JPS60180064A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS60180064A
JPS60180064A JP59033820A JP3382084A JPS60180064A JP S60180064 A JPS60180064 A JP S60180064A JP 59033820 A JP59033820 A JP 59033820A JP 3382084 A JP3382084 A JP 3382084A JP S60180064 A JPS60180064 A JP S60180064A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
metal
oxygen
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59033820A
Other languages
Japanese (ja)
Other versions
JPH0578144B2 (en
Inventor
Hiroyoshi Shirai
汪芳 白井
Akihiro Hotta
堀田 晃弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59033820A priority Critical patent/JPS60180064A/en
Publication of JPS60180064A publication Critical patent/JPS60180064A/en
Publication of JPH0578144B2 publication Critical patent/JPH0578144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the charge and discharge characteristics of a secondary battery that uses oxygen electrodes by coating the first electrode with metal high polymer Schiff base complex. CONSTITUTION:A secondary battery consists of the first electrode, on which a coat made of metal high polymer Schiff base complex such as metal-poly-N- salicylidenevinylamine is formed, the second electrode, and an electrolyte. It is desirable to improve the conductivity of the coat of this first electrode by doping the coat with dopant such as an acid, halogen, etc. Charge is performed by using the first electrode of this secondary battery as an anode and discharge is performed by using the first electrode as a cathode. Since this secondary battery permits the high polymer structure itself to carry oxygen at charge, charge and discharge characteristics can be improved.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 本発明は、酸素極を用いた新規な2次電池に関する。[Detailed description of the invention] ■ Background of the invention Technical field The present invention relates to a novel secondary battery using an oxygen electrode.

先行技術 ポルフィリン、アザポルフィリン、ポルフィラジン、ア
ヌレン等のN4型、シッフ塩基等のN202 yJ、ジ
アサチルジチオベンジドラゾン等、のN2 s2型など
の平面環状金属錯体が知られている。
PRIOR ART Planar cyclic metal complexes are known, such as N4 type such as porphyrin, azaporphyrin, porphyrazine, annulene, N202 yJ such as Schiff base, N2 s2 type such as diastyldithiobenzidrazone.

これら平面環状金属錯体は、導電性基村上に被覆して電
極としてカソードとしたとき、酸素の電極還元反応を触
媒することが知られており、このような電極をカソード
として、酸素・水素燃料電池を構成する旨の提言がなさ
れている。
These planar cyclic metal complexes are known to catalyze the electrode reduction reaction of oxygen when coated on a conductive substrate and used as an electrode as a cathode. A proposal has been made to establish a

一方、これら平面環状金属錯体は、酸素を配意し、酸素
担体として機能することも知られている。
On the other hand, it is also known that these planar cyclic metal complexes support oxygen and function as oxygen carriers.

そこで、本発明者らは、上記したような平面環状金属錯
体の酸素触媒能と酸素担持能に着目し、種々検討を行っ
た。
Therefore, the present inventors focused on the oxygen catalytic ability and oxygen carrying ability of the above-mentioned planar cyclic metal complex, and conducted various studies.

その結果、これら錯体の被覆を有する電極と、他の電極
とを電解質水溶液中に対置して電池を構成し、この錯体
で修飾した電極をアノードとして電流を印加すれば、電
解プロセスによって酸素が生じ、この酸素が錯体に担持
され充電が行われ、他方、この電極をカソードとして負
荷と接続すれば、錯体に担持されていた酸素が離脱して
、この離脱酸素によって酸素極が形成され、酸素の還元
反応によって放電が行われるものであるとの着想をうる
に至った。
As a result, if an electrode coated with these complexes and another electrode are placed opposite each other in an electrolyte aqueous solution to form a battery, and a current is applied using the electrode modified with this complex as an anode, oxygen is produced through the electrolytic process. This oxygen is supported on the complex and charging is performed, and on the other hand, when this electrode is connected to a load as a cathode, the oxygen supported on the complex is released, and the released oxygen forms an oxygen electrode, and the oxygen is removed. He came up with the idea that electrical discharge is caused by a reduction reaction.

そして、これら充放電可能な2次電池は、錯体として低
分子錯体を用いて、有効に機能する。
These chargeable and dischargeable secondary batteries function effectively using a low-molecular complex as a complex.

しかし、これらの電極は、充放電特性の点で未だ不十分
である。
However, these electrodes are still unsatisfactory in terms of charge and discharge characteristics.

II 発明の目的 本発明はこのような実状に鑑みなされたものであって、
その主たる目的は、シッフ塩基錯体を有する電極を改良
して、新規な酸素極を用いた2次電池の充放電特性を向
上させることにある。
II. Purpose of the Invention The present invention was made in view of the above circumstances, and
The main purpose is to improve the electrodes containing Schiff base complexes and to improve the charging and discharging characteristics of secondary batteries using the new oxygen electrodes.

このような目的は、下記の本発明によって達成される。Such objects are achieved by the invention described below.

すなわち第1の発明は、 金属高分子シッフ塩基錯体からなる被覆を有する第1の
電極と、第2の電極と、電解質から構成されたことを特
徴とする2次電池である。
That is, the first invention is a secondary battery comprising a first electrode having a coating made of a metal polymer Schiff base complex, a second electrode, and an electrolyte.

また第2の発明は、 金属高分子シッフ塩基錯体からなり、これにドーパント
をドープしてなる被覆を有する第1の電極と、第2の電
極と、電解質とから構成されたことを特徴とする2次電
池である。
A second invention is characterized in that it is comprised of a first electrode having a coating made of a metal polymer Schiff base complex doped with a dopant, a second electrode, and an electrolyte. It is a secondary battery.

III 発明の具体的構成 以下、本発明の具体的構成について詳細に説明する。III Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明の2次電池の第1の電極の被覆は、金属高分子シ
ッフ塩基錯体から形成され、金属高分子シッフ塩基錯体
としては、合成のしやすさの点で、ポリ−N−サリシリ
デン上ニルアミンの下記金属塩(Mt−PSV)が好適
である。
The coating of the first electrode of the secondary battery of the present invention is formed from a metal polymer Schiff base complex, and as a metal polymer Schiff base complex, poly-N-salicylidene-onylamine is preferable from the viewpoint of ease of synthesis. The following metal salt (Mt-PSV) is suitable.

この場合、Mtは金属、例えばCo、 、 Fe 。In this case, Mt is a metal, for example Co, Fe.

Cu、Ni等を表わす。Represents Cu, Ni, etc.

そして、PSV中のビニル基、ベンゼン基等には置換基
が存在していてもよい。
A substituent may be present in the vinyl group, benzene group, etc. in PSV.

さらに、nは50程度以上、p/nは0.1〜0.5程
度である。
Further, n is about 50 or more, and p/n is about 0.1 to 0.5.

このような金属高分子フッシ塩基錯体をうるには、例え
ばPSVを公知の方法に従い合成したのち、Mtの例え
ば塩化物、−酢酸塩のDMF溶液とPSVのDMF溶液
を混合し、通常室温にて反応を行う。 これをエーテル
に沈鍛し、エタノール等で洗浄し、日別乾燥すればよい
In order to obtain such a metal polymer fluoride base complex, for example, PSV is synthesized according to a known method, and then a DMF solution of Mt, for example, chloride or acetate, and a DMF solution of PSV are mixed, and the mixture is usually heated at room temperature. Perform the reaction. This can be soaked in ether, washed with ethanol, etc., and dried daily.

このような高分子は、通常、0.11tm〜5mm程度
の厚さにて塗布や接着によって、基材上に被覆として形
成される。
Such a polymer is usually formed as a coating on a base material by coating or adhesion to a thickness of about 0.11 tm to 5 mm.

第1の電極に用いる基材の材質については特に制限はな
く1通常の金属、カーホン等の導電性材料を用いればよ
い。 また、その形状、寸法等も任意であってもよい。
There are no particular restrictions on the material of the base material used for the first electrode, and any conductive material such as ordinary metal or carphone may be used. Moreover, its shape, dimensions, etc. may be arbitrary.

 この場合、基材は多孔体として、比表面積を大きくす
ることが好ましい。
In this case, the base material is preferably a porous body with a large specific surface area.

なお、被覆には、ドーパントをドープすると、導電性を
向上させることが好ましい。
Note that the coating is preferably doped with a dopant to improve conductivity.

ドーパントとじては、イオン性のドーピング物質は、い
ずれも使用可能である。 こ の うち、塩酸、硫酸、
硝酸、過塩素酩、さらにはS03等の酸およびヨウ素、
臭素、塩素等のハロゲンは、電導度向上の点でもっとも
好適である。
As the dopant, any ionic doping substance can be used. Among these, hydrochloric acid, sulfuric acid,
Acids such as nitric acid, perchlorine, and even S03, and iodine,
Halogens such as bromine and chlorine are most suitable for improving conductivity.

このようなドーパントは、高分子中の錯体残基に対し、
一般に、100モル%以下、特に0.1〜10モル%ド
ーピングされ、ポリマー組成物を形成する。
Such a dopant acts on the complex residue in the polymer.
Generally, it is doped up to 100 mol %, especially from 0.1 to 10 mol %, to form a polymer composition.

高分子に対し、ドーピングを行うには、通常、室温程度
の温度ないし、80°C程度以下の温度にて、5分〜5
日 程度気相中で高分子とドーパントとを接触させるこ
とによればよい。
To dope a polymer, it is usually done at room temperature or below 80°C for 5 to 5 minutes.
This may be done by bringing the polymer and the dopant into contact in a gas phase for about a day or so.

なお、被覆中には、他のフィラー、特に金属、カーボン
等の導電性フィラーなどが含まれていてもよい。
Note that the coating may contain other fillers, particularly conductive fillers such as metals and carbon.

用いる第2の電極の活物質としては、卑な電極電位を存
するものであり、その材質については、特に制限はない
が、通常は亜鉛、鉄等を用いる。 あるいは、水素極と
してもよい。 そして、その形状、寸法等は公知の通常
のものと同様でよい。
The active material of the second electrode used has a base electrode potential, and the material thereof is not particularly limited, but zinc, iron, etc. are usually used. Alternatively, it may be used as a hydrogen electrode. The shape, dimensions, etc. thereof may be the same as those of known ordinary ones.

このような第1の電極と第2の電極とは、容器中に収納
した電解質中に対置されて、本発明の2次電池が構成さ
れる。
The first electrode and the second electrode are placed opposite each other in an electrolyte housed in a container to constitute the secondary battery of the present invention.

用いる電解質としては、通常アルカリないし酸水溶液を
用いる。
The electrolyte used is usually an alkali or acid aqueous solution.

なお、電極配置、容器構造、電解質の担持方法等は任意
であり、公知の他の電池と同様なものとすればよい。
Note that the electrode arrangement, container structure, electrolyte supporting method, etc. are arbitrary, and may be the same as other known batteries.

このように構成される本発明の2次電池は、以下のよう
にして充電・放電を行う。
The secondary battery of the present invention configured as described above is charged and discharged in the following manner.

充電は、金属錯体が結合した高分子被覆を有する第1の
電極をアノードとして、第1、第2の電極間に電流を流
すことによって行う。 充電は、通常、0.1〜10時
間率の電流0.1〜ioc程度とされる。
Charging is performed by passing a current between the first and second electrodes, using the first electrode having a polymer coating to which a metal complex is bonded as an anode. Charging is normally carried out at a current of about 0.1 to 10 oc at a rate of 0.1 to 10 hours.

この充電により、電解質中の水の電気分解が生じ、第1
の電極の被覆中の金属錯体に酸素が配位して酸素t13
体が形成され、酸素が担持される。 また、高分子自体
も酸素を担持する。
This charging causes electrolysis of water in the electrolyte, causing the first
Oxygen coordinates to the metal complex in the coating of the electrode and oxygen t13
A body is formed and carries oxygen. Moreover, the polymer itself also supports oxygen.

ると、第1の電極がカソードとして機能して放電が行わ
れる。
Then, the first electrode functions as a cathode and discharge occurs.

すなわち、第1の電極の金属錯体および高分子に担持さ
れていた酸素が離脱し、この酸素が金属錯体の触媒作用
によって還元され、電池反応か進行するものである。
That is, the oxygen supported on the metal complex and polymer of the first electrode is released, this oxygen is reduced by the catalytic action of the metal complex, and a battery reaction proceeds.

なお、放電に際しては、第1の電極に酸素を吹きこんで
もよい。 また、第2の電極として、水素極等を用いる
こともできる。
Note that during discharge, oxygen may be blown into the first electrode. Further, a hydrogen electrode or the like can also be used as the second electrode.

1v 発明の具体的効果 本発明によれば、新規でしかも実用性のある2次電池が
実現する。
1v Specific Effects of the Invention According to the present invention, a novel and practical secondary battery is realized.

この場合、低分子の錯体のみを用いたときと比較して、
充電時に高分子骨格自体も酸素を担持するので、充放電
特性が格段と向上する。
In this case, compared to using only low-molecular complexes,
Since the polymer skeleton itself also supports oxygen during charging, charge and discharge characteristics are significantly improved.

また、被覆強度も高くなり、寿命も向上する。Furthermore, the coating strength is increased and the life span is also improved.

そして、錯体は高分子中に結合しているので、錯体が2
是化干るこンも小かど 孟rhMf’aル性が向上する
And since the complex is bound in the polymer, the complex is
If the dried radish is also small, the realism will improve.

■ 発明の具体的実施例 以下、本発明の具体的実施例を示し、本発明をさらに詳
細に説明する。
(2) Specific Examples of the Invention Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail.

実施例 平均重合度υ=50のPSVを用意した。Example PSV with an average degree of polymerization υ=50 was prepared.

金属塩としては、Co0文2・6H20゜FeCl2・
nH2O。
As a metal salt, Co0bun2・6H20゜FeCl2・
nH2O.

Cu (CH3Coo)2および NiC2・6H20を゛用意した。Cu (CH3Coo)2 and NiC2/6H20 was prepared.

これら金属塩のDMF溶液(金属塩濃度2゜7X1.O
−5〜5.5X104 モjlz) とPSV(7)D
MF溶液を混合し、室温で24時間反応させた。
A DMF solution of these metal salts (metal salt concentration 2°7×1.0
-5~5.5X104Mojlz) and PSV(7)D
The MF solutions were mixed and reacted at room temperature for 24 hours.

これをエーテルに沈澱し、日別後、エタノールで洗浄し
た。 ただし、Co−PSVにおいては、エーテルで洗
浄し、日別、乾燥した。
This was precipitated in ether and washed with ethanol after a day. However, in the case of Co-PSV, it was washed with ether and dried daily.

えられたMt−Psvの金属含有率は、電子吸光法によ
りめた。
The metal content of the obtained Mt-Psv was determined by electron absorption method.

これらの結果を表1に示す。These results are shown in Table 1.

表 1 1CO0,9 2113,9 3〃8.8 4 tt 14.8 5 // 20.7 6 Fe 1.6 7 Cu 1.0 8 Ni1.0 次いで、これら各ML−PSVをDMFからキャスティ
ングして、基体上に設層して第1の電極をえた。
Table 1 1CO0,9 2113,9 3〃8.8 4 tt 14.8 5 // 20.7 6 Fe 1.6 7 Cu 1.0 8 Ni1.0 Next, each of these ML-PSVs was cast from DMF. Then, a layer was formed on the substrate to obtain a first electrode.

電解液はH2SO4とKOHとの水溶液を用い、第1の
電極および第2の電極を配置した。
An aqueous solution of H2SO4 and KOH was used as the electrolytic solution, and a first electrode and a second electrode were arranged.

なお、第1の電極基体および第2の電極は、1mm中の
白金棒の先端に、厚さ0.1mm、表面積1 cm2の
白金板をスポット溶接ビたものであり、電極表面は、サ
ンドペーパー研磨したのち、蒸留水、中性洗剤および6
NHCuでくりかえし超音波洗浄したものである。
The first electrode base and the second electrode are made by spot-welding a platinum plate with a thickness of 0.1 mm and a surface area of 1 cm2 onto the tip of a 1 mm platinum rod, and the electrode surface is coated with sandpaper. After polishing, use distilled water, neutral detergent, and
It was repeatedly ultrasonically cleaned with NHCu.

このような2次電池において、まず、支持電解液を4.
5NH2SO4と30賛t%KOHを用い、酸素をバブ
リングすることによって供給しなから1’ −100p
LAで放電を行った。
In such a secondary battery, first, the supporting electrolyte is added to 4.
Using 5NH2SO4 and 30% KOH, 1'-100p was supplied by bubbling oxygen.
Discharge was performed in LA.

放電特性を第1図〜第3図に示す。The discharge characteristics are shown in FIGS. 1 to 3.

図中、曲線AがMt−PSV It、5(7)被覆を有
する電極(担持量2.19mg)、曲線BがML−PS
V No、5担持量0.95mgである。 また、曲線
Cは被覆を設けない白金電極の結果である。
In the figure, curve A is Mt-PSV It, an electrode with 5(7) coating (loading amount 2.19 mg), and curve B is ML-PS.
V No. 5 supported amount is 0.95 mg. Curve C is the result for a platinum electrode without a coating.

そして、第1図が放電電流と放電電圧との関係、第2図
がCo−PSV単位質量当りの放電特性、第3図が金属
錯体1モルあたりの放電特性である。
FIG. 1 shows the relationship between discharge current and discharge voltage, FIG. 2 shows the discharge characteristics per unit mass of Co-PSV, and FIG. 3 shows the discharge characteristics per mole of metal complex.

なお、第3図において、曲線りは、低分子シック塩基 とポリスチレンとベンゼン/DMFi合溶媒からキャス
ティングして設けた被覆(錯体:PSt=4:1 担持
量15.09mg)の電極を用いたときの結果である。
In addition, in FIG. 3, the curve is the same as when using an electrode with a coating (complex: PSt = 4:1, supported amount: 15.09 mg) prepared by casting from a low-molecular thick base, polystyrene, and benzene/DMFi mixed solvent. This is the result.

これらの結果から、本発明の2次電池は、すぐれた充放
電特性を示すことがわかる。
These results show that the secondary battery of the present invention exhibits excellent charge and discharge characteristics.

さらに、担持11(2、19mg Mt−PSVSbO
2覆を有する電極と、これを12蒸気にさらしたのち、
減圧下で過剰の工2をのぞいて工2をドープした電極を
用い、電導度を測定したところ、下記表2の結果をえた
Additionally, supported 11 (2, 19 mg Mt-PSVSbO
After exposing the electrode to 12 steam,
When the conductivity was measured under reduced pressure using an electrode doped with Step 2 except for excess Step 2, the results shown in Table 2 below were obtained.

表 2 − 2 X 10−5 あり 8 X 10−2 この結果から、ドープにより電導度が向上することがわ
かる。
Table 2-2 X 10-5 Yes 8 X 10-2 From these results, it can be seen that the conductivity is improved by doping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は、それぞれ本発明の詳細
な説明するための放電特性のグラフである。 出願人 ティーディーケイ株式会社 代理人 弁理士 石 井 陽 − 第1図 放電電流[AXlo−“] 第2図 [A/に9]
FIG. 1, FIG. 2, and FIG. 3 are graphs of discharge characteristics for explaining the present invention in detail, respectively. Applicant TDC Co., Ltd. Agent Patent Attorney Yo Ishii - Figure 1 Discharge current [AXlo-“] Figure 2 [A/N9]

Claims (7)

【特許請求の範囲】[Claims] (1) 金属高分子シッフ塩基錯体からなる被覆を有す
る第1の電極と、第2の電極と、電解質から構成された
ことを特徴とする2次電池。
(1) A secondary battery comprising a first electrode having a coating made of a metal polymer Schiff base complex, a second electrode, and an electrolyte.
(2) 金属高分子シッフ塩基錯体が、金属−ポリ−N
−サリシリデンビニルアミンである特許請求の範囲第1
項に記載の2次電池。
(2) The metal polymer Schiff base complex is a metal-poly-N
- Claim 1 which is salicylidene vinylamine
The secondary battery described in section.
(3) 第1の電極をアノードとして充電を行い、第1
の電極をカソードとして放電を行う特許請求の範囲第1
項または第2項に記載の2次電池。
(3) Charging is performed using the first electrode as an anode, and the first
Claim 1 in which discharge is performed using the electrode as a cathode.
The secondary battery according to item 1 or 2.
(4) 金属高分子シッフ塩基錯体からなり、これにド
ーパントをドープしてなる被覆を有する第1の電極と、
第2の電極と、電解質とから構成されたことを特徴とす
る2次電池。
(4) a first electrode having a coating made of a metal polymer Schiff base complex doped with a dopant;
A secondary battery comprising a second electrode and an electrolyte.
(5) 金属高分子シッフ塩基錯体が、金属−ポリ−N
−サリシリデンビニルアミンである特許請求の範囲第4
項に記載の2次電池。
(5) The metal polymer Schiff base complex is a metal-poly-N
- Claim 4 which is salicylidene vinylamine
The secondary battery described in section.
(6) 第1の電極を7ノードとして充電を行い、第1
の電極をカソードとして放電を行う特許請求の範囲第4
項または第5項に記載の2次電池。
(6) Charge the first electrode with 7 nodes, and
Claim 4 in which discharge is performed using the electrode as a cathode.
The secondary battery according to item 1 or item 5.
(7) ドーパントが酎ないしハロゲンである特許請求
の範囲第4項ないし第6項に記載の2次電池。
(7) The secondary battery according to any one of claims 4 to 6, wherein the dopant is alcohol or a halogen.
JP59033820A 1984-02-24 1984-02-24 Secondary battery Granted JPS60180064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59033820A JPS60180064A (en) 1984-02-24 1984-02-24 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033820A JPS60180064A (en) 1984-02-24 1984-02-24 Secondary battery

Publications (2)

Publication Number Publication Date
JPS60180064A true JPS60180064A (en) 1985-09-13
JPH0578144B2 JPH0578144B2 (en) 1993-10-28

Family

ID=12397118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033820A Granted JPS60180064A (en) 1984-02-24 1984-02-24 Secondary battery

Country Status (1)

Country Link
JP (1) JPS60180064A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043215A1 (en) * 1999-12-10 2001-06-14 Nitto Denko Corporation Fuel cell
JP2006501668A (en) * 2002-10-03 2006-01-12 ゲン3 パートナーズ インコーポレイテッド Electrochemical capacitor and method of using the same
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
JP2008091132A (en) * 2006-09-29 2008-04-17 Nippon Chemicon Corp Electrode active material
US7563354B2 (en) 2002-09-25 2009-07-21 Gen3 Partners, Inc. Method for the manufacture of electrode for energy-storage devices
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device
KR101128198B1 (en) 2002-01-25 2012-03-23 엔젠 그룹 인코포레이티드 Polymer-modified electrode for energy storage devices and electrochemical supercapacitor based on said polymer-modified electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043215A1 (en) * 1999-12-10 2001-06-14 Nitto Denko Corporation Fuel cell
US7468219B2 (en) 1999-12-10 2008-12-23 Nitto Denko Corporation Fuel cell
US7537711B2 (en) 1999-12-10 2009-05-26 Nitto Denko Corporation Electrically conductive polyaniline composition and method
KR101128198B1 (en) 2002-01-25 2012-03-23 엔젠 그룹 인코포레이티드 Polymer-modified electrode for energy storage devices and electrochemical supercapacitor based on said polymer-modified electrode
US7563354B2 (en) 2002-09-25 2009-07-21 Gen3 Partners, Inc. Method for the manufacture of electrode for energy-storage devices
JP2006501668A (en) * 2002-10-03 2006-01-12 ゲン3 パートナーズ インコーポレイテッド Electrochemical capacitor and method of using the same
JP2006502569A (en) * 2002-10-07 2006-01-19 ゲン3 パートナーズ インコーポレイテッド Method for producing electrode for electrochemical device
US7888229B2 (en) 2006-03-24 2011-02-15 Gen 3 Partners, Inc. Method for manufacturing an energy storage device
JP2008091132A (en) * 2006-09-29 2008-04-17 Nippon Chemicon Corp Electrode active material

Also Published As

Publication number Publication date
JPH0578144B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
US8475968B2 (en) Direct liquid fuel cell having hydrazine or derivatives thereof as fuel
Qian et al. Platinum–palladium bimetallic nanoparticles on graphitic carbon nitride modified carbon black: a highly electroactive and durable catalyst for electrooxidation of alcohols
CN106058167A (en) Porous silicon-based alloy composite
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
KR100470471B1 (en) Air - Hydrogen cell
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
EP1526592A1 (en) Cathode catalyst for fuel cell
JPH0343751B2 (en)
JPH08321322A (en) Metallic hydride secondary battery equipped with solid high polymer electrolyte
JPS60180064A (en) Secondary battery
JP2018086640A (en) Electrochemical oxygen reduction catalyst
Verma et al. Ag–Cu bimetallic nanoparticles as efficient oxygen reduction reaction electrocatalysts in alkaline media
JPH0831444A (en) Electrochemical cell and actuation thereof
JPS5963666A (en) Gas diffusion electrode for porous quality
US3522094A (en) Electrode including hydrophobic polymer,method of preparation and fuel cell therewith
JPH04348B2 (en)
JP2005276443A (en) Junction of cation exchange membrane and catalyst electrode for polymer electrolyte fuel cell and its manufacturing method
CN108281680A (en) A kind of fuel-cell catalyst and preparation method thereof of the polluted by copper layer containing oxidation
JPH04264363A (en) Reversible compound electrode
JPS6023972A (en) Positive electrode for nonaqueous solvent battery
JPS648429B2 (en)
JPH0361987B2 (en)
Sarkar et al. Immobilization strategies for carbon electrode materials
KR20200006164A (en) Reduced graphene, reduced graphene oxide-funtional material complex and production methods thereof
WO2023092630A1 (en) Three-dimensional porous cobalt nitride-poly(3,4-ethylenedioxythiophene) flexible composite electrode and manufacturing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term