JPS60179102A - Carbon membrane and its preparation - Google Patents

Carbon membrane and its preparation

Info

Publication number
JPS60179102A
JPS60179102A JP59034190A JP3419084A JPS60179102A JP S60179102 A JPS60179102 A JP S60179102A JP 59034190 A JP59034190 A JP 59034190A JP 3419084 A JP3419084 A JP 3419084A JP S60179102 A JPS60179102 A JP S60179102A
Authority
JP
Japan
Prior art keywords
membrane
carbon
polymer
separation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59034190A
Other languages
Japanese (ja)
Other versions
JPH0588B2 (en
Inventor
Takashi Kawai
孝 河合
Tatsuo Nogi
野木 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59034190A priority Critical patent/JPS60179102A/en
Publication of JPS60179102A publication Critical patent/JPS60179102A/en
Publication of JPH0588B2 publication Critical patent/JPH0588B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a separating membrane of high performance having superior heat resistance, chemical resistance, compressive strength, and shape stability by constituting a carbon membrane to have at least one layer distributed densely with fine pores. CONSTITUTION:After treating a film consisting of a fiber forming polymer such as polyacrylonitrile type polymer having <=0.70 orientation coefft. determined by a wide angle X-ray diffraction analysis to have flame resistance, the polymer is carbonized or graphitized in an inert atmosphere. The carbon separating membrane prepd. by this process has extremely dense layers 1, 2 on both sides of the membrane, interposing a coarse layer 3 therebetween. The membrane has superior separation efficiency, mechanical characteristics, and shape stability, and no apprehension for causing breakage during forming or during use. Accordingly, stable separation operation is possible.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、炭素で構成された形態安定性、耐久性にすぐ
れた高性能分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a high-performance separation membrane made of carbon and excellent in form stability and durability.

(従来技術とその問題点) 従来から、炭素で構成された繊維、布帛、フィルムなど
はそのすぐれた繊維物性、電気特性ならびに耐熱性によ
り、FRP材、導電材、断熱材などの産業用素材として
広く用いられている。
(Prior art and its problems) Fibers, fabrics, films, etc. made of carbon have traditionally been used as industrial materials such as FRP materials, conductive materials, and heat insulation materials due to their excellent fiber properties, electrical properties, and heat resistance. Widely used.

しかし、かかる炭素材料はいずれも高強度、高剛性を追
求したものが主であり、小イドなどの欠陥がある炭素材
料は劣悪品として考えられていた。
However, all such carbon materials are mainly made in pursuit of high strength and high rigidity, and carbon materials with defects such as small ids were considered to be inferior products.

したがって、かかる材料を濾過材料に適用する場合も、
たとえば待聞昭57−166354弓のように、単に濾
紙の構成繊維として用いられるにづぎなかった。すなわ
ち、液体や気体の分離をすることばできず、ぜいぜい固
体と液体を分離する程度のものでしかなかった。
Therefore, when applying such materials to filtration materials,
For example, it was used simply as a constituent fiber of filter paper, as in the case of 166,354 bows of 1984. In other words, it was incapable of separating liquids and gases, and could only separate solids and liquids at best.

一方、特公昭51−5090号には表面積の大きな炭素
材料、すなわち、炭素体中にボイドを形成し、気体Ab
液体中の微伍物質を吸着する機能をもたけた中空繊維が
記載されている。この繊維はフェノール樹脂を溶融紡糸
して得た中実繊維を架橋剤で一部架橋し、次いて未架橋
部分を溶媒で溶出して得られた中空繊維を炭化する方法
で製造する。そのため、微多孔性の緻密層を有さず、表
面イリ近にも比較的大きなボイドがあるため、極めても
ろく、形態安定性も成形性も劣悪であり、実用中の濾圧
によっても形態が崩れ易い欠点を有するものである。さ
らに、かかるラフな構造の炭素材料を用いても気体や液
体の分離は期待できず、いわゆる通常の濾紙を亡やvi
度アップした程度の機能しか得られない。
On the other hand, Japanese Patent Publication No. 51-5090 discloses a carbon material with a large surface area, that is, a carbon material with voids formed in the carbon body, and gaseous Ab
Hollow fibers are described that have the ability to adsorb minute substances in liquids. This fiber is produced by partially crosslinking a solid fiber obtained by melt-spinning a phenolic resin with a crosslinking agent, then eluting the uncrosslinked portion with a solvent, and carbonizing the resulting hollow fiber. Therefore, it does not have a microporous dense layer and has relatively large voids near the surface, making it extremely brittle, with poor shape stability and formability, and its shape collapses even under filtration pressure during practical use. It has some disadvantages. Furthermore, even if carbon materials with such a rough structure are used, separation of gases and liquids cannot be expected, and so-called ordinary filter paper is no longer used.
You can only get the functions that are upgraded.

本発明は、かかる従来技術の背景に鑑み、微多孔性の緻
密層を1層以上有する炭素膜か、極めて浸れた分離は能
を発揮する事実を究明し、本発明に到達した。
In view of the background of the prior art, the present invention was achieved by investigating the fact that a carbon membrane having one or more microporous dense layers exhibits an extremely deep separation ability.

(究明の目的) 本発明は、巾広し7j耐熱性、耐薬品性、耐圧強度を有
し、しかも、低圧損で溶媒と溶質の分離あるいは沢合流
体の分離が可能な炭素膜を提供することを目的とする。
(Purpose of Investigation) The present invention provides a carbon membrane that is wide, has 7J heat resistance, chemical resistance, and pressure resistance, and is capable of separating a solvent and solute or a flow mixture with low pressure loss. The purpose is to

(発明の構成) (1) 微多孔性緻密層を少なくとも1層イjづること
を特徴とげる炭素膜。
(Structure of the Invention) (1) A carbon membrane characterized by having at least one microporous dense layer.

(2) 繊維形成性線状重合体からなる、広角X線回折
で測定した配向係数が0.70以下である膜を炭化する
ことを特徴とする炭素膜の製造方法。
(2) A method for producing a carbon film, which comprises carbonizing a film made of a fiber-forming linear polymer and having an orientation coefficient of 0.70 or less as measured by wide-angle X-ray diffraction.

(構成の説明) 本発明の炭素膜は、たとえば、気体分離、逆浸透、超濾
過、透析、限外濾過などに用いることができる。
(Description of Structure) The carbon membrane of the present invention can be used, for example, in gas separation, reverse osmosis, ultrafiltration, dialysis, ultrafiltration, and the like.

本発明でいう微多孔性緻密層とIは上記分離機能を発揮
する程度の緻密度を有する、孔径のそろった多孔性層で
あればよく、通常、平均孔径が1μ以下、好ましくは0
.5μ以下、さらに好ましくは0.1μ以下であるボイ
ドからなる微多孔性の緻密層であるが、好適には、かか
る緻密層は気体透過性または液体透過性である範囲たと
えば平均孔径が大単位のものであり、通常、故100Å
以下で、気体の場合には、その拡散速度か問題になる自
由体積の大きざまでの範囲のいずれかの孔で構成されて
いるものが、分離能の点から好ましい。
The microporous dense layer I referred to in the present invention may be any porous layer having a density sufficient to exhibit the above-mentioned separation function and having uniform pore sizes, and usually has an average pore size of 1 μ or less, preferably 0.
.. It is a microporous dense layer consisting of voids of 5 μ or less, more preferably 0.1 μ or less, but preferably such a dense layer is gas permeable or liquid permeable, for example, the average pore size is in large units. and usually less than 100Å
In the following description, in the case of a gas, it is preferable from the viewpoint of separation ability that the hole be composed of any number of pores within the range of the diffusion rate or the size of the free volume in question.

本発明の特徴はかかる微多孔性m密層を少なくとも1屑
布づる点にある。該層がない膜では分離作用に限界かあ
り、精度的にも劣悪であるばかりでなく、膜の(幾械的
強度や実用性の点でも、もろくて耐久性に劣る欠点があ
る。かかる緻密層は1層あればよく、むろん膜全体が緻
密層であってもよいが、好ましくはその厚さは、全膜厚
の1/2以下、さらに好ましくは1/3以下であり、薄
くども膜厚の1 /’ 50、好ましくは1 /” 3
0以上である・と共に、分離能ならびに1幾械的特性の
点から、少なくとも500人、好ましくは0.1層以上
、ざらに好ましく(J1μ1層である。かかる要件は所
望する分離能ならびに膜特性に応じて適宜決定すること
ができる。
A feature of the present invention is that at least one such microporous m-dense layer is provided. Membranes without this layer have a limited separation effect and are not only poor in accuracy, but also have the disadvantage that they are brittle and have poor durability in terms of mechanical strength and practicality. Only one layer is required, and of course the entire film may be a dense layer, but preferably the thickness is 1/2 or less, more preferably 1/3 or less of the total film thickness, and the thickness is preferably 1/3 or less of the total film thickness. Thickness of 1/'50, preferably 1/”3
0 or more, and in terms of separation power and mechanical properties, at least 500 membranes, preferably 0.1 layer or more, and roughly preferred (J1μ1 layer. Such requirements are based on the desired separation power and membrane properties. It can be determined as appropriate.

本発明てはかかる微多孔性緻密層が膜の表裏面に存在す
るのがいずれの方向からの分離にも使うことがでさ、し
かもいり゛れの方向への折り曲げに対しても強いという
点て好ましい。かかるtA 造において、該緻密層の中
間に、これよりも粗である多孔質層く緻密層の範囲にあ
るものでもよい)が存在しているものが分離性能の点て
好ましい。
In the present invention, the presence of such a microporous dense layer on the front and back surfaces of the membrane allows it to be used for separation from either direction, and is also strong against bending in the opposite direction. It is preferable. In such a structure, it is preferable from the viewpoint of separation performance that a porous layer (which may be coarser than the dense layer) exists between the dense layers.

本発明でいう炭素分離膜とは実質的に炭素で構成された
平膜ならひに中空膜てあり、炭化膜ならびに黒鉛化膜の
いずれをも包含するものである。
The carbon separation membrane in the present invention is a flat membrane or a hollow membrane substantially composed of carbon, and includes both carbonized membranes and graphitized membranes.

なかでも中空繊維膜はモジュールとして使う場合単位体
積当りの膜面積か大ぎくできるという点で平膜よりもJ
ぐれている。通常外径が10μ〜10mm−B、中空率
〈系全体に対して中空部が占める体積割合)が10〜9
0%であるが、外径が50μ〜1mmで、中空率50〜
80%であるものが分離性能が高くてより好ましい。
Among these, hollow fiber membranes have a larger membrane area per unit volume when used as a module, so they have a lower J value than flat membranes.
It's out of place. Normally, the outer diameter is 10μ to 10mm-B, and the hollowness ratio (volume ratio occupied by the hollow part to the entire system) is 10 to 9.
0%, but the outer diameter is 50 μ to 1 mm and the hollow rate is 50 to 1 mm.
A ratio of 80% is more preferable because of its high separation performance.

本発明の分離膜は、かかる炭素構造体であるが、さらに
該構造体上に分離機能を改善、向上する他種の膜、たと
えば高分子膜などをコーティングすることも目的に応じ
てできる。
Although the separation membrane of the present invention is such a carbon structure, it is also possible to further coat the structure with another type of membrane, such as a polymer membrane, which improves the separation function, depending on the purpose.

本発明を図面により説明する。第1図は本発明の炭素膜
の′1例であり、その断面形状を示す顕微鏡写真(30
00倍)である。図中1.2は緻密層、3は緻密層1.
2の中間に存在する、前記1.2より粗である多孔質層
であり、全体的に観察するとダンボール構造を有する。
The present invention will be explained with reference to the drawings. Figure 1 is a first example of the carbon membrane of the present invention, and a micrograph showing its cross-sectional shape (30
00 times). In the figure, 1.2 is the dense layer, 3 is the dense layer 1.
It is a porous layer that is coarser than 1.2 and exists between 1.2 and 1.2, and has a cardboard structure when observed as a whole.

本発明の炭素分離膜の製造方法について、以下説明する
The method for manufacturing the carbon separation membrane of the present invention will be described below.

本発明でいう繊維形成性線状重合体とは、たとえば、セ
ルロース、セルロースエステル、ポリアミド、ポリエス
テル、ポリウレタン、ポリウレア、ポリイミン、ポリイ
ミド、ポリエーテル、ポリスルフィド、ポリスルホン、
ポリオレフィン、ボリスヂレン、ポリフェニレン、ポリ
アセチレン、ポリビニルアルコール、ポリアクリロニト
リル、ピッチ等のポリマあるいはこれらの共重合体から
選ばれた重合体の単独または2種以上の混合体があげら
れるか、なかでも焼成後の膜強度、形態安定性の点から
ポリアクリロニ1〜リル系ポリマが好ましい。
The fiber-forming linear polymer in the present invention includes, for example, cellulose, cellulose ester, polyamide, polyester, polyurethane, polyurea, polyimine, polyimide, polyether, polysulfide, polysulfone,
Polymers such as polyolefin, borisdylene, polyphenylene, polyacetylene, polyvinyl alcohol, polyacrylonitrile, pitch, etc., or copolymers of these may be used singly or in a mixture of two or more, and in particular, the film after firing may be used. From the viewpoint of strength and morphological stability, polyacryloni-1-lyl polymers are preferred.

本発明は、かかる重合体を各重合体に適合した製膜(製
糸)条件のもとに適宜製膜するが、重要なことは、製膜
後のポリマの配向をできるだ(プ押えた状態に保持し炭
化または黒鉛化する点である。
In the present invention, such polymers are appropriately formed into films under film-forming (thread-spinning) conditions suitable for each polymer, but what is important is that the orientation of the polymer after film formation can be controlled (in a pressed state). This is the point at which it is retained and carbonized or graphitized.

具体的には広角X線回析で測定した配向係数で0゜70
以下に保持することが重要である。ずなわら、かかる特
定な配向特性を有する膜が焼成後において、分離膜とし
て好都合な構造を形成する。特に該配向係数が0.70
以下の場合に微多孔性緻密層を形成する。
Specifically, the orientation coefficient measured by wide-angle X-ray diffraction is 0°70.
It is important to keep below. After firing, a film having such specific orientation characteristics forms a structure suitable for use as a separation film. In particular, the orientation coefficient is 0.70
A microporous dense layer is formed in the following cases.

かかる配向係数に保持する具体的な方法の一つに、延伸
しないことがあげられるが、これに限定づる必要はない
。要するに高分子膜の状態にある段階で分子配向に上記
程麿の乱れがあれはよい。
One specific method for maintaining such an orientation coefficient is not to stretch, but there is no need to limit it to this. In short, it is good if the molecular orientation is as disordered as described above in the state of a polymer film.

ここで配向係数F(×)は、広角X線回析により得られ
たデバイ環にそって測定した強度曲線の半価幅1」から F (X> −1−H/180 で計算してめられる値である。
Here, the orientation coefficient F(x) is calculated from the half-width 1'' of the intensity curve measured along the Debye ring obtained by wide-angle X-ray diffraction as F (X> -1-H/180). is the value given.

この値は小さい程好ましく、0.60以下の配向係数の
ものは、より均一で多孔質な緻密層が得られ、リークの
ないすぐれた分mlt膜を提供づる。
The smaller the value, the better; an orientation coefficient of 0.60 or less provides a more uniform, porous, dense layer and provides an excellent leak-free film.

次に、炭化は通常の方法に従っておこなう。Next, carbonization is carried out according to the usual method.

たとえば、ポリアクリロニ1へリルを原料ポリマどする
場合、炭化処理には500〜2000℃の湿度が適用さ
れるか、その前に炭化を安定に達成づ゛るために耐炎化
と呼ばれる酸化処理か行なわれる。耐炎化は醒性雰凹気
下で150〜400″C1好ましくは200〜300℃
の条件■で行なわれる。
For example, when polyacryloni 1-heryl is used as a raw material polymer, a humidity of 500 to 2000°C is applied to the carbonization treatment, or an oxidation treatment called flameproofing is performed beforehand to ensure stable carbonization. It will be done. Flame resistance is 150 to 400"C1 preferably 200 to 300℃ in an aqueous atmosphere.
It will be carried out under the following conditions.

炭化は、通蕾、窒素やアルゴンなどの不活性雰囲気下で
行なわれるものである。かかる炭化の後に、さらに不活
性雰囲気下で2000〜3000℃という高温で熱処理
して黒鉛化づ−ることもできる。
Carbonization is carried out under an inert atmosphere such as nitrogen or argon. After such carbonization, graphitization can be carried out by further heat treatment at a high temperature of 2000 to 3000° C. in an inert atmosphere.

本発明の炭素膜は炭化されたものも黒鉛化されたものも
包含する。
The carbon membrane of the present invention includes both carbonized and graphitized membranes.

(発明の効果〉 本発明は耐熱性、耐薬品性が卓越している。しかも、そ
の分離効果ならびに機械的特性、形態安定性にJぐれて
おり、成形時ならびに実用時のIrQ構造の崩れの心配
がな(、分離操作が安定して行なえ、かつ耐久性にも優
れたものである。
(Effects of the Invention) The present invention has excellent heat resistance and chemical resistance.Furthermore, its separation effect, mechanical properties, and morphological stability are excellent, and the IrQ structure does not collapse during molding and practical use. You don't have to worry about it (the separation operation can be performed stably and it has excellent durability).

以下本発明について実施例をあげてさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1 イタコンfi1.3モル%を共重合させたポリアクリロ
ニトリルのジメチルスルホキシド溶液を、中空糸用芯鞘
型口金を用いて湿式紡糸して未延伸中空フィラメントを
得Iご。このフィラメントを広角X線回析にかけて強度
曲線を得たが、未延伸のため結晶化が低(てバックグラ
ウンドと区別がつかず、配向係数はめることができなか
った。
Example 1 A dimethyl sulfoxide solution of polyacrylonitrile copolymerized with 1.3 mol% of Itacon fi was wet-spun using a core-sheath type die for hollow fibers to obtain undrawn hollow filaments. This filament was subjected to wide-angle X-ray diffraction to obtain an intensity curve, but because it was unstretched, the crystallization was so low that it could not be distinguished from the background, and it was not possible to fit the orientation coefficient.

この中空糸を金枠に固定して、収縮率22.3%の制限
収縮状態で、260℃×1時間熱風処理して耐炎化した
。得られた耐炎化中空糸の外径/内径は690μ/62
0μであった。
This hollow fiber was fixed to a metal frame and subjected to hot air treatment at 260° C. for 1 hour in a limited shrinkage state with a shrinkage rate of 22.3% to make it flame resistant. The outer diameter/inner diameter of the obtained flame-resistant hollow fiber is 690μ/62
It was 0μ.

この糸をさらにアルゴン雰囲気下、1200±5℃で4
5分間焼成して炭化した。炭化中14゜0%の収縮を示
し、外径/内径は470μ、、z 430μとなった。
This thread was further heated at 1200±5°C for 4 hours under an argon atmosphere.
It was carbonized by firing for 5 minutes. It showed a shrinkage of 14°0% during carbonization, and the outer diameter/inner diameter was 470μ, z 430μ.

この炭素分離膜の断面を電子顕微鏡です12寮したとこ
ろ、第1図のように膜の両面に極めて緻密な層を有し、
かつその間に粗な層を有していた。、緻密層1の厚さは
2.5μであり、緻密層2の厚さは1.0μであった。
When we looked at the cross section of this carbon separation membrane using an electron microscope, we found that there were extremely dense layers on both sides of the membrane, as shown in Figure 1.
and had a rough layer between them. The thickness of dense layer 1 was 2.5 μm, and the thickness of dense layer 2 was 1.0 μm.

この炭素膜を用いて各種気体の透過速度を0゜5K(+
/CtKの圧で測定した。結果を下記に示す。
Using this carbon membrane, the permeation rate of various gases can be increased to 0°5K (+
/CtK pressure. The results are shown below.

P (He ) =2.3X 10−4cmt・cm−
2・sea −1−cmHg −1 P(N2)=1.5X10−4.、(−(Hll−2−
sec −1−cmHU −” P(02)=1. 4X10− 4a+t−cm−2−
3eC−1−cmHg −1 P (CO2)=1. 2X10− ’o(−cm−2
−5ec 1 −cmHg −1 であった。
P (He) = 2.3X 10-4 cmt・cm-
2.sea -1-cmHg -1 P(N2)=1.5X10-4. , (-(Hll-2-
sec -1-cmHU-” P(02)=1.4X10-4a+t-cm-2-
3eC-1-cmHg -1 P (CO2)=1. 2X10-'o(-cm-2
-5ec1-cmHg-1.

比較例 実施例1で得た未延伸中空フィラメントを、8倍延伸し
て、延伸中空フィラメン1〜を得た。このフィラメン1
〜の外径/内径は325μ/280μであり、配向係数
は0.86で、膜構造は全体にm密であった。この中空
糸を実施例1と同一に耐炎化し、炭化した。得られた中
空炭化糸の外径/内径は170μ/145μであり、全
体に均一に緻密であり、微多孔構造を有しないものであ
った。
Comparative Example The undrawn hollow filament obtained in Example 1 was drawn 8 times to obtain drawn hollow filaments 1 to 1. This filament 1
The outer diameter/inner diameter of ~ was 325μ/280μ, the orientation coefficient was 0.86, and the film structure was m-densed as a whole. This hollow fiber was made flame resistant and carbonized in the same manner as in Example 1. The obtained hollow carbonized fiber had an outer diameter/inner diameter of 170 μ/145 μ, was uniformly dense throughout, and had no microporous structure.

この繊維を用いて、実施例1と同一に気体透過速度を測
定してみたが、気体の透過はみられなかつ Iこ 。
Using this fiber, the gas permeation rate was measured in the same manner as in Example 1, but no gas permeation was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中空炭素膜を構成する繊維の断面構造
の1例を示す電子顕微鏡写真(3000倍)である。 図中 1:緻密層(表面部〉 2:緻密層(裏面部) 3:多孔質層 特許出願人 東 し 株 式 会 社
FIG. 1 is an electron micrograph (3000x magnification) showing an example of the cross-sectional structure of fibers constituting the hollow carbon membrane of the present invention. In the figure: 1: Dense layer (surface part) 2: Dense layer (back surface part) 3: Porous layer Patent applicant Toshi Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)微多孔性緻密層を少なくとも1屑布することを特
徴とする炭素III。
(1) Carbon III characterized by having at least one microporous dense layer.
(2)繊維形成性線状重合体からなる、広角X線回折で
測定した配向係数が0.70以下である膜を炭化するこ
とを特徴とする炭素膜の製造方法。
(2) A method for producing a carbon film, which comprises carbonizing a film made of a fiber-forming linear polymer and having an orientation coefficient of 0.70 or less as measured by wide-angle X-ray diffraction.
JP59034190A 1984-02-27 1984-02-27 Carbon membrane and its preparation Granted JPS60179102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034190A JPS60179102A (en) 1984-02-27 1984-02-27 Carbon membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034190A JPS60179102A (en) 1984-02-27 1984-02-27 Carbon membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS60179102A true JPS60179102A (en) 1985-09-13
JPH0588B2 JPH0588B2 (en) 1993-01-05

Family

ID=12407260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034190A Granted JPS60179102A (en) 1984-02-27 1984-02-27 Carbon membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS60179102A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287408A (en) * 1985-06-10 1986-12-17 ル・カルボンヌ・ロレ−ヌ Support of mineral membrane for separation technique and itsproduction
JPS6455383A (en) * 1987-07-24 1989-03-02 State Obu Isuraeru Atom Energ Carbon film and its procuction
WO1989008488A1 (en) * 1988-03-15 1989-09-21 Mitsubishi Rayon Co., Ltd. Porous hollow carbon fiber film and method of manufacturing the same
US5089135A (en) * 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
KR100325343B1 (en) * 1997-12-24 2002-05-09 신현준 Process for producing carbon membrane
US6395066B1 (en) 1999-03-05 2002-05-28 Ube Industries, Ltd. Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method
WO2008069030A1 (en) 2006-11-29 2008-06-12 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same
JP2013063409A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane and method for producing the same
JP2013063415A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane
JP2013094741A (en) * 2011-11-02 2013-05-20 Toyobo Co Ltd Hollow fiber carbon membrane, and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287408A (en) * 1985-06-10 1986-12-17 ル・カルボンヌ・ロレ−ヌ Support of mineral membrane for separation technique and itsproduction
JPH04689B2 (en) * 1985-06-10 1992-01-08 Lorraine Carbone
JPS6455383A (en) * 1987-07-24 1989-03-02 State Obu Isuraeru Atom Energ Carbon film and its procuction
US5089135A (en) * 1988-01-20 1992-02-18 Mitsubishi Rayon Co., Ltd. Carbon based porous hollow fiber membrane and method for producing same
WO1989008488A1 (en) * 1988-03-15 1989-09-21 Mitsubishi Rayon Co., Ltd. Porous hollow carbon fiber film and method of manufacturing the same
US5993716A (en) * 1990-10-19 1999-11-30 Draenert; Klaus Material and process for its preparation
US5746200A (en) * 1990-10-19 1998-05-05 Draenert; Klaus Trabecula nasal filter having both macropores and micropores
KR100325343B1 (en) * 1997-12-24 2002-05-09 신현준 Process for producing carbon membrane
US6395066B1 (en) 1999-03-05 2002-05-28 Ube Industries, Ltd. Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method
WO2008069030A1 (en) 2006-11-29 2008-06-12 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same
US7891499B2 (en) 2006-11-29 2011-02-22 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same
JP2013063409A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane and method for producing the same
JP2013063415A (en) * 2011-09-20 2013-04-11 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module, and method of manufacturing hollow fiber carbon membrane
JP2013094741A (en) * 2011-11-02 2013-05-20 Toyobo Co Ltd Hollow fiber carbon membrane, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0588B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
KR101989901B1 (en) Filter media, method for manufacturing thereof and Filter module comprising the same
EP1321178B1 (en) A braid-reinforced hollow fiber membrane
US3871950A (en) Hollow fibers of acrylonitrile polymers for ultrafilter and method for producing the same
US20080292823A1 (en) A Braided-Reinforced Composite Hollow Fiber Membrane
JP2000505719A (en) Highly porous polyvinylidene difluoride membrane
US4385094A (en) Ethylene-vinyl alcohol hollow fiber membrane and method for the production thereof
JP2002515322A (en) Highly porous polyvinylidene difluoride membrane
JPS60179102A (en) Carbon membrane and its preparation
US20070045175A1 (en) Preparation of asymmetric polyethylene hollow fiber membrane
JP2626837B2 (en) Manufacturing method of asymmetric hollow fiber carbon membrane
JPH0468967B2 (en)
JPH06246139A (en) Heterogeneous hollow fiber membrane and its production
JPH04326930A (en) Production of molecular sieve carbon membrane
AU2018306010B2 (en) Carbon membrane for fluid separation and method for manufacturing same
Hatori et al. Preparation of macroporous carbons from phase‐inversion membranes
JPS6328406A (en) Network porous hollow yarn membrane
JPH03284326A (en) Porous hollow fiber membrane
Yang et al. Influence of activation time on the properties of polyacrylonitrile‐based activated carbon hollow fiber
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
Askari et al. Parametric optimization of poly (ether sulfone) electrospun membrane for effective oil/water separation
JP2592725B2 (en) Manufacturing method of hollow fiber membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane
JP2622629B2 (en) Manufacturing method of hollow fiber membrane
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane