JPS60179132A - Minute hollow spherical material - Google Patents

Minute hollow spherical material

Info

Publication number
JPS60179132A
JPS60179132A JP3383584A JP3383584A JPS60179132A JP S60179132 A JPS60179132 A JP S60179132A JP 3383584 A JP3383584 A JP 3383584A JP 3383584 A JP3383584 A JP 3383584A JP S60179132 A JPS60179132 A JP S60179132A
Authority
JP
Japan
Prior art keywords
group
spherical material
hollow spherical
acid
minute hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3383584A
Other languages
Japanese (ja)
Inventor
Hiroshi Yanagawa
弘志 柳川
Kiyotsugu Kojima
清嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3383584A priority Critical patent/JPS60179132A/en
Publication of JPS60179132A publication Critical patent/JPS60179132A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To obtain a minute hollow spherical material having high heat resistance by heating an amino acid having amino group(s), OH group(s), or COOH group(s) in the side chain under pressure in the presence of SiO2. CONSTITUTION:An amino acid having amino group(s), OH group(s), or COOH group(s) in the side chain (e.g. aspartic acid) is heated at 150-400 deg.C for 1-10hr under 50-200atom. in the presence of silica to obtain minute hollow spherical material having high heat resistance. Several applications are expected for this minute hollow spherical material, for example, for a heat resistant carrier of several kinds of protein or nucleic acid, etc. heat-resistant permeable membrane, or heat resistant microcapsule, etc.

Description

【発明の詳細な説明】 本発明は微小中空球状物に関するものである。[Detailed description of the invention] The present invention relates to micro hollow spheres.

とくに特定のアミノ酸を加圧下で加熱することにより得
られる微小中空球状物に関するものである。
In particular, it relates to microscopic hollow spheres obtained by heating specific amino acids under pressure.

本発明者等は、原始海洋環境下における原始タンパク質
の合成系の確立を目標に研究を進めており、超高温熱水
環境下でのポリペプチド形成について検討中のところ、
ある種のアミノ酸をシリカの存在下、水性媒質中で加圧
下顎熱すると、耐熱性の優れた微小中空球状物が得られ
ることを知見し本発明を達成したつ 即ち、本発明の要旨は、側鎖にアミノ基、水酸基又はカ
ルボキシル基を有するアミノ酸を、シリカの存在下で、
加圧下、加熱して得られる微小中空球状物に存する。
The present inventors are conducting research with the goal of establishing a primitive protein synthesis system in a primitive marine environment, and are currently considering polypeptide formation in an ultra-high temperature hydrothermal environment.
The present invention was achieved by discovering that when certain amino acids are heated under pressure in an aqueous medium in the presence of silica, micro hollow spheres with excellent heat resistance can be obtained. In the presence of silica, an amino acid having an amino group, hydroxyl group or carboxyl group in the side chain,
It consists of micro hollow spheres obtained by heating under pressure.

本発明の詳細な説明するに、本発明に使用される、側鎖
にアミン基、水酸基又はカルボキシル基を有するアミノ
酸としては、例えは下記一般式〔/〕 H2N−CH−C0OH・・0拳〔/〕〔式中、Rは炭
化水素残基であって、アミン基、水酸基又はカルボキシ
ル基を有する。〕で示されるアミノ酸が挙けられる。具
体的には例えは、アスパラギン酸、グ〃タミン酸のよう
な酸性アミノ酸;リジン、アルギニン、オルニチンのよ
うな塩基性アミノ酸:ヒドロキシプロリン、セリン、ス
レオニンのようなオキシアミノ酸が使用される。
To explain the present invention in detail, the amino acid having an amine group, hydroxyl group, or carboxyl group in the side chain used in the present invention includes, for example, the following general formula [/] H2N-CH-C0OH... /] [In the formula, R is a hydrocarbon residue having an amine group, a hydroxyl group, or a carboxyl group. ] Examples include amino acids shown by. Specifically, for example, acidic amino acids such as aspartic acid and gutamic acid; basic amino acids such as lysine, arginine, and ornithine; and oxyamino acids such as hydroxyproline, serine, and threonine are used.

なお、上記アミノ酸とともに、例えば、グリシン、アラ
ニン、バリン、ロイシン等の他のアミノ酸を併用するこ
ともできる。
In addition, other amino acids such as glycine, alanine, valine, and leucine can also be used together with the above amino acids.

本発明(〆こ使用されるシリカとしては、無定形、ガラ
ス状、コロイド状または結晶状等各種のものが挙けられ
、例えば、石英カラス、高ケイ酸カラス又はホウ酸を含
有するボウクーイ酸カラス、加えて中性に保持した水に
、前記のアミノ酸の1種またはユ種以上を0./〜0.
3M程度となるように加え、この溶液を、例えばシリカ
製のチューブ内に入れ、更にこれをステンレス製)加応
終了後、反応液を遠心分離することにより、本発明の目
的とする微小中空球状物の粒子が沈澱物として得られる
The silica used in the present invention includes various types such as amorphous, glassy, colloidal, or crystalline, such as quartz glass, high silicate glass, or boric acid glass containing boric acid. In addition, one or more of the above amino acids is added to the water kept neutral at 0./~0.
After the completion of the reaction, the reaction solution is centrifuged to form micro hollow spheres, which is the object of the present invention. particles are obtained as a precipitate.

上記の加圧加熱処理は、30−200気圧の加圧下、好
ましくは700〜/’30気圧、更に好ましくは730
気圧前後の加圧下において75θ〜りoo℃、好ましく
は、20θ〜33−9℃、更に好ましくは2J−θ〜3
θ0 ”C程度の温度で/〜70時間程度加熱すること
によって実施される。/夕θ℃未満の温度では所望の中
空球状物が得られず、またグθo℃より高温層では不定
形の粒子が生成する。
The above pressure and heat treatment is carried out under a pressure of 30 to 200 atm, preferably 700 to 30 atm, more preferably 730 atm.
Under pressure around atmospheric pressure, the temperature is 75θ to 00°C, preferably 20θ to 33-9°C, more preferably 2J-θ to 3
It is carried out by heating for about 70 hours at a temperature of about θ0°C. At temperatures below θ°C, the desired hollow spheres cannot be obtained, and at temperatures higher than θ°C, irregularly shaped particles are formed. is generated.

本発明の球状物は、参考写真(1)、(3)、(4)及
び(5)に示されるように、粒径O,S〜70μm程度
の微小な球状物である。そして該球状物は、例えは参考
写真(2)に示すように、薄膜構造をもち、中空である
As shown in reference photographs (1), (3), (4), and (5), the spherical objects of the present invention are minute spherical objects with a particle size of about 0, S to 70 μm. The spherical object has a thin film structure and is hollow, for example, as shown in reference photograph (2).

本発明においては、前述の側鎖にアミン基、水酸基又は
カルボキシル基を有する親水性アミノ酸を使用すること
が必須の要件であり、この範囲に属しないアミノ酸、例
えはグリシン、アラニン、バリン、ロイシンあるいはこ
れらの混合物のみを使用した場合には、前記と同様の高
圧、高温処理を行っても中空球状物を得ることはできず
、例えば参考写真(6)に示すよf)なシー可欠である
。例えば、前述の方法において、シリカ製のチューブを
使用せず、アミノ酸の水溶液をステンレス製の加圧釜に
装入して前記と同様に加圧上加熱処理を行っても本発明
の中空球状物は全く形成されない。
In the present invention, it is essential to use a hydrophilic amino acid having an amine group, hydroxyl group or carboxyl group in the side chain, and amino acids that do not belong to this range, such as glycine, alanine, valine, leucine or If only a mixture of these is used, it is not possible to obtain a hollow spherical object even if the same high pressure and high temperature treatment as described above is performed, and for example, f) as shown in reference photo (6) is essential. . For example, in the above method, even if the aqueous amino acid solution is charged into a stainless steel pressure cooker and subjected to pressure and heat treatment in the same manner as described above, the hollow spheres of the present invention do not use the silica tube. Not formed at all.

■ 本発明−二′−′ 微小中空球状物 は、後記実施例(で示す、IR(赤外線)吸収スペクト
ル、分子量測定、酸加水分解によるアミノ酸分析、珪素
分析、フッ化水素酸処理等の結果から、分子量、200
0〜gθ00を有する、ポリペプチドのJQにノリ力の
層が結合した構造の複合体からなることが確かめられた
。該複合体は、側鎖にカルボキシル基をもつアミノ酸、
例えばアスパラギン酸(Aspと略記つを用いた場合は
、該カルボキシル基がシリカのシラノ−場合には、複合
体は該アミノ基がシリカのンラソール基と反応して生じ
た結合(Arg−Nu−8i−)を有するものと推某烙
れ、更に、側鎖に水酸基ヲモつアミノ酸、例えばヒドロ
キシグロリン(Hypと略記〕を用いた場合には、複合
体は該水酸基がシリカのンラノール基と反応して生じた
結合(Hy p−0−8i−)を有するものと推察され
述の構造に基!いて、例えは各種のタンパク質、核酸等
の血」熱性担体、耐熱性透過膜、耐熱性マイクロカプセ
ルなどの用途が期待される。
■ The present invention-2'-' Micro hollow spheres were obtained from the results of IR (infrared) absorption spectra, molecular weight measurements, amino acid analysis by acid hydrolysis, silicon analysis, hydrofluoric acid treatment, etc. shown in the examples below. , molecular weight, 200
It was confirmed that it consists of a complex structure in which a glue layer is bonded to the JQ polypeptide, which has a gθ00 of 0 to gθ00. The complex consists of an amino acid having a carboxyl group in its side chain,
For example, when aspartic acid (abbreviated as Asp) is used, if the carboxyl group is silano- of silica, the complex is a bond (Arg-Nu-8i Furthermore, if an amino acid with a hydroxyl group in its side chain, such as hydroxygloline (abbreviated as Hyp), is used, the complex will have the hydroxyl group react with the lanol group of the silica. Based on the above-mentioned structure, it is presumed to have a bond (Hy p-0-8i-) formed by It is expected to have applications such as:

以下、本発明方益を実施例について更に詳細に0.7M
のKHCO3−NaH2PO,を含む緩衝液(pH7、
,2) / *h ml(/C0,3Mの予め苛性ンー
タ゛水溶液で中和したL−アスパラギン酸溶液を加え、
この溶液を直径201nm、長さ/θs mmのホウケ
イ酸ガラス製のチューブに入れ、これを内容積70m1
のステンレス製加圧釜中に装入した。ついで窒素ガスを
70気圧に張り込んで加熱し、730気圧、300°゛
Cで6時間保持した。反応終了後、遠心分離により生成
した沈澱を集め、水洗乾燥して淡化白色の平均粒径o、
gμnLの中空球状物、20m9を得た。水晶の形態を
走査型電子顕微鏡で観察した結果は参考写真(1)の通
りでように約井千−ミ零−Xの厚さの膜構造をもち中空
であった。この球状物をgMの尿素を含も・7%の5D
S(ドテシル硫酸ソーダ)溶液に溶解し、100°Cで
70分間加熱処理した後、/2.5%のポリアクリルア
ミドスラブゲル電気泳動にがけて分子量を測定(マーカ
ーとしてミオクロヒンのフラグメントを使用)した。分
子量は、2oo。
Below, the benefits of the present invention will be explained in more detail with reference to examples.
of KHCO3-NaH2PO, (pH 7,
, 2) / *h ml (/C0. Add L-aspartic acid solution that has been neutralized in advance with a 3M aqueous caustic solution,
This solution was placed in a borosilicate glass tube with a diameter of 201 nm and a length/θs mm, and the inner volume was 70 m1.
It was placed in a stainless steel pressure cooker. Next, nitrogen gas was charged to 70 atm, the temperature was heated, and the temperature was maintained at 730 atm and 300°C for 6 hours. After the reaction is completed, the precipitate generated by centrifugation is collected, washed with water and dried to give a pale white color with an average particle diameter of o,
20 m9 of gμnL hollow spheres were obtained. The morphology of the crystal was observed using a scanning electron microscope, and as shown in reference photo (1), it had a membrane structure with a thickness of about 1,000 mm and was hollow. This spherical material contains gM of urea and 7% of 5D.
After dissolving in S (dodecyl sodium sulfate) solution and heat-treating at 100°C for 70 minutes, the molecular weight was measured by electrophoresis on a 2.5% polyacrylamide slab gel (using a fragment of myoclohin as a marker). The molecular weight is 2oo.

であった。この球状物の工R吸収スペクトル(KBr 
)は/乙55、/ 、S−S−0、/ / 001−’
に特徴的な吸収が見られ、これらはペプチド結合の存在
とシロキザン結合の存在を示唆する。
Met. The KBr absorption spectrum of this spherical material (KBr
) is / Otsu55, / , S-S-0, / / 001-'
Characteristic absorptions are seen, suggesting the presence of peptide bonds and siloxane bonds.

寸だ、この球状物を乙Nの塩酸中で/ 0’ 3 ℃に
て、2q時間加熱して加水分解するとL−アスパラギン
酸が検出された。寸だ、珪素分析によって珪素が検出さ
れた。更に、グ、乙係のフッ化水素酸中でこの球状物(
d溶解され、可溶化成分をg Jviの尿素を含む/係
S D S浴液に溶解し5100°Cで70分間加熱処
理し/こ後、/、2.5係のポリアクリルアミドスラブ
ケル電気泳動にか幻で分子量を測定した。分子量(dス
000てあった。
When this spherical material was hydrolyzed by heating for 2 q hours at 0'3° C. in hydrochloric acid, L-aspartic acid was detected. Indeed, silicon was detected by silicon analysis. Furthermore, this spherical object (
d The dissolved and solubilized components were dissolved in a Jvi urea-containing S D S bath solution and heated at 5100°C for 70 minutes. After that, they were subjected to 2.5 polyacrylamide slab gel electrophoresis. The molecular weight was measured using Niikagen. The molecular weight (ds) was 000.

実施例Ω 実施例/におけるL−アスパラキンpJ O,/、 M
の代りにL−ヒドロキシプロリンを使用した以外は実施
例/と全く同一の条件で加圧上加熱処理して参考写真(
3)に示す中空球状物/7Tn9を得た。水晶のポリア
クリルアミドスラブゲル電気泳動(でよる分子量は、2
ooo〜g000であった。寸た工R吸収スペクトル(
KBr ) !d/1,33、 へ1sso、iioθ
l’に特徴的な吸収が見られ、ペプチド結合とンロキサ
ン結合の存在を示唆する。この球状物を6N塩酸中、/
 03 ℃で、2夕時間加熱するとL−ヒドロキシプロ
リンが検出され、寸だ珪素分析によって珪素が検出され
た。また、この球状物は9.6係フッ化水素酸で溶解さ
れ、可溶物のボリア−クリルアミドスラブゲル電気泳動
(でよる分子量(ri、xooo−、−goo。
Example Ω L-asparaquine pJ in Example/O,/, M
The reference photo (
A hollow sphere/7Tn9 shown in 3) was obtained. Polyacrylamide slab gel electrophoresis of quartz crystal (molecular weight by 2
It was ooo~g000. Suntako R absorption spectrum (
KBr)! d/1,33, to 1sso, iioθ
A characteristic absorption is seen at l', suggesting the presence of peptide bonds and oxane bonds. This spherical material was dissolved in 6N hydrochloric acid.
After heating at 0.3°C for 2 hours, L-hydroxyproline was detected, and silicon was detected by silicon analysis. Moreover, this spherical substance was dissolved in 9.6 hydrofluoric acid, and the molecular weight (ri,

であった。Met.

実施例3 実施例/におけるL−アスパラキン酸0. / Mの代
りに、0.3MのL−アルギニンを使用した以外は実施
例/と全く同一の条件で加圧上加熱処理して参考写−A
:、f、41に示す中空球状物23 m9を得た。水晶
のポリアクリルアミドスラブケル電気泳動による分子量
は、2sooであった。この球状物の工R吸収スペクト
ル(、KBr )は/ A 50゜/ !i、S−3、
/ / 00 cm−’に特徴的な吸収が見られ、ペプ
チド結合と/ロキサン結合の存在を示唆する。才だ6N
塩酸中で10 s ℃、:l7時間加熱するとL−アル
ギニンが検出され、珪素分析によって珪素が検出された
。更に、この球状物は9.6%ツノ化水素酸で溶解され
、可俗物のポリアクリルアミドスラブゲル電気泳動によ
る分子量は25θ0であった。
Example 3 L-aspartic acid in Example/0. Reference photo-A was prepared under pressure and heat treatment under the same conditions as in Example/, except that 0.3M L-arginine was used instead of /M.
23 m9 of hollow spheres shown in :, f, 41 were obtained. The molecular weight of the crystal determined by polyacrylamide slab Kel electrophoresis was 2 soo. The optical absorption spectrum (, KBr) of this spherical object is /A 50°/! i, S-3,
A characteristic absorption is seen at / / 00 cm-', suggesting the presence of peptide bonds and /roxane bonds. 6N
L-arginine was detected when heated in hydrochloric acid at 10 s C for 7 hours, and silicon was detected by silicon analysis. Furthermore, this spherical substance was dissolved in 9.6% hydrotunic acid, and the molecular weight of the soluble substance was determined to be 25θ0 by polyacrylamide slab gel electrophoresis.

実施例夕 0.3Mのクリ7ノ、θ、/1JのL−アラニン、0、
.3MのL−バリン及び0.1Mの予め苛性ソーダで中
和したL−アスパラギン酸浴液を。、/14のKHOO
,−NaH,PO4緩制j79− (pH’。2 ) 
/ s−mlに溶解し、この溶液を実施例/と同一のカ
ラスチューブ(lc入れ、ステンレス製の加圧釜中で、
窒素気圏下、/30気圧、300 ℃で乙時間保持した
。反尾、混合物を遠心分離して生成した沈澱を集め、7
J<洗、乾燥して参考写真(5)に示される中空球状物
30m9を得た。水晶のポリアクリルアミドスラブゲル
電気泳動による分子量は、:zoo。
Example: 0.3 M of 7, θ, /1 J of L-alanine, 0,
.. 3M L-valine and 0.1M L-aspartic acid bath solution previously neutralized with caustic soda. , /14 KHOO
, -NaH,PO4 slow control j79- (pH'.2)
/ s-ml, and this solution was placed in the same glass tube as in Example (LC) in a stainless steel pressure cooker.
The temperature was maintained at 300°C under a nitrogen atmosphere at 30 atm for an hour. Then, centrifuge the mixture, collect the resulting precipitate, and
After washing and drying, 30 m9 of hollow spheres shown in reference photograph (5) were obtained. The molecular weight of quartz crystal determined by polyacrylamide slab gel electrophoresis is: zoo.

であった。寸たIR吸収スペクトル(KBr )はib
s!f、1sso、/ / 00crtt−’ に特徴
的な吸収が見られ、ペプチド結合と/ロキサン結合の存
在を示唆する。1だ、この球状物を6N塩酸中/θS℃
で29時間加熱して加水分解するトクリシン、L−アラ
ニン、L−バリン及びL−アスパラギン酸が検出され、
寸だ、珪素分析によって珪素が検出された。更にこの球
状物はグ、乙係フン化水素酸で溶解され、この可溶物の
ポリアクリルアミドスラブゲル電気泳動(′Cよる分子
量(11−000であった。
Met. The IR absorption spectrum (KBr) is ib
s! Characteristic absorptions are seen at f, 1sso, // 00crtt-', suggesting the presence of peptide bonds and /loxane bonds. 1. This spherical object is placed in 6N hydrochloric acid/θS℃
Tocrysin, L-alanine, L-valine and L-aspartic acid, which are hydrolyzed by heating for 29 hours, were detected.
Indeed, silicon was detected by silicon analysis. Further, this spherical material was dissolved in hydrofluoric acid, and the soluble material was subjected to polyacrylamide slab gel electrophoresis (molecular weight (11-000) according to C).

なお、実施例グにおいて、アスパラキン酸ヲ使用せず、
他は全〈実施例グと同一の条件で加圧上加熱処理した場
合には、参考写真(6)に示される、分子量;t o 
o oのポリペプチドからなるソート状の構造体の積層
物が得られたのみて5本発明の中空球状物は得られなか
った。
In addition, in Example G, asparadic acid was not used,
All other conditions were the same as in Example 1. When the pressure and heat treatment was carried out under the same conditions as in Example G, the molecular weight was as shown in reference photograph (6);
A laminate of sorted structures consisting of the polypeptides 5 and 5 was obtained, but the hollow spheres of the present invention were not obtained.

出 願 人 三菱化成工業株式会社 代 理 人 弁理士 長谷用 − ほか/名Sender: Mitsubishi Chemical Industries, Ltd. Representative Patent Attorney Hase - Others/names

Claims (1)

【特許請求の範囲】[Claims] 側鎖にアミン基、水酸基又はカルボキシル基を有するア
ミノ酸を、シリカの存在下で、加圧下、加熱して得られ
る微小中空球状物
Microscopic hollow spheres obtained by heating an amino acid having an amine group, hydroxyl group or carboxyl group in the side chain under pressure in the presence of silica
JP3383584A 1984-02-24 1984-02-24 Minute hollow spherical material Pending JPS60179132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3383584A JPS60179132A (en) 1984-02-24 1984-02-24 Minute hollow spherical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3383584A JPS60179132A (en) 1984-02-24 1984-02-24 Minute hollow spherical material

Publications (1)

Publication Number Publication Date
JPS60179132A true JPS60179132A (en) 1985-09-13

Family

ID=12397543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3383584A Pending JPS60179132A (en) 1984-02-24 1984-02-24 Minute hollow spherical material

Country Status (1)

Country Link
JP (1) JPS60179132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285793A (en) * 2013-06-14 2013-09-11 复旦大学 Method for preparing hollow polymer microsphere coated with phase change material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285793A (en) * 2013-06-14 2013-09-11 复旦大学 Method for preparing hollow polymer microsphere coated with phase change material

Similar Documents

Publication Publication Date Title
US6346305B1 (en) Low temperature material bonding technique
US6670438B1 (en) Methods, compositions, and biomimetic catalysts for in vitro synthesis of silica, polysilsequioxane, polysiloxane, and polymetallo-oxanes
De Graaf et al. Purification, characterization, and partial covalent structure of Escherichia coli adhesive antigen K99
KR20120089928A (en) Gold-doped fluorescent silica nanoparticles composite and preparing method thereof
JP2012012334A (en) Immobilized protein, and activated carrier for producing immobilized protein
CN108314710B (en) Mycoplasma pneumoniae recombinant antigen and application thereof
KR101141737B1 (en) Novel immobilizing fusion protein for effective and oriented immobilization of antibody on surfaces
JP2005512087A (en) Method and apparatus for using thermal switching proteins in sensing and detection devices
JPS60179132A (en) Minute hollow spherical material
EP2046816A1 (en) Cysteine-tagged staphylococcal protein g variant
CN102101889A (en) Prokaryotic expression protein of VP73 gene from African swine fever virus and preparation method thereof
CN107973857B (en) Recombinant fusion protein based on bacterial surface display system and application thereof
JP2005154195A (en) Aerogel material and article formed of the aerogel material
JP5311806B2 (en) Biosilica production method and biosilica fixed substrate production method
JPH07502896A (en) Multifunctional surface proteins of streptococci
CN117304332A (en) Heat-resistant nanoparticle protein fused with membrane-penetrating peptide, nano-carrier, immunogenic complex, nanoparticle vaccine and application
TWI715723B (en) Adhesive for glass, manufacturing method of adhesive for glass, and manufacturing method of glass adhesive
US11154636B2 (en) Antimicrobial biopolymer compositions, methods of synthesis, and applications of use
WO1992009633A1 (en) Immunoglobulin-binding proteins and recombinant dna molecules coding therefor
JP2016147839A (en) Protein isolation device, protein isolation method, and method for determining high mannose type sugar chain structure
CN117304275A (en) Artificially designed heat-resistant multimeric protein, scaffold and application and method in preparation of vaccine
KR102443522B1 (en) Immunogenic polypeptide fragments derived from severe fever with thrombocytopenia syndrome virus and uses thereof
JPH05156016A (en) Production of hybrid silica gel
KR100979282B1 (en) Bio-silica Chip Using Silica Binding Protein and Method for Fabricating the Same
JPS5921391A (en) Glass for immobilization and its preparation