JPS60180180A - Detecting element for infrared ray - Google Patents

Detecting element for infrared ray

Info

Publication number
JPS60180180A
JPS60180180A JP59036568A JP3656884A JPS60180180A JP S60180180 A JPS60180180 A JP S60180180A JP 59036568 A JP59036568 A JP 59036568A JP 3656884 A JP3656884 A JP 3656884A JP S60180180 A JPS60180180 A JP S60180180A
Authority
JP
Japan
Prior art keywords
film
thin
substrate
mixed
infrared absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59036568A
Other languages
Japanese (ja)
Other versions
JPH0476235B2 (en
Inventor
Ichiro Ueda
一朗 上田
Shunichiro Kawashima
俊一郎 河島
Kenji Iijima
賢二 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59036568A priority Critical patent/JPS60180180A/en
Publication of JPS60180180A publication Critical patent/JPS60180180A/en
Publication of JPH0476235B2 publication Critical patent/JPH0476235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain the titled element, which resists mechanical impact force, handling thereof is easy and which has high sensitivity, by coating at least one surface of a piezoelectric body thin-film, from which a substrate is removed, with an organic film into which an infrared absorption material is mixed. CONSTITUTION:A lead titanate thin-film 2 in 2mum thickness is grown and formed on a magnesium oxide substrate 1 in approximately 300mum thickness by using a sputtering device. A platinum electrode 3 is evaporated and shaped at the central section of the upper surface of the thin-film 2, epoxy resin 4 in 0.5- 1.5mum thickness into which an infrared absorption material is mixed is applied extending over the upper surface of the thin-film 2, and the substrate 1 except the outer circumferential section of the lower surface of the thin-film 2 is etched and removed by concentrated phosphoric acid to form a recessed section 6. A platinum electrode 5 is fitted at the central section of the lower surface of the thin-film 2. The power of carbon, platinum black, etc. is used as the infrared absorption material mixed into epoxy resin 4. Accordingly, sensitivity is increased remarkably while mechanical impact force is also augmented, and handling is facilitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電体薄膜の焦電効果を利用した赤外線検出
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an infrared detection element that utilizes the pyroelectric effect of a ferroelectric thin film.

従来例の構成とその問題点 物体は常温近傍において10μmの波長付近にピークを
もつ赤外線を輻射しており、この輻射エネルギーの波長
特性が物体の温度によって異なるので、物体から輻射さ
れる赤外線のエネルギーを測定することによって物体の
温度を非接触で測定できる。
Conventional configuration and its problems Objects radiate infrared rays with a peak around a wavelength of 10 μm near room temperature, and the wavelength characteristics of this radiant energy vary depending on the temperature of the object, so the energy of the infrared rays radiated from the object By measuring , the temperature of an object can be measured without contact.

これらに使用される赤外線検出器としては、大別して量
子形と熱形とがあるが、量子形は応答速度が速く感度も
高いという特長をもっている反面、液体窒素などによる
冷却が必要であシ、感度の波長依存性が大きいという欠
点を肩する。
Infrared detectors used in these applications can be roughly divided into quantum type and thermal type.While quantum type has the advantage of fast response speed and high sensitivity, it requires cooling with liquid nitrogen, etc. This overcomes the drawback of high wavelength dependence of sensitivity.

これに比べて熱形検出器は、感度は低いが常温で動作し
、感度の波長依存性がないという長所をもっている。こ
の熱形検出器にはサーミスタ形と焦電形とがあるが、焦
電形は比較的感度もよく、バイアス電源を必要とせず、
取扱いが簡便である。
In comparison, thermal detectors have lower sensitivity, but have the advantage of operating at room temperature and having no wavelength dependence of sensitivity. There are two types of thermal detectors: thermistor type and pyroelectric type, but pyroelectric type has relatively high sensitivity and does not require a bias power supply.
Easy to handle.

このような理由から、赤外線検出器として、特性のよい
焦電形の検出器が望まれている。
For these reasons, a pyroelectric detector with good characteristics is desired as an infrared detector.

焦電材料としては、単結晶、磁器、薄膜が考えられる。Possible pyroelectric materials include single crystals, porcelain, and thin films.

これらのうち、薄膜は高密度のアレイセンサを構成する
のに有利であり、比検出能りを大きくできるという点で
も有利である。
Among these, thin films are advantageous in constructing a high-density array sensor, and are also advantageous in that they can increase specific detection ability.

このような焦電体薄膜は、通常、酸化物や81などを基
板に用いて高周波スパッタリング法、或いは蒸着法など
で作成される。
Such a pyroelectric thin film is usually created by a high frequency sputtering method, a vapor deposition method, or the like using an oxide, 81, or the like as a substrate.

焦電形赤外線検出器は、赤外線の吸収による温度上昇を
利用するので、赤外線を十分に吸収させること、及び基
板へ熱が逃げないようにすることが必要であシ、赤外線
の吸収はよい吸収膜をつけることによって可能となる一
方、基板への熱の逃げは基板をエツチングなどで取り除
くことにより解決できる。しかしながら、薄膜は通常数
μmの厚みであって非常に破損し易く、その取扱いが困
難である。
Pyroelectric infrared detectors utilize temperature rise due to absorption of infrared rays, so it is necessary to absorb sufficient infrared rays and prevent heat from escaping to the substrate. This is possible by attaching a film, while heat escape to the substrate can be solved by removing the substrate by etching or the like. However, the thin film is usually several micrometers thick and is very easily damaged, making it difficult to handle.

発明の目的 本発明はこのような基板を除去した薄膜素子のもつ欠点
を解消すると共に赤外線エネルギーの十分な吸収を行わ
せるために、少なくとも一方の電極面が赤外線吸収材料
を混入した有機フィルムで覆われていることを特徴とす
る新規々焦電形赤外線検出素子を提供するものである。
OBJECTS OF THE INVENTION The present invention solves the drawbacks of such a thin film device without a substrate, and in order to ensure sufficient absorption of infrared energy, at least one electrode surface is covered with an organic film mixed with an infrared absorbing material. The present invention provides a novel pyroelectric infrared detection element characterized by:

発明の構成 上記目的を達成する本発明の赤外線検出素子は、基板を
除去した焦電体薄膜において、その少なくとも片面に赤
外線吸収材料を混入した有機フィルムでコーティングし
たものである。
Structure of the Invention The infrared detecting element of the present invention, which achieves the above object, is a pyroelectric thin film from which a substrate has been removed, and at least one side of the pyroelectric thin film is coated with an organic film mixed with an infrared absorbing material.

実施例の説明 本発明の実施例を図面に基いて説明すると、スパッタ装
置を用いて厚さ約300μmの酸化マグネシウム基板(
1)に厚さ2μmのチタン酸鉛薄膜(2)を成長させて
形成した。次いで、チタン酸鉛薄膜(2)の上面中央部
に白金電極(3)を蒸着、形成したのち、薄膜(2)の
上面全面に亘って赤外線吸収材料を混入した厚さ05〜
1.5μmのエポキシ樹脂(4)を塗布し、しかるのち
、濃燐酸で薄板(2)の下面外周部以外の基板(1)を
エッチして除去することにより四部(6)を形成した。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. A magnesium oxide substrate (about 300 μm thick) is prepared using a sputtering apparatus.
A lead titanate thin film (2) with a thickness of 2 μm was grown on 1). Next, a platinum electrode (3) is vapor-deposited and formed at the center of the upper surface of the lead titanate thin film (2), and then an infrared absorbing material is mixed over the entire upper surface of the thin film (2) to a thickness of 0.5~
A 1.5 μm thick epoxy resin (4) was applied, and then the substrate (1) other than the outer periphery of the lower surface of the thin plate (2) was etched and removed using concentrated phosphoric acid, thereby forming the fourth part (6).

次に、電極(3)に対向して薄膜(2)の下面中央部に
白金電極(5)を形成し、基板を設けていない赤外線検
出素子を作成した。作成後、素子を200℃で和V O/、の電界で10分間分極した。
Next, a platinum electrode (5) was formed at the center of the lower surface of the thin film (2), facing the electrode (3), to produce an infrared detection element without a substrate. After fabrication, the device was polarized at 200° C. for 10 minutes with an electric field of total V 2 O/.

エポキシ樹脂(4)に混入される赤外線吸収材料として
は、カーボン、全黒、白金黒の粉末を用いた。
As the infrared absorbing material mixed into the epoxy resin (4), carbon, all black, and platinum black powders were used.

このように、エポキシ樹脂等の有機フィルムを塗布した
基板のガい素子を得、この素子と、有機フィルムを塗布
してい々い素子とについて落下試験を行って耐衝撃性を
調べた結果、有機フィルムを設けていない素子は約30
伽の高さから落しても破損してしまうことが多かった。
In this way, we obtained a glass element with a substrate coated with an organic film such as epoxy resin, and conducted a drop test on this element and another element coated with an organic film to examine the impact resistance. Approximately 30 elements without film
Even if dropped from the height of a pagoda, it was often damaged.

これに対して、有機フィルムで被覆している素子は15
0Gmの高さから落下させても何等の異常も認められな
かった。
On the other hand, the element covered with organic film has 15
Even when dropped from a height of 0 Gm, no abnormality was observed.

従って、有機フィルムでコートした基板のない薄膜素子
は、衝S、に十分強いことが確認された。
Therefore, it was confirmed that a thin film device without a substrate coated with an organic film is sufficiently strong against shock S.

次に、素子に赤外線を照射して赤外線検出器としての出
力電圧を測定した。その測定手段としては、泥炭500
にの黒体炉からの放射光を25Hzでチョッピングし、
素子に照射することにより行った。
Next, the device was irradiated with infrared rays and the output voltage as an infrared detector was measured. As a means of measurement, peat 500
The synchrotron radiation from the blackbody reactor was chopped at 25Hz,
This was done by irradiating the device.

素子の出力は、NETを用いてインピーダンス変換を行
ったのち、60dBの増幅器を通してスペクトラムアナ
ライザを用い測定した。
The output of the element was measured using a spectrum analyzer after impedance conversion was performed using a NET and then passed through a 60 dB amplifier.

下記の第1表に1有機フィルムのない素子と赤外線吸収
材を含まない有機フィルムを塗布した素子及びカーボン
を体積比で5.10.30%、白金を′50俤、全黒を
30俤、夫々混入した有機フィルムを塗布している素子
との出力電圧を示す。
Table 1 below shows an element without an organic film, an element coated with an organic film containing no infrared absorbing material, carbon at a volume ratio of 5.10.30%, platinum at 50 yen, full black at 30 yen, The output voltages of the elements coated with the mixed organic films are shown.

第 1 表 上記表から明らかなように、有機フィルムを塗布しても
僅かしか感度は増加しないが、カーボン、白金黒、全黒
を混入した有機フィルムを塗布すると著しく感度が増加
した。又有機フィルムにこれらの赤外線吸収材を混入さ
せても前述した素子の衝撃力テストに十分耐えた。
Table 1 As is clear from the above table, the sensitivity increased only slightly when an organic film was applied, but the sensitivity increased significantly when an organic film mixed with carbon, platinum black, or total black was applied. Furthermore, even when these infrared absorbing materials were mixed into the organic film, the device sufficiently withstood the impact force test described above.

さらに又、薄膜の両面に有機フィルムを塗布した場合、
強度はさらに増加した。赤外線吸収材の混入した有機フ
ィルムを薄膜両面に塗層した素子の場合、出力はや\増
加した。
Furthermore, when organic films are applied on both sides of the thin film,
The strength increased further. In the case of a device with a thin layer of organic film mixed with an infrared absorbing material on both sides, the output increased slightly.

発明の効果 以上のように本発明の赤外線検出素子によれば、基板の
ない焦電薄膜の片面又は両面に、赤外線吸収材を混入さ
せた有機フィルムを塗布しているので、機械的衝撃力に
極めて強くて取扱いが容易となり、さらに感度も著しく
良好にものである。
Effects of the Invention As described above, according to the infrared detecting element of the present invention, an organic film mixed with an infrared absorbing material is coated on one or both sides of the pyroelectric thin film without a substrate, so it is resistant to mechanical impact force. It is extremely strong and easy to handle, and also has extremely good sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はその素子
の断面図、第2図は平面図である。 (1)・・・基板、(2)・・・薄膜、(3)(5)l
・・電極、(4)l・・有機フィルム。 第7図 第2図
The drawings show an embodiment of the present invention, and FIG. 1 is a sectional view of the device, and FIG. 2 is a plan view. (1)...Substrate, (2)...Thin film, (3)(5)l
...electrode, (4)l...organic film. Figure 7 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板面に垂直な分極軸を有する強誘電体薄膜の上記基板
が除去され、且つ薄膜の片面又は両面に設けた電極の表
面が赤外線吸収材料を混入した有機フィルムで覆われて
いる赤外線検出素子。
An infrared detection element in which the substrate of a ferroelectric thin film having a polarization axis perpendicular to the substrate surface is removed, and the surface of an electrode provided on one or both sides of the thin film is covered with an organic film mixed with an infrared absorbing material.
JP59036568A 1984-02-27 1984-02-27 Detecting element for infrared ray Granted JPS60180180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036568A JPS60180180A (en) 1984-02-27 1984-02-27 Detecting element for infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036568A JPS60180180A (en) 1984-02-27 1984-02-27 Detecting element for infrared ray

Publications (2)

Publication Number Publication Date
JPS60180180A true JPS60180180A (en) 1985-09-13
JPH0476235B2 JPH0476235B2 (en) 1992-12-03

Family

ID=12473363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036568A Granted JPS60180180A (en) 1984-02-27 1984-02-27 Detecting element for infrared ray

Country Status (1)

Country Link
JP (1) JPS60180180A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313023A (en) * 1987-06-16 1988-12-21 Matsushita Electric Ind Co Ltd Pyroelectric type infrared array sensor and its production
JPH0436265U (en) * 1990-07-24 1992-03-26
DE10009593A1 (en) * 2000-02-29 2001-09-13 Bosch Gmbh Robert Structural body, used as infrared sensor, comprises supporting body connected to structuring layer having micro-component and recess filled with hardened liquid functional material
CN113375813A (en) * 2020-03-10 2021-09-10 高尔科技股份有限公司 Infrared sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313023A (en) * 1987-06-16 1988-12-21 Matsushita Electric Ind Co Ltd Pyroelectric type infrared array sensor and its production
JPH0658261B2 (en) * 1987-06-16 1994-08-03 松下電器産業株式会社 Pyroelectric infrared array sensor and method of manufacturing the same
JPH0436265U (en) * 1990-07-24 1992-03-26
DE10009593A1 (en) * 2000-02-29 2001-09-13 Bosch Gmbh Robert Structural body, used as infrared sensor, comprises supporting body connected to structuring layer having micro-component and recess filled with hardened liquid functional material
CN113375813A (en) * 2020-03-10 2021-09-10 高尔科技股份有限公司 Infrared sensor

Also Published As

Publication number Publication date
JPH0476235B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
Phelan Jr et al. High D* pyroelectric polyvinylfluoride detectors
US3604933A (en) Electromagnetic radiation-detection device comprising ferroelectric sensing, reference and temperature-stabilizing components
US3733499A (en) Pyroelectric detector
Stenger et al. Thin film lithium tantalate (TFLT) pyroelectric detectors
US3641346A (en) Pyroelectric joulemeter using a divergent lens
US3816750A (en) Pyroelectric detector
CN108336505A (en) A kind of insensitive Meta Materials of terahertz wave band broadband polarization
JPS60180180A (en) Detecting element for infrared ray
US4551425A (en) Pyroelectric gas sensor
US5286975A (en) Pyro-electric type infrared-ray sensor
US3405271A (en) Detector having radiation collector supported on electrically insulating thermally conducting film
US3405273A (en) Detector arrangement having a collector with electrically insulating porous material thereon
Tidrow et al. Uncooled infrared detectors and focal plane arrays
US3405272A (en) Film supported detector with low heat transfer impedance path from cold junctions tothermal sink
Montecchi et al. Study of some optical glues for the Compact Muon Solenoid at the large hadron collider of CERN
US20080185523A1 (en) Infrared detector and method
JPS6138427A (en) Infrared detection element
JPS6138432A (en) Pyroelectric type infrared detection element
JPS60171425A (en) Pyroelectric type heat detection element
Kuwano et al. The Pyroelectric Sensor
JPS6126828A (en) Infrared detecting element
Pelah et al. Differential calorimeter for measurement of absorbed energy in laser‐produced plasmas
Bauer et al. Design and properties of a microcalorimeter
Liang et al. High performance THz detector based on ultra-thin LiTaO 3 crystal
Pradhan et al. Electrically balanced pyroelectric radiometer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term