JPS60179925A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS60179925A
JPS60179925A JP3676984A JP3676984A JPS60179925A JP S60179925 A JPS60179925 A JP S60179925A JP 3676984 A JP3676984 A JP 3676984A JP 3676984 A JP3676984 A JP 3676984A JP S60179925 A JPS60179925 A JP S60179925A
Authority
JP
Japan
Prior art keywords
ferromagnetic metal
film layer
thin film
magnetic
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3676984A
Other languages
Japanese (ja)
Inventor
Takeshi Tottori
猛志 鳥取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3676984A priority Critical patent/JPS60179925A/en
Publication of JPS60179925A publication Critical patent/JPS60179925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent corrosion resistance and durability by forming a thin ferromagnetic metallic film consisting essentially of Co on a base body then forming a protective layer consisting of ferromagnetic metallic oxide consisting essentially of Co in a gaseous O2 atmossphere. CONSTITUTION:A ferromagnetic metallic material 14 is deposited by evaporation on a base body film 5 while said film is delivered from a stock roll 6 and is moved along a can 3 in a vacuum vessel 1 of a vapor deposition device provided adjacently with the vacuum vessels 1, 2 thereby forming a thin ferromagnetic metallic film 15. Such base body is fed to the vessel 2 and while the base body is fed along a can 4, an inert gas contg. gaseous O2 is supplied through an introducing pipe 18 and a ferromagnetic metallic oxide layer consisting essentially of Co is formed as a protective layer 19. The deterioration in the magnetic characteristic of the magnetic metallic layer 15 by the effect of oxygen in air, etc. is thus prevented and the magnetic recording medium having good adhesiveness between the protective layer 19 and the layer 15 and excellent durability is obtd.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は強磁性金属薄膜層を記録層とする磁気記録媒
体およびその製造方法に関し、さらに詳しくは強磁性金
属薄膜層上にさらに強磁性金属の酸化物からなる保護膜
層を設けた前記の磁気記録媒体およびその製造方法に関
する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and a method for manufacturing the same, and more specifically to a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer. The present invention relates to the above-mentioned magnetic recording medium provided with a protective film layer consisting of the same, and a method for manufacturing the same.

〔背景技術〕[Background technology]

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通富、金属もしくはそれらの合金などを真空蒸着等によ
って基体フィルム上に被着してつくられ、高密度記録に
適した特性を有するが、反面空気中の酸素によって酸化
され易く、この酸化によって最大磁束密度などの磁気特
性が劣化するなどの雌点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is made by depositing metals or their alloys on a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording, but on the other hand, it is easily oxidized by oxygen in the air, and this oxidation causes maximum There are negative points such as deterioration of magnetic properties such as magnetic flux density.

このため、従来から強磁性金属薄膜層上に、非磁性金属
からなる保護膜層を設けたり、あるいは強磁性金属薄膜
層を構成する強磁性金属の柱状結晶の表面を酸化して強
磁性金属の酸化物層で覆ったり(特公昭56−2320
8号)して耐食性を改善することが行われている。とこ
ろが、非磁性金属からなる保護膜層を設ける方法では保
護膜層が強磁性金属とは全く異なるものであるため強磁
性金属薄膜層との接着性が良好でなく、磁気ヘツド等と
の摺接によって剥離する場合もあって耐久性に劣り、ピ
ンホール等も生じ易くて耐食性も充分に改善されない。
For this reason, conventional methods have been to provide a protective film layer made of non-magnetic metal on the ferromagnetic metal thin film layer, or to oxidize the surface of the ferromagnetic metal columnar crystals that make up the ferromagnetic metal thin film layer. covered with an oxide layer (Special Publication No. 56-2320)
No. 8) to improve corrosion resistance. However, in the method of providing a protective film layer made of non-magnetic metal, the protective film layer is completely different from ferromagnetic metal, so the adhesion with the ferromagnetic metal thin film layer is not good, and sliding contact with magnetic heads, etc. In some cases, it may peel off, resulting in poor durability, pinholes, etc. are likely to occur, and corrosion resistance is not sufficiently improved.

また強磁性金属の柱状結晶の表面を強磁性金属の酸化物
層で覆う方法では、酸化によって柱状結晶が小さくなり
、表面積が大きくなるため、酸化が進行するほどかえっ
て耐食性が悪くなる傾向があり、耐食性は充分に改善さ
れない。
In addition, in the method of covering the surface of columnar crystals of ferromagnetic metal with a layer of ferromagnetic metal oxide, the columnar crystals become smaller due to oxidation and the surface area increases, so the more oxidation progresses, the worse the corrosion resistance tends to be. Corrosion resistance is not sufficiently improved.

〔発明の目的〕[Purpose of the invention]

この発明はかかる現状に鑑み種々検討を行った結果なさ
れたもので、その目的とするところは基体上の強磁性金
属薄膜層」二に強磁性金属薄膜層と同じ強磁性金属の酸
化物からなる保護膜層を設けることにより、耐食性およ
び耐久性に優れた強磁性金属薄膜型磁気記録媒体を提供
することにある。
This invention was made as a result of various studies in view of the current situation, and its purpose is to create a ferromagnetic metal thin film layer on a substrate, which is made of the same ferromagnetic metal oxide. The object of the present invention is to provide a ferromagnetic metal thin film magnetic recording medium that has excellent corrosion resistance and durability by providing a protective film layer.

〔発明の概要〕[Summary of the invention]

この発明は、基体上にコバルトを主成分とする強磁性金
属からなる強磁性金属薄膜層を形成し、しかる後、酸素
ガス雰囲気中でコバルトを主成分とする強磁性金属を真
空蒸着して、コバルトを主成分とする強磁性金属の酸化
物からなる保護膜層を形成し、強磁性金属薄膜層上に強
磁性金属薄膜層と同じコバルトを主成分とする強磁性金
属の酸化物からなる保護膜層を設けたものであり、強磁
性金属薄NORとの接着性を良好にして耐久性を改善し
、かつ耐食性を充分に向上したものである。
This invention involves forming a ferromagnetic metal thin film layer made of a ferromagnetic metal mainly composed of cobalt on a substrate, and then vacuum-depositing a ferromagnetic metal mainly composed of cobalt in an oxygen gas atmosphere. A protective film layer made of a ferromagnetic metal oxide containing cobalt as a main component is formed on the ferromagnetic metal thin film layer, and a protection film layer made of a ferromagnetic metal oxide containing cobalt as a main component is formed on the ferromagnetic metal thin film layer. A film layer is provided, which improves the adhesion to the thin ferromagnetic metal NOR, improves durability, and sufficiently improves corrosion resistance.

以下、図面を参照しながら説明する。This will be explained below with reference to the drawings.

第1図はこの発明の磁気記録媒体を製造する真空蒸着装
置の1例の概略断面図をポしたものであり、1および2
は真空槽で隣接して設けられている。3は真空槽1の中
央部に配設された円筒状キャン、4ば真空槽2の中央部
に配設された円筒状キャンであり、ポリエステルフィル
ム等の基体5は原反ロール6よりガイドロール7を介し
て円筒状キャン3の周側面に沿って移動し、さらにガイ
ドロール8,9および真空槽2内のガイドロールIOを
介して円筒状キャン4の周側面に沿って移動し、ガイド
ロール11を介して巻き取りロール12に巻き取られる
。この間真空槽1内の円筒状キャン3の周側面に沿って
移動する基体5に対して、真空槽1の下部に配設した強
磁性材蒸発源13からコバルトを主成分とする強磁性金
属14が加熱蒸発され、基体5上に第2図に示すような
コバルトを主成分とする強磁性金属の柱状結晶からなる
強磁性金属薄膜層15が形成される。そして続い“ζ強
磁性金属薄膜層15が形成された基体5が真空槽2内の
円筒状キャン4の周側面に沿って移動する間に、真空槽
2の下部に配設した強磁性材蒸発源16からコバルトを
主成分とする強磁性金属17が加熱蒸発されると同時に
真空槽2の側壁に取りつけたガス導入管18から酸素ガ
スが導入され、第2図に示すように強磁性金属薄膜層1
5上にさらにコバルトを主成分とする強磁性金属の酸化
物からなる保護膜層19が形成される。20および21
はそれぞれ真空槽1および2に取りつりられた排気系で
あり、真空槽1および2はこれら−の排気系20および
21によって所定の真空度に真空排気される。
FIG. 1 shows a schematic cross-sectional view of one example of a vacuum evaporation apparatus for manufacturing the magnetic recording medium of the present invention, and shows 1 and 2.
are located adjacent to each other in a vacuum chamber. 3 is a cylindrical can disposed in the center of the vacuum chamber 1; 4 is a cylindrical can disposed in the center of the vacuum chamber 2; 7, along the circumferential side of the cylindrical can 3, and further moves along the circumferential side of the cylindrical can 4 via guide rolls 8, 9 and the guide roll IO in the vacuum chamber 2, 11 and then wound onto a take-up roll 12. During this time, a ferromagnetic metal 14 containing cobalt as a main component is sent from a ferromagnetic material evaporation source 13 disposed at the bottom of the vacuum chamber 1 to the base 5 moving along the circumferential side of the cylindrical can 3 in the vacuum chamber 1. is heated and evaporated, and a ferromagnetic metal thin film layer 15 made of columnar crystals of a ferromagnetic metal containing cobalt as a main component is formed on the substrate 5 as shown in FIG. Then, while the substrate 5 on which the ferromagnetic metal thin film layer 15 is moved along the circumferential side of the cylindrical can 4 in the vacuum chamber 2, the ferromagnetic material disposed at the bottom of the vacuum chamber 2 evaporates. A ferromagnetic metal 17 whose main component is cobalt is heated and evaporated from a source 16, and at the same time oxygen gas is introduced from a gas introduction tube 18 attached to the side wall of the vacuum chamber 2, forming a ferromagnetic metal thin film as shown in FIG. layer 1
A protective film layer 19 made of a ferromagnetic metal oxide containing cobalt as a main component is further formed on the ferromagnetic metal oxide. 20 and 21
are exhaust systems attached to vacuum chambers 1 and 2, respectively, and vacuum chambers 1 and 2 are evacuated to a predetermined degree of vacuum by these exhaust systems 20 and 21.

このように基体5上にはコバルトを主成分とする強磁性
金属からなる強磁性金属薄膜層15が一旦形成され、し
かる後、この強磁性金属薄膜層15上に強磁性金属薄膜
層を形成したのと同じコバルト主成分とする強磁性金属
の酸化物からなる保護膜層19が形成されるため、強磁
性金属の酸化物からなる保護膜層19の強磁性金属薄膜
層15に対する接着性がよく、耐久性が改善される。ま
た強磁性金属薄膜層15ば柱状結晶の表面が酸化される
のではなく、コバルトを主成分とする強磁性金属の柱状
結晶で構成された強磁性金属薄膜層15上に強磁性金属
の酸化物からなる保護膜層19が形成され、この保護膜
層19によって強磁性金属薄膜層15の表面が完全に覆
われるため、強磁性金属薄膜1’ti’i 15を構成
する柱状結晶が小さくなることもなく、強磁性金属薄膜
Jti15の耐食性が充分に向」ニされ、酸化が進行す
るほど耐食性は良好になる。
In this way, the ferromagnetic metal thin film layer 15 made of a ferromagnetic metal containing cobalt as a main component was once formed on the substrate 5, and then a ferromagnetic metal thin film layer was formed on this ferromagnetic metal thin film layer 15. Since the protective film layer 19 made of ferromagnetic metal oxide having cobalt as the main component is formed, the adhesion of the protective film layer 19 made of ferromagnetic metal oxide to the ferromagnetic metal thin film layer 15 is good. , durability is improved. In addition, the surface of the columnar crystal of the ferromagnetic metal thin film layer 15 is not oxidized, but the ferromagnetic metal oxide is formed on the ferromagnetic metal thin film layer 15, which is composed of columnar crystals of a ferromagnetic metal whose main component is cobalt. Since the surface of the ferromagnetic metal thin film layer 15 is completely covered by the protective film layer 19, the columnar crystals constituting the ferromagnetic metal thin film 1'ti'i 15 become smaller. Therefore, the corrosion resistance of the ferromagnetic metal thin film Jti15 is sufficiently improved, and the more the oxidation progresses, the better the corrosion resistance becomes.

このようにして強磁性金属薄膜N15上に強磁性金属の
酸化物からなる保護膜層19を形成する際、真空槽2内
におりる酸素ガスのガス圧は、5XIO−1−ルー5X
10−’トールの範囲内にするのが好ましく、6X10
−’)−ルより低くすると非磁性酸化物が形成されず、
5X’IO−”トールより高くすると電子銃を作動させ
ることができない。
When forming the protective film layer 19 made of ferromagnetic metal oxide on the ferromagnetic metal thin film N15 in this way, the gas pressure of the oxygen gas flowing into the vacuum chamber 2 is 5XIO-1-5X
Preferably within the range of 10-' torr, 6X10
-') - If the temperature is lower than 1, no non-magnetic oxide will be formed;
If the value is higher than 5X'IO-'' toll, the electron gun cannot be operated.

また、強磁性金属薄膜層151に形成される強磁性金属
の酸化物からなる保護膜層19の厚みは、50〜300
人の範囲内であることが好ましく、50人より薄くては
耐食性を充分に向上させることができず、300人より
厚くするとこの強磁性金属の酸化物からなp保護膜層が
非磁性であるためスペーシングロスが大きくなって電磁
変換特性に悪影響を及ばずおそれがある。
Further, the thickness of the protective film layer 19 made of ferromagnetic metal oxide formed on the ferromagnetic metal thin film layer 151 is 50 to 300 mm.
It is preferable that the thickness is within the range of 50 mm.If it is thinner than 50 mm, corrosion resistance cannot be sufficiently improved, and if it is thicker than 300 mm, the p protective film layer made of ferromagnetic metal oxide is non-magnetic. Therefore, the spacing loss may increase and the electromagnetic conversion characteristics may not be adversely affected.

強磁性金属″!/s膜層の形成材料としては、コバルト
の他、コバルトにNi、、Fe、Cr、Si、AI、P
d等の元素を含有させたコバルトを主成分とする合金が
好ましく使用され、これらのコバルトを主成分とする強
磁性金属からなる強磁性金属薄膜層は、真空蒸着の他、
イオンブレーティング、スパッタリング、メッキ等の手
段によっても基体上に被着形成される。
In addition to cobalt, the materials for forming the ferromagnetic metal ``!/s film layer include cobalt with Ni, Fe, Cr, Si, AI, and P.
Cobalt-based alloys containing elements such as d are preferably used, and these ferromagnetic metal thin film layers made of cobalt-based ferromagnetic metals can be formed by vacuum deposition,
It can also be deposited on the substrate by means such as ion blasting, sputtering, and plating.

また、強磁性金属薄膜層上にさらに形成する強磁性金属
の酸化物からなる保護膜層の形成材料としては、前記の
強磁性金属薄膜層の形成材料と全く同じものが好適なも
のとして使用され、この保護膜層は酸素ガス雰囲気中で
真空蒸着することによって強磁性金属薄膜層上に被着形
成される。
Furthermore, as the material for forming the protective film layer made of a ferromagnetic metal oxide to be further formed on the ferromagnetic metal thin film layer, the same material as that for the above-mentioned ferromagnetic metal thin film layer is preferably used. This protective film layer is deposited on the ferromagnetic metal thin film layer by vacuum deposition in an oxygen gas atmosphere.

基体としては、ポリエステル、ポリイミド、ポリアミド
等一般に使用されている高分子成形物からなるプラスチ
ックフィルム 磁性金属からなる金属フィルムが使用される。
As the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc., and a metal film made of magnetic metal are used.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示す真空蒸着装置を使用し、厚さ10μのポリ
エステルフィルム5を原反ロール6よりガイドロール7
を介して円筒状キャン3の周側面に沿って移動させ、さ
らにガイドロール8,9および真空槽2内のガイドロー
ル10を介して円筒状キャン4の周側面に沿って移動さ
せ、巻き取りロール12に巻き取るようにセットした。
Example 1 Using the vacuum evaporation apparatus shown in FIG.
It is moved along the circumferential side of the cylindrical can 3 via the guide rolls 8 and 9 and the guide roll 10 in the vacuum chamber 2, and then moved along the circumferential side of the cylindrical can 4 via the guide rolls 8 and 9 and the guide roll 10 in the vacuum chamber 2. I set it to wind up at 12.

同時に真空槽1内の強磁性材蒸発源13内に0014を
セットし、真空槽2内の強磁性材蒸発源16内に同じC
o’17をセットした。次いで、排気系20で真空槽l
内をIXIO−’)−ルまで真空排気し、また排気系2
1で真空槽2内をixio−’トールまで真空排気する
とともにガス導入管18から真空槽2内に酸素ガスを導
入して酸素ガス圧をIXIO−’トールとし、真空槽l
の強磁性材蒸発源13内の0014を加熱蒸発してポリ
エステルフィルム5上にCOからなる厚さが1000人
の強磁性金属薄膜層15を形成し、次いで、真空槽2の
強磁性材蒸発iJM16内のC017を加熱蒸発して前
記のCoからなる厚さが1000人の強磁性金属薄膜i
i15上に、Coの酸化物からなる厚さが200人の保
護膜層19を形成した。この保護膜層はESCAおよび
電子線回折の解析の結果、Co304であることが判明
した。しかる後、所定の1Jに裁断して磁気テープをつ
くった。
At the same time, set 0014 in the ferromagnetic material evaporation source 13 in the vacuum chamber 1, and set the same C in the ferromagnetic material evaporation source 16 in the vacuum chamber 2.
I set o'17. Next, the exhaust system 20 opens the vacuum chamber l.
Evacuate the interior to the IXIO-')-le, and exhaust system 2
At step 1, the inside of the vacuum chamber 2 is evacuated to ixio-' torr, and oxygen gas is introduced into the vacuum chamber 2 from the gas introduction pipe 18 to make the oxygen gas pressure IXIO-' torr, and the vacuum chamber is evacuated to ixio-' torr.
0014 in the ferromagnetic material evaporation source 13 is heated to evaporate to form a ferromagnetic metal thin film layer 15 made of CO with a thickness of 1000 on the polyester film 5, and then the ferromagnetic material evaporation iJM 16 in the vacuum chamber 2 By heating and evaporating the C017 in
A protective film layer 19 made of Co oxide and having a thickness of 200 mm was formed on the i15. As a result of ESCA and electron diffraction analysis, this protective film layer was found to be Co304. After that, it was cut into a predetermined size of 1J to make a magnetic tape.

実施例2 実施例1において、真空槽2内の酸素ガスのガス圧をI
XIO−’)−ルからtxto−!iトールに唆更した
以外は実施例1と同様にして磁気テープをつくった。こ
のときのCOの酸化物からなる保護膜層は、ESCAお
よび電子線回折の解析の結果、Co304およびCoo
であることが判明した。
Example 2 In Example 1, the gas pressure of oxygen gas in the vacuum chamber 2 was
XIO-')-le to txto-! A magnetic tape was produced in the same manner as in Example 1 except that the i-thor was used. As a result of ESCA and electron diffraction analysis, the protective film layer made of CO oxide at this time was found to be composed of Co304 and Co304.
It turned out to be.

実施例3 実施例1において、真空槽2の強磁性相蒸発源16内に
セットする強磁性金属をCoからCo −Cr合金(重
量比9’13)に変更した以外は、実施例1と同様にし
て磁気テープをつくった。このときのCo−Cr合金の
酸化物からなる保護膜層は、ESCAおよび電子線回折
の解析の結果、Co304およびCr203であること
が判明した。
Example 3 Same as Example 1 except that the ferromagnetic metal set in the ferromagnetic phase evaporation source 16 of the vacuum chamber 2 was changed from Co to a Co-Cr alloy (weight ratio 9'13). and made magnetic tape. As a result of ESCA and electron diffraction analysis, it was found that the protective film layer made of the Co--Cr alloy oxide was Co304 and Cr203.

比較例1 実施例1において、真空槽2の強磁性材蒸発源16内に
、強磁性金属coに代えてA1を七ソ1〜した以外は、
実施例1と同様にして磁気テープをつくった。このとき
のAIの酸化物からなる保護1iJfiは、ESCAお
よび電子線回折の解析の結果、Al2O3であることカ
ー判明した。
Comparative Example 1 In Example 1, except that A1 was placed in the ferromagnetic material evaporation source 16 of the vacuum chamber 2 in place of the ferromagnetic metal co,
A magnetic tape was made in the same manner as in Example 1. As a result of ESCA and electron diffraction analysis, it was found that the protected layer 1iJfi consisting of an oxide of AI was Al2O3.

比較例2 第3図に示すように、真空槽22内に円筒状キャン23
を配設し、基体5を原反ロール24からガイドロール2
5を介して円筒状キャン23の周側面に沿って移動させ
、ガイドロール26を介して巻き取りロール27に巻き
取るようにし、かっ血空槽22の側壁ビガス導入管28
を取りつけた真空蒸着装置を使用し、真空槽22の下部
に配設した強磁性材蒸発源29内にCo30をセ・ノド
するとともにガ゛ス導入管28から酸素ガスを導入し、
酸素ガス圧をlXl0−5)−ルにして強磁性材蒸発源
29内の0030を加熱蒸発して真空蒸着を行い、基体
5上に表面が酸化された柱状結晶のCoで構成された強
磁性金属薄膜層を形成した。
Comparative Example 2 As shown in FIG.
The substrate 5 is moved from the raw roll 24 to the guide roll 2.
5, along the circumferential side of the cylindrical can 23, and is wound up on a take-up roll 27 via a guide roll 26, and the big gas inlet pipe 28 on the side wall of the blood congestion tank 22 is moved along the circumferential side of the cylindrical can 23.
Using a vacuum evaporation device equipped with a vacuum evaporator, Co30 is injected into a ferromagnetic material evaporation source 29 disposed at the bottom of a vacuum chamber 22, and oxygen gas is introduced from a gas introduction pipe 28.
The 0030 in the ferromagnetic material evaporation source 29 is heated and evaporated at an oxygen gas pressure of 1X10-5) to perform vacuum deposition, and a ferromagnetic material composed of Co columnar crystals with an oxidized surface is deposited on the substrate 5. A metal thin film layer was formed.

しかる後、所定の中に裁断して磁気テープをつくった。After that, they were cut into predetermined sizes to make magnetic tape.

比較例3 実施例1において、真空槽2内での酸素ガス雰囲気下に
おけるC、oの真空蒸着を省き、保護膜層の形成を省い
た以外は実施例1と同様にして磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 1, except that the vacuum deposition of C and O in an oxygen gas atmosphere in the vacuum chamber 2 was omitted and the formation of the protective film layer was omitted. .

各実施例および各比較例で得られた磁気テープについて
、摩擦測定機を用い、20℃、50%R1(の恒温恒湿
槽内で、磁気テープを100回摺動させて摩擦係数の変
化を測定し、耐久性を調べた。また、得られた磁気テー
プを60℃、90%RHΦ条件下に放置し、時間の経過
に伴う最大磁束密度の劣化率を、放置前の磁気テープの
最大磁束密度を100%として測定し、耐食性を調べた
The magnetic tapes obtained in each example and each comparative example were slid 100 times in a constant temperature and humidity chamber at 20°C and 50% R1 using a friction measuring machine to measure changes in the coefficient of friction. The obtained magnetic tape was left under conditions of 60°C and 90% RHΦ, and the deterioration rate of the maximum magnetic flux density over time was evaluated as the maximum magnetic flux of the magnetic tape before being left unused. The density was set as 100% and the corrosion resistance was examined.

第4図は摩擦係数の変化を、また第5図は最大磁束密度
の劣化率の変化をそれぞれグラフで表したもので、それ
ぞれグラフAは実施例1で得られた磁気テープ、グラフ
Bは実施例2で得られた磁気テープ、グラフCは実施例
3で得られた磁気テープ、グラフDは比較例1で得られ
た磁気テープ、グラフEは比較例2で得られた磁気テー
プ、グラフFは比較例3で得られた磁気テープを示す。
Figure 4 graphs the changes in the coefficient of friction, and Figure 5 graphs the changes in the deterioration rate of the maximum magnetic flux density. Graph A is the magnetic tape obtained in Example 1, and graph B is the graph obtained from the magnetic tape obtained in Example 1. The magnetic tape obtained in Example 2, graph C is the magnetic tape obtained in Example 3, graph D is the magnetic tape obtained in Comparative Example 1, graph E is the magnetic tape obtained in Comparative Example 2, graph F shows the magnetic tape obtained in Comparative Example 3.

〔発明の効果〕〔Effect of the invention〕

第4図および第5図に示すグラフから明らかなように比
較例1ないし3で得られた磁気テープは、摺動回数が多
くなるにつれて摩擦係数が高くなり、耐久性が悪いが、
この発明で得られた磁気テープ(実施例1〜3)はいず
れも100回IR動後も摩擦係数はほとんど変化せず、
このことからこの発明によって得られる磁気記録媒体は
強磁性金属の酸化物からなる保護膜層の強磁性金属薄膜
層に対する接着性が改善された結果、耐久性に優れてい
ることがわかる。また、最大磁束密度の劣化率も同様に
、比較例1ないし3で得られた磁気テープは、時間の経
過に伴って劣化率が非者シに大きくなるが、この発明で
得られた磁気テープ(実施例1〜3)はいずれも時間が
経過してもそれほど劣化率が大きくならず、このことか
らこの発明によって得られる磁気記録媒体は耐食性に優
れていることがわかる。
As is clear from the graphs shown in FIGS. 4 and 5, the magnetic tapes obtained in Comparative Examples 1 to 3 have a higher friction coefficient as the number of sliding increases, and have poor durability.
All of the magnetic tapes obtained by this invention (Examples 1 to 3) showed almost no change in friction coefficient even after 100 IR motions.
This shows that the magnetic recording medium obtained by the present invention has excellent durability as a result of the improved adhesion of the protective film layer made of a ferromagnetic metal oxide to the ferromagnetic metal thin film layer. Similarly, the deterioration rate of the maximum magnetic flux density of the magnetic tapes obtained in Comparative Examples 1 to 3 increases significantly over time, but the deterioration rate of the magnetic tapes obtained by the present invention In all of Examples 1 to 3, the deterioration rate did not increase so much over time, and this shows that the magnetic recording medium obtained by the present invention has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の磁気記録媒体を製造するのに使用す
る真空蒸着装置の1例を示す概略断面図、第2図はこの
発明によって得られた磁気テープの部分拡大断面図、第
3図は従来の磁気記録媒体を製造するのに使用する真空
蒸着装置の1例を示す概略断n+i図、第4図はこの発
明で得られた磁気テープの摩擦係数と摺動回数との関係
図、第5図はこの発明で得られた磁気テープの劣化率と
経過時間との関係図である。 l、2・・・真空槽、3.4・・・円筒状キャン、5・
・・基体(ポリエステルフィルム)、13.16・・・
強磁性材蒸発源、14.17・・・強磁性金属、15・
・・強磁性金属″/W膜層、18・・・ガス導入管、1
9・・・強磁性金属の酸化物からなる保護膜層 特許出願人 日立マクセル株式会社 第2図 第3図 !44図 摺動Iす1数(回) 第5図 経過時間(週)
FIG. 1 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus used to manufacture the magnetic recording medium of the present invention, FIG. 2 is a partially enlarged cross-sectional view of the magnetic tape obtained by the present invention, and FIG. 4 is a schematic cross-sectional n+i diagram showing an example of a vacuum evaporation apparatus used to manufacture a conventional magnetic recording medium, and FIG. FIG. 5 is a diagram showing the relationship between the deterioration rate and elapsed time of the magnetic tape obtained by the present invention. l, 2... Vacuum chamber, 3.4... Cylindrical can, 5.
...Base (polyester film), 13.16...
Ferromagnetic material evaporation source, 14.17... Ferromagnetic metal, 15.
...Ferromagnetic metal''/W film layer, 18...Gas introduction tube, 1
9...Protective film layer made of ferromagnetic metal oxide Patent applicant Hitachi Maxell Ltd. Figure 2 Figure 3! Figure 44 Number of sliding movements (times) Figure 5 Elapsed time (weeks)

Claims (1)

【特許請求の範囲】 1、基体上にコバルトを主成分とする強磁性金属からな
る強磁性金属薄膜層を形成し、この強磁性金属薄膜層の
表面にコバルトを主成分とする強磁性金属の酸化物から
なる保護膜層を形成したことを特徴とする磁気記録媒体 2、基体上にコバルトを主成分とする強磁性金属からな
る強磁性金属薄膜層を形成し、しかる後、酸素ガス雰囲
気中でコバルトを主成分とする強磁性金属を真空蒸着し
て、コバルトを主成分とする強磁性金属の酸化物からな
る保護膜層を強磁性金属薄膜層上に形成することを特徴
とする磁気記録媒体の製造方法
[Scope of Claims] 1. A ferromagnetic metal thin film layer made of a ferromagnetic metal whose main component is cobalt is formed on a substrate, and a ferromagnetic metal film whose main component is cobalt is formed on the surface of this ferromagnetic metal thin film layer. A magnetic recording medium 2 characterized in that a protective film layer made of an oxide is formed, a ferromagnetic metal thin film layer made of a ferromagnetic metal whose main component is cobalt is formed on a substrate, and then in an oxygen gas atmosphere. Magnetic recording characterized in that a ferromagnetic metal mainly composed of cobalt is vacuum-deposited to form a protective film layer made of an oxide of a ferromagnetic metal mainly composed of cobalt on the ferromagnetic metal thin film layer. Media manufacturing method
JP3676984A 1984-02-27 1984-02-27 Magnetic recording medium and its production Pending JPS60179925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3676984A JPS60179925A (en) 1984-02-27 1984-02-27 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3676984A JPS60179925A (en) 1984-02-27 1984-02-27 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS60179925A true JPS60179925A (en) 1985-09-13

Family

ID=12478965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3676984A Pending JPS60179925A (en) 1984-02-27 1984-02-27 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS60179925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253625A (en) * 1985-05-02 1986-11-11 Teijin Ltd Magnetic recording medium
JPH01105318A (en) * 1987-10-16 1989-04-21 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253625A (en) * 1985-05-02 1986-11-11 Teijin Ltd Magnetic recording medium
JPH0513332B2 (en) * 1985-05-02 1993-02-22 Teijin Ltd
JPH01105318A (en) * 1987-10-16 1989-04-21 Matsushita Electric Ind Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS60179925A (en) Magnetic recording medium and its production
JPH0532807B2 (en)
JPS6111936A (en) Manufacture of magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPS6057533A (en) Magnetic recording medium
JPS60185224A (en) Magnetic recording medium
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPS62298917A (en) Magnetic recording medium
JPH0636272A (en) Magnetic recording medium and manufacture thereof
JPS60251519A (en) Magnetic recording medium
JPS6076015A (en) Magnetic recording medium and its production
JPH01319119A (en) Magnetic recording medium
JP2008033996A (en) Magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPS63183608A (en) Magnetic recording medium
JPS58108030A (en) Metallic thin film type magnetic recording medium
JPH10105943A (en) Magnetic recording medium
JPS6154024A (en) Magnetic recording medium
JPH0636281A (en) Manufacture of magnetic recording medium
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPS61278026A (en) Production of magnetic recording medium
JPS6262431A (en) Production of magnetic recording medium
JPH10105942A (en) Magnetic recording medium
JPH1173643A (en) Production of magnetic recording medium