layer material wire l
The carbon content of -A is low, 0.018% by weight, but increases to 0.055% by weight after welding. Regarding the second layer material, the carbon content of wire 2-A is 0.014% by weight.
Despite this, the weld metal is 0.03'7% by weight.
It has doubled.

肉盛溶接金属の炭素量の増大の原因はワイヤ金属の含有
量よりも十倍以上も高い炭素量を持つた低合金鋼の希釈
の影響と、フラックスからの混入にある。
The cause of the increase in carbon content in the overlay weld metal is the effect of dilution of low alloy steel, which has a carbon content more than ten times higher than the content of wire metal, and contamination from flux.

最近、ステンレス鋼5US304の粒界腐食及び応力腐
食割れの原因に関する研究で、一般的に知られるように
なった事柄の−っは、材料中の炭素が結晶粒界でクロム
と結びつき、クロム炭化物0’r2.O,を形成する際
に生じる結晶粒界近傍でのクロム枯渇現象、すなわち鋭
敏化が有害であるというものである。この鋭敏化を防止
するには低炭素化が有効であることも明らかになってき
た。
Recently, through research into the causes of intergranular corrosion and stress corrosion cracking in stainless steel 5US304, it has become generally known that carbon in the material combines with chromium at grain boundaries, resulting in zero chromium carbide. 'r2. The chromium depletion phenomenon near the grain boundaries, that is, the sensitization that occurs when forming O, is harmful. It has also become clear that reducing carbon emissions is effective in preventing this sensitization.

第1表に示した試験材の耐食性を評価した結果を第2図
に示す。用いた試験法は硫酸−硫酸第2試験(ストラウ
ス試験、J工5Go575、但し試験時間は72時間に
している)である。試験結果も粒界腐食アタック深さか
らめた粒界侵食速度(μm/h)で表わした。試験結果
を見て分るように、1層目も2層目もワイヤ金属自体の
耐食性は優れているのに対し、溶着金属では粒界の耐食
性が低下している。この主な原因は材料の炭素量で、あ
ると考えられる。
The results of evaluating the corrosion resistance of the test materials shown in Table 1 are shown in FIG. The test method used was the sulfuric acid-sulfuric acid second test (Strauss test, J Engineering 5Go575, but the test time was 72 hours). The test results were also expressed as the intergranular corrosion rate (μm/h) determined from the intergranular corrosion attack depth. As can be seen from the test results, the corrosion resistance of the wire metal itself in both the first and second layers is excellent, whereas the corrosion resistance of the grain boundaries in the weld metal is poor. The main reason for this is thought to be the carbon content of the material.

上述のように、ワイヤを完全に溶解し、溶着して行く方
法を用いる限り、溶接法が異っても有害な炭素量の増加
はさけられず耐食性の低下は避けられない。
As mentioned above, as long as the method of completely melting and welding the wire is used, an increase in the amount of harmful carbon cannot be avoided and a decrease in corrosion resistance is unavoidable even if the welding method is different.

他方、爆発溶接(爆着)によるクラッド溶接方法は合せ
材の全体を溶解せず母材との接合界面のみを溶解するの
で、クラッド本体の炭素量の増加を生じることがなく、
耐食性上は、良い施工法と考えられる。
On the other hand, the cladding welding method using explosive welding (explosion bonding) does not melt the entire cladding material but only the bonding interface with the base metal, so there is no increase in the carbon content of the cladding body.
It is considered to be a good construction method in terms of corrosion resistance.

第3図はこの爆発溶接方法を示したものである。母材1
とそれに接合する材料゛゛(合せ材)9との間に適当な
隙間10をあけて平?jに配置する。
FIG. 3 shows this explosive welding method. Base material 1
Leave an appropriate gap 10 between the material 9 and the material 9 to be joined to it. Place it at j.

合せ拐9の上に緩゛衝材11を配置し、さらにこの上に
火薬12を乗せ、その一端から起爆する。燈発力によっ
て合せ材9は母材1に高速度で衝突して接合する。なお
符号13は爆発方向を示す。
A buffer material 11 is placed on top of the bomb 9, and gunpowder 12 is placed on top of it and detonated from one end. Due to the lighting power, the laminate material 9 collides with the base material 1 at high speed and is joined. Note that numeral 13 indicates the explosion direction.

漆発溶接後の合せ材9と母材1の間の結合は、爆発時の
高圧によって冶金的結合となる。
The bond between the laminate material 9 and the base material 1 after lacquer welding becomes a metallurgical bond due to the high pressure during the explosion.

ところがこの爆発溶接法を低合金鋼の母材の上にステン
レス−板を接合するのに使用したとき、現実には局所的
はく離を生じて問題になることがある。この原因は爆発
溶接不良のためであるが、高融点の材料同士を爆発溶接
するときに生じ易い技術的難点である。
However, when this explosive welding method is used to join stainless steel plates onto a base material of low alloy steel, localized delamination may actually occur, which can be a problem. This is due to poor explosive welding, which is a technical difficulty that tends to occur when explosive welding is performed between materials with high melting points.

この発明は以上の問題点に鑑み、耐食性、接合性を向上
させるようにしたクラッド施工を施した材料(以下「ク
ラツド材」と称する)を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a cladding material (hereinafter referred to as "cladding material") that improves corrosion resistance and bondability.

要するにこの発明は母材と合せ材との間にこれら母材と
合せ材の融点よりも低い融点の材料から成る中間材を配
置し爆着により形成したクラツド材である。
In short, the present invention is a clad material formed by explosion bonding between a base material and a laminate, and an intermediate material made of a material having a melting point lower than that of the base material and the laminate.

次にこの発明の詳細な説明に先立って第4図に各金属の
溶融温度を示し、この発明を構成するに至った経過を説
明する。
Next, prior to a detailed explanation of the present invention, FIG. 4 shows the melting temperature of each metal, and the process that led to the construction of the present invention will be explained.

第4図はステンレス鋼、ニッケル基材料及び鉄基材料の
融点を示したものである。圧力容器に用いられる低合金
鋼は純鉄の融点とほぼ同等で約1530℃であり、表中
に示した材料中、最も高い融点をもっている。クラツド
材又は合せ材として使用されるステンレス鋼は約140
06C前後の比較的高い融点を有している。
FIG. 4 shows the melting points of stainless steel, nickel-based materials, and iron-based materials. The melting point of low alloy steel used in pressure vessels is about 1530°C, which is almost the same as that of pure iron, and has the highest melting point among the materials shown in the table. Stainless steel used as clad material or laminating material is approximately 140
It has a relatively high melting point of around 0.06C.

爆発溶接の接合は高圧による圧着で接合してゆくもので
あるが、ミクロ的には母材の表面と合せ材の表面を構成
している金属原子同士が、その原子11旧−タ;まで接
近して、金属結合を生じるためである。この現象は丁度
、金属材料中に方向の異なる結晶粒が結びついているの
と同様の状態を示す。さらには、母材と合せ材の接合界
面だけが、高圧によって溶解したということができる。
Explosive welding joins by crimping under high pressure, but on a microscopic level, the metal atoms that make up the surface of the base material and the surface of the laminate come close to each other to the point where the atoms are 11 old. This is because metal bonding occurs. This phenomenon is exactly the same as when crystal grains with different directions are connected in a metal material. Furthermore, it can be said that only the bonding interface between the base material and the laminate material was melted by the high pressure.

したがって爆発溶接の接合性は母材と合せ材の接合界面
をいかに溶解しやすくして、原子間隔の単位にまで母材
と合せ材の表面の金属原子を近づけるかが、重要な技術
的課題となる。
Therefore, an important technical issue regarding the bondability of explosive welding is how to make it easier to melt the bonding interface between the base material and the cladding material, and to bring the metal atoms on the surfaces of the base material and the cladding material closer together to the unit of atomic distance. Become.

この技術的課題を解決するには、母材と合せ材との間に
、それらよりも低い融点を有する中間材を配置すれば良
いことが明らかになった。
It has become clear that in order to solve this technical problem, it is sufficient to place an intermediate material having a lower melting point than the base material and the laminate material.

第4図に示したニッケル基材料のインコネル601、ハ
ステロイB及びモネル400の合金は、ステンレス鋼よ
りも約50℃から100℃も低い融点を有し、鉄基の母
材及びステンレス鋼の金山。
The alloy of nickel-based materials Inconel 601, Hastelloy B, and Monel 400 shown in FIG. 4 has a melting point about 50 to 100 degrees Celsius lower than that of stainless steel, and has a melting point lower than that of stainless steel and the iron-based base material and gold mine of stainless steel.

せ材への接合性も良好であり、中間材として適している
ことが確認できた。
It was confirmed that the bondability to the filler material was good and that it was suitable as an intermediate material.

第5図及び第6図はこの発明に係るクラツド材の形成方
法を示したものである。低合金鋼たる5A508013
の母材1に隙間15を介して中間材となるモネル400
(66,5%Ni −31,’5%Cu−Fθ)の板1
6を置き、さらに合せ材となるステンレス鋼316Lの
板9を適度な隙間17を設けて配置する。さらに合せ材
9の上には緩衝材11と火薬10を配置する。なお、こ
のとき中間材16の板厚は0.5mn+であり、合せ板
9の板厚は2mmとした。
FIGS. 5 and 6 show a method of forming a cladding material according to the present invention. Low alloy steel 5A508013
Monel 400, which becomes the intermediate material, is inserted into the base material 1 through the gap 15.
(66,5%Ni-31,'5%Cu-Fθ) plate 1
6 is placed, and a stainless steel 316L plate 9 serving as a mating material is further placed with an appropriate gap 17 provided therebetween. Furthermore, a cushioning material 11 and gunpowder 10 are arranged on the laminated material 9. In addition, at this time, the plate thickness of the intermediate material 16 was 0.5 mm+, and the plate thickness of the laminated plate 9 was 2 mm.

ここで、中間材や合せ材の板厚の決定の仕方について述
べておく。先づ、中間材の板厚について述べる。板厚は
火薬の種類や量の差による爆発力の大小によっても影響
を受けるが、爆発力を一定と考えた場合、理論的には板
の母材への衝突エネルギーは板厚の逆数に比例するので
板厚が薄ければ簿いほど良いことになる。ところが板厚
が薄いと一般に爆発溶接の接合部分における断面の波状
模様がしばしば見られる。すなわち母材側と接合材の境
界が波状となり、その波の高さが0.2mmまで達する
場合がある。したがって爆発溶接による接合力の面から
は、板厚が薄くほど良いが、接合部分の波状模様発生防
止の点からは0.2mm以上の板厚とする必要があり、
これ以下であると母材が露出してしまう虞れがある。ま
た合せ材が中間材の上から、同時に爆発溶接され、合せ
利と中間材の間でも同様な波状模様が形成されるので、
この現象による中間材の破れ全防ぐために、中間材の板
厚は約0.5mm以上が実用的である。・他方、合せ利
の板厚は上述の考え方によって、0.2mm以上であれ
ば良いことになるが、この合せ材については腐食性の環
境に置かれるので腐食代を考慮する必要がある。合せ材
は耐粒界腐食性の材料であるため、粒界腐食を考える必
要はないが、酸化スケール生成による腐食代は十分考慮
しておく必要がある。合せ利の酸化速度が、例えば最大
0、1mm / yearであった場合、20年の使用
に耐えるには約2mmであれば良い。以上の点を考慮し
て中間材や合せ材の板厚を決定すれば良い。
Here, we will discuss how to determine the thickness of intermediate materials and laminate materials. First, let's talk about the thickness of the intermediate material. The thickness of the plate is also affected by the magnitude of the explosive force due to the difference in the type and amount of gunpowder, but if the explosive force is assumed to be constant, theoretically the energy of the plate colliding with the base material is proportional to the reciprocal of the plate thickness. Therefore, the thinner the board, the better. However, when the plate thickness is thin, wavy patterns are often seen in the cross section of the joints made by explosive welding. That is, the boundary between the base material side and the bonding material becomes wavy, and the height of the wave may reach up to 0.2 mm. Therefore, from the point of view of the bonding force by explosive welding, the thinner the plate is, the better, but from the point of view of preventing the formation of wavy patterns at the joint, the plate thickness must be 0.2 mm or more.
If it is less than this, there is a risk that the base material will be exposed. In addition, the laminate material is explosively welded from above the intermediate material at the same time, and a similar wavy pattern is formed between the laminate material and the intermediate material.
In order to completely prevent the intermediate material from tearing due to this phenomenon, it is practical that the thickness of the intermediate material is about 0.5 mm or more. - On the other hand, according to the above-mentioned concept, the thickness of the laminated plate should be 0.2 mm or more, but since this laminated material will be placed in a corrosive environment, it is necessary to consider the corrosion allowance. Since the laminate is a material that is resistant to intergranular corrosion, there is no need to consider intergranular corrosion, but it is necessary to fully consider the corrosion cost due to oxide scale formation. If the combined oxidation rate is, for example, a maximum of 0.1 mm/year, then about 2 mm is sufficient to withstand 20 years of use. The thickness of the intermediate material and laminate material may be determined in consideration of the above points.

第6図は第5図に示した爆発溶接前の合せ材装置構造の
一端から起爆した様子を示したものである。爆発によっ
て合せ材9と中間材16は、ある角度をもって母材に高
速度で激しく衝突する。
FIG. 6 shows the detonation from one end of the laminate device structure shown in FIG. 5 before explosive welding. Due to the explosion, the laminate material 9 and the intermediate material 16 violently collide with the base material at a certain angle at high speed.

第2表は上述の材種以外に種々の組合せを試験すること
により作成した試験材のクラッド部の粒界腐食特性を示
したものであり、硫酸−硫酸銅試験により調べた結果を
まとめて示したものである。
Table 2 shows the intergranular corrosion characteristics of the cladding part of the test materials created by testing various combinations of materials other than those mentioned above, and summarizes the results of the sulfuric acid-copper sulfate test. It is something that

当然のことながら、合せ材は爆発溶接によって全体が溶
けたわけではないので、粒界腐食の原因となる有害な炭
素量の上昇は起らない。よって爆着後の合せ材、すなわ
ちクラツド材は全て、粒界侵食速度がO,1μm / 
h以下の優れた耐イヤの粒界腐食試験結果を示す線図、
第3図は従来の爆発溶接施工法を示す概略図、第4図は
ステンレス鋼、ニッケル基及び鉄基の各種材料の融点を
示す線図、第5図はこの発明の実施例たる爆発溶接の各
材料の配置図、第6図はこの発明になるクラッド4オの
爆発溶接時の状況を示す図である。
Naturally, since the laminate is not completely melted by explosive welding, no harmful increase in the amount of carbon that causes intergranular corrosion occurs. Therefore, the grain boundary erosion rate of all bonded materials after explosion bonding, that is, clad materials, is O,1μm/
A diagram showing the results of an intergranular corrosion test with excellent ear resistance of h or less,
Fig. 3 is a schematic diagram showing the conventional explosive welding method, Fig. 4 is a diagram showing the melting points of various materials such as stainless steel, nickel base, and iron base, and Fig. 5 is a diagram showing the explosion welding method as an embodiment of the present invention. The layout of each material, FIG. 6, is a diagram showing the situation during explosive welding of cladding 4O according to the present invention.

1・・・・・・母材 9・・・・・・合せ利 16・・・・・・中間材 第1図 第3図 1 第4図 第5図 n 第6図1...Base material 9... combined profit 16...Intermediate material Figure 1 Figure 3 1 Figure 4 Figure 5 n Figure 6

Claims (1)

【特許請求の範囲】 1、 母材に対して合せ材を爆着するものにおいて、母
材ヒ合せ材との間に、これら母材及び合せ材のうち少く
とも一方よりも融点の低い中間材料を介在配置させたこ
とを特徴とするクラツド材。 2、畑着前の合せ材の板厚を約0.2mm以上、中間材
の板厚を約0.5mm以上としたことを特徴とする特許
請求の範囲第1項記載のクラツド材。
[Claims] 1. In a device in which a laminate material is explosively bonded to a base material, an intermediate material having a melting point lower than at least one of the base material and the laminate material is provided between the base material and the laminate material. A clad material characterized by intervening arrangement of. 2. The cladding material according to claim 1, wherein the thickness of the laminated material before being applied to the field is approximately 0.2 mm or more, and the thickness of the intermediate material is approximately 0.5 mm or more.
JP3538084A 1984-02-28 1984-02-28 Clad material Pending JPS60180685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3538084A JPS60180685A (en) 1984-02-28 1984-02-28 Clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3538084A JPS60180685A (en) 1984-02-28 1984-02-28 Clad material

Publications (1)

Publication Number Publication Date
JPS60180685A true JPS60180685A (en) 1985-09-14

Family

ID=12440289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3538084A Pending JPS60180685A (en) 1984-02-28 1984-02-28 Clad material

Country Status (1)

Country Link
JP (1) JPS60180685A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112085A (en) * 1985-10-30 1988-05-17 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Method of metallurgically coupling composite and laminated metallic plate and composite and laminated metallic plate
JP2009541059A (en) * 2006-06-20 2009-11-26 パルサー・ウェルディング・リミテッド Method of welding or joining first and second metal workpieces with high pressure / high speed, and manufactured article produced thereby
JP2014079800A (en) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd Repair method for clad material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112085A (en) * 1985-10-30 1988-05-17 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Method of metallurgically coupling composite and laminated metallic plate and composite and laminated metallic plate
JP2009541059A (en) * 2006-06-20 2009-11-26 パルサー・ウェルディング・リミテッド Method of welding or joining first and second metal workpieces with high pressure / high speed, and manufactured article produced thereby
JP2014079800A (en) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd Repair method for clad material

Similar Documents

Publication Publication Date Title
US9095932B2 (en) Methods of joining metallic protective layers
US5271546A (en) Method for producing clad metal plate
KR100734794B1 (en) Method for making a joint between copper and stainless steel
CN110102866A (en) Melting welding ultrasonic wave increasing material manufacturing transition for dissimilar metal part
Tomashchuk et al. Metallurgical strategies for the joining of titanium alloys with steels
US5213904A (en) Aluminum/steel transition joint
US3664816A (en) Steel-to-aluminum transition piece
TW201938390A (en) Multistage joining process with thermal sprayed layers
US4817859A (en) Method of joining nodular cast iron to steel by means of fusion welding
JPH07178563A (en) Joining method and joining structure by spot welding using together press welding
US5190831A (en) Bonded titanium/steel components
US3495319A (en) Steel-to-aluminum transition joint
JPS60180685A (en) Clad material
Linse et al. Explosive welding
Bouaifi et al. Plasma arc brazing in sheet metal construction
JPH031106B2 (en)
JP2001205449A (en) Joined structure of steel and titanium plate and joining method
JPS61289987A (en) Improvement in impact welding
JPS594994A (en) Submerged arc welding method of heat resistant low alloy steel
JPH04157072A (en) Different material joining method
JPH0558838B2 (en)
JPS62282781A (en) Butt welding method for clad steel
JPH02104482A (en) Pipe joint for joining high corrosion resistant stainless steel-titanium and manufacture thereof
JP3081791B2 (en) Manufacturing method of clad steel
JPH012787A (en) Highly corrosion-resistant stainless steel-zirconium joint and its manufacturing method