JPS6017415A - Camera provided with range finder optical system placed in ttl finder - Google Patents

Camera provided with range finder optical system placed in ttl finder

Info

Publication number
JPS6017415A
JPS6017415A JP12570083A JP12570083A JPS6017415A JP S6017415 A JPS6017415 A JP S6017415A JP 12570083 A JP12570083 A JP 12570083A JP 12570083 A JP12570083 A JP 12570083A JP S6017415 A JPS6017415 A JP S6017415A
Authority
JP
Japan
Prior art keywords
prism
lens
light
finder
photographic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12570083A
Other languages
Japanese (ja)
Inventor
「つじ」 定彦
Sadahiko Tsuji
Masatake Katou
正猛 加藤
Keiji Ohashi
大橋 圭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12570083A priority Critical patent/JPS6017415A/en
Publication of JPS6017415A publication Critical patent/JPS6017415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To make a beam splitter unnecessary by making visible luminous flux which has passed through a photographic lens totally reflect by the total reflecting surface of a total reflecting prism, but a range finding invisible luminous flux passing through the photographic lens is made refracted and transmitted. CONSTITUTION:A titled camera is constituted of a photographic lens system 1, movable total reflecting mirror 2, focusing screen 3, condenser lens 4, the first prism 5, the second roof prism 6 and an eyepiece 7; and the first reflecting surface of the prism 5 is set to an angle at which a visible light is totally reflected. Also, a range finding infrared luminous flux which is refracted by the first reflecting surface of the prism 5 and has transmitted through it is made incident to a photodetector 10 through an auxiliary prism 8 for correcting an optical path, and a phtodetecting lens 9.

Description

【発明の詳細な説明】 本発明はカメラ、特に撮影系の少くとも一部を視野確認
と測距の目的に兼用するカメラに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a camera, and more particularly to a camera in which at least a part of the photographing system is used for both visual field confirmation and distance measurement.

従来、測距用光源としての赤外発光ダイオード(iRE
D)や赤外の牛導体レーザー(LD)からの光を被写体
に投光し、被写体からのその反射光を受光した受光素子
の出力によシ被写体距離を検知する測距系を備えたカメ
ラが知られている。その多くは撮影系の外部から咳投受
光を行ういわゆる外部測距方式であったが、よシ正確な
測距の為に撮影系の全体又は一部を測距用の投光及び/
又は受光のだめの光学系として利用するいわゆるTTL
方式が提案されている。これらは撮影系中にビームスグ
リツタ−を設は撮影光と測距光の分離を行っている。ビ
ームスノリツタ−としては強度分割型のいわゆるノ・−
フミラーや波長領域分割型のいわゆるダイクロイックミ
ラーが用いられている。
Conventionally, an infrared light emitting diode (iRE) was used as a light source for distance measurement.
A camera equipped with a distance measuring system that projects light from an infrared conductor laser (LD) onto a subject and detects the distance to the subject based on the output of a light receiving element that receives the reflected light from the subject. It has been known. Most of these systems are so-called external distance measuring methods in which light is emitted and received from outside the photographing system, but in order to achieve more accurate distance measurement, the entire or part of the photographing system is used to project and/or receive light for distance measurement.
Or so-called TTL, which is used as an optical system for receiving light.
A method has been proposed. In these systems, a beam sinter is installed in the photographing system to separate the photographing light and the ranging light. As a beam snoritter, there is an intensity splitting type so-called no-
A so-called dichroic mirror or a wavelength region dividing type dichroic mirror is used.

しかしこれらのビームスプリッタ−は多層膜蒸着、接合
など製造上の難点が多く、コストも高く、更に、撮影光
に明るさや色特性上の影響を与えるという欠点がある。
However, these beam splitters have many manufacturing difficulties such as multilayer film deposition and bonding, are high in cost, and have the further disadvantage that they affect the brightness and color characteristics of the photographing light.

一方、撮影系から分割された光束を受け入れるTTLフ
ァインダー中に同様のビームスシリツタ−を用いるもの
もあるが、この場合撮影系に対しては影響が無いけれど
もファインダーの見えが悪くなるという欠点がある。
On the other hand, there are some TTL finders that use a similar beam sinter that accepts the divided light flux from the photographing system, but in this case, although it has no effect on the photographing system, it has the disadvantage that the view of the finder becomes poor. .

本発明は上述従来例の欠点を除去し、ビームスノリッタ
ーを用いずにファインダー用光束と測距用光束とを分け
て導くことのできるTTL7フインダーを備えたTTL
測距方式のカメラを提供することを目的とする。
The present invention eliminates the drawbacks of the conventional example described above, and provides a TTL7 finder that can separate and guide a finder light beam and a ranging light beam without using a beam snoritter.
The purpose is to provide a distance-measuring camera.

本発明の特徴は、全反射プリズムを用いるTTLファイ
ンダーを備えたカメラにおいて、該全反射プリズムの全
反射面を、撮影レンズを通った可視光束についてはこれ
をファインダー接眼部に導くべく全反射するけれども、
撮影レンズを通る測距用非可視光束についてはこれを屈
折透過させるような角度に設定し、且つ、該全反射プリ
ズムの近傍に、該全反射面を屈折透過して撮影レンズを
通して投光さるべき測距用非可視光束を該全反射面に向
ける測距用の投光光学系もしくは撮影レンズを通って該
全反射面を屈折透過した測距用非可視光束を受ける測距
用受光光学系またはその両者を配置したことにある。
A feature of the present invention is that in a camera equipped with a TTL finder using a total reflection prism, the total reflection surface of the total reflection prism totally reflects the visible light flux that has passed through the photographic lens in order to guide it to the viewfinder eyepiece. However,
The invisible light flux for distance measurement passing through the photographic lens should be set at an angle that allows it to be refracted and transmitted, and should be projected near the total reflection prism through the photographic lens after being refracted and transmitted through the total reflection surface. a light projecting optical system for distance measurement that directs the invisible light beam for distance measurement toward the total reflection surface; or a light reception optical system for distance measurement that receives the invisible light beam for distance measurement that is refracted and transmitted through the total reflection surface after passing through a photographing lens; The reason lies in the placement of both.

以下図面に従って説明する。第1図は本発明の一実施例
を示すもので撮影レンズ系1、可動全反射ミラー2、ピ
ント板3、コンデンサーレンズ4、第1プリズム5、第
2ダハプリズム6、接眼レンズ7で構成されたTTLフ
ァインダーを有する一部レフカメラにおいてプリズム5
の第一反射面は可視光が全反射をする角度に設定しであ
る。よシ詳しく言うと、プリズムに用いていられる材質
例えばガラスやグラスチックは可視光と比較して赤外光
に対しては屈折率が低く、従って全反射を起こす臨界角
が大きいことに着目して、プリズム5に入射した測距用
の赤外光は第一反射面で屈折透過するが可視光はプリズ
ム5で二回全反射して屋根型面を有するプリズム6で二
回反射され接眼レンズ7に達し眼に導かれるようにプリ
ズム5の第一反射面、)角度を設定しである。プリズム
5の第一反射面を屈折透過した測距用赤外光束は光路補
正用の補助プリズム8、受光レンズ9を経て受光素子1
0に入射する。上記は被写体で反射して撮影レンズを通
った測距用の赤外光を受光する受光系についての説明で
あるが、受光レンズ9を投光レンズに、また受光素子1
0を赤外光源に置換えることによシ、測距用赤外光を撮
影レンズを通して被写体に投光するための投光系を構成
することも可能であシ、これら投光系と受光系とをプリ
ズム5の近傍に並列配置とすることで投光および受光の
両党路をプリズム5を介在させて形成できる。
This will be explained below according to the drawings. FIG. 1 shows an embodiment of the present invention, which is composed of a photographic lens system 1, a movable total reflection mirror 2, a focusing plate 3, a condenser lens 4, a first prism 5, a second roof prism 6, and an eyepiece lens 7. Prism 5 on some reflex cameras with TTL finder
The first reflecting surface of is set at an angle that causes total reflection of visible light. To be more specific, we focused on the fact that the materials used for prisms, such as glass and plastic, have a lower refractive index for infrared light than for visible light, and therefore have a large critical angle for total internal reflection. The infrared light for distance measurement that enters the prism 5 is refracted and transmitted by the first reflecting surface, but the visible light is totally reflected twice by the prism 5 and reflected twice by the prism 6 having a roof-shaped surface, and then passes through the eyepiece lens 7. The angle of the first reflective surface of the prism 5 is set so that it reaches the eye and is guided to the eye. The infrared light beam for distance measurement that has been refracted and transmitted through the first reflecting surface of the prism 5 passes through an auxiliary prism 8 for optical path correction and a light receiving lens 9 to the light receiving element 1.
0. The above is an explanation of a light receiving system that receives infrared light for distance measurement that is reflected by a subject and passes through a photographic lens.
By replacing 0 with an infrared light source, it is also possible to configure a light projection system for projecting infrared light for distance measurement onto the subject through the photographic lens, and these light projection and light receiving systems By arranging them in parallel near the prism 5, a path for both light emission and light reception can be formed with the prism 5 interposed.

従来技術のようにプリズム5の第一反射面をノ・−7ミ
ラー又はダイクロイックミラーとし、これに補助プリズ
ム8を接合した構成の場合には、補助プリズムとの接合
面を7アインダ一全光束をカバーする大きさにすること
でファインダー内の明るさを均一にすることはできても
ハーフミラ−又はダイクロイ、クミラーの特性からファ
インダ光束に多少の色つきは免れない。これに対し本発
明の上記実施例によればファインダー可視光束は全反射
によシ導いているためファインダーとしての特性劣化は
ない。
In the case of a configuration in which the first reflecting surface of the prism 5 is a No.-7 mirror or a dichroic mirror, and the auxiliary prism 8 is joined to this as in the prior art, the joining surface with the auxiliary prism is a 7-inder which directs the total luminous flux. Even if it is possible to make the brightness within the finder uniform by making it large enough to cover, the finder light flux will inevitably have some coloring due to the characteristics of a half mirror, dichroic mirror, or mirror. On the other hand, according to the above-described embodiment of the present invention, the finder visible light flux is guided by total reflection, so there is no deterioration in the characteristics of the finder.

第2図は第1図の構成において補助プリズム8を省略し
た実施例であシ、収差的には第1図の実施例に比較して
劣るが、部品点数の減少を図ることができる。
FIG. 2 shows an embodiment in which the auxiliary prism 8 is omitted from the configuration of FIG. 1. Although the embodiment is inferior to the embodiment shown in FIG. 1 in terms of aberrations, it is possible to reduce the number of parts.

第3図は更に他の実施例を示すものである。すなわちプ
リズム5.6の代シに一眼レフカメラのファインダに最
も一般的に使用されるペンタダノ・プリズムを用いた場
合の例である。ペンタダ71グリズム11の屋根型反射
面は該プリズムに低層MF率の材料を用いるとピント板
の全ての部位d−ら来る光束を全反射することができず
一部に力為げシ現象を生ずるので、この面に銀又はアル
ミニウムの反射膜を蒸着することが一般的である。し力
)し該プリズム11に高屈折率の材料を用いることによ
シ上記反射膜の蒸着を省略できることは既に知られてい
る。このような材質のプリズム11を用いる場合でも、
角度を適切に設定することによシ、その屋根型反射面で
全ての可視光を全反射させながら、赤外光を屈折透過さ
せるようにするとと〃;できる。
FIG. 3 shows yet another embodiment. That is, this is an example in which a pentadano prism, which is most commonly used in the finder of a single-lens reflex camera, is used in place of the prisms 5 and 6. If the roof-shaped reflective surface of the Pentada 71 grism 11 is made of a material with a low MF ratio, it will not be able to totally reflect the light beam coming from all parts of the focusing plate, causing a force distortion phenomenon in some parts. Therefore, it is common to deposit a reflective film of silver or aluminum on this surface. It is already known that by using a material with a high refractive index for the prism 11, the vapor deposition of the reflective film can be omitted. Even when using the prism 11 made of such a material,
By setting the angle appropriately, the roof-shaped reflective surface can completely reflect all visible light while refracting and transmitting infrared light.

第3図の実施例では、そのようなペンタダノ1ノリズム
11の屋根型反射面に空気間隙を置いて濱1距用赤外光
のための投光用補助プリズム12、投光用レンズ13、
投光用光源14及び受光用補助プリズム15、受光用レ
ンズ16、受光素子17が順次配置されている。この実
施例においても、第1図に示した実施例で述べたと同様
の効果が奏されることは明らかであろう。
In the embodiment shown in FIG. 3, an air gap is placed in the roof-shaped reflective surface of such a pentadano 1 norism 11, and an auxiliary prism 12 for projecting infrared light for one distance, a projecting lens 13,
A light projecting light source 14, a light receiving auxiliary prism 15, a light receiving lens 16, and a light receiving element 17 are arranged in this order. It will be obvious that this embodiment also provides the same effects as described in the embodiment shown in FIG.

次に上記の各実施例に於ける被写体距離検出の原理の一
例を第4図を用いて述べる。撮影レンズ24のピント面
23の光軸上の点に対し投光レンズ22によ多共役な位
置に赤外光源2工を配置し、同じく受光レンズ26によ
多共役な位置に二つの領域A、Bを有する受光素子27
を領域A、Bの境界が受光レンズ26の光軸と合致する
ように配置する。光源21からの赤外光束は投光レンズ
でピント面23に結像した後、撮影レンズ24の一部(
C領域)を通シ被写体に投光される。被写体面25とピ
ント面23が共役であれば、す々わちピントが合ってい
れば、光源の像は撮影レンズの光軸上に結像踵撮影レン
ズ24の一部(D領域)を通ってピント面23の光軸上
の点に結像し、さらに受光レンズ26によシ受光素子2
7上の領域A、Hの境界線上に結像する。被写体面25
が光軸方向に移動すると光源像は光軸と直角方向に移動
し、従ってピント面23上の光源像も光軸と直角方向に
移動するので、受光レンズ26によシ結像された光源像
は受光素727の領域A、Bの境界線から領域A側又は
B側に移動する。この移動を例えば領域Aの出力と領域
Bの出力の差信号をとることで検知し、撮影レンズ24
を移動させることによシ常にこの差信号が零となるよう
に制御すれは′被写体とピント面の共役関係すなわちピ
ントの正金を維持することができる。この原理は前記実
施例に適用することができる。
Next, an example of the principle of subject distance detection in each of the above embodiments will be described with reference to FIG. An infrared light source 2 is placed at a position polyconjugate to the light emitting lens 22 with respect to a point on the optical axis of the focal plane 23 of the photographing lens 24, and two areas A are placed at positions polyconjugate to the light receiving lens 26. , B
are arranged so that the boundary between regions A and B coincides with the optical axis of the light receiving lens 26. After the infrared light flux from the light source 21 forms an image on the focusing surface 23 by the projecting lens, it is focused on a part of the photographing lens 24 (
C area) is projected onto the subject. If the subject plane 25 and the focus plane 23 are conjugate, if the object is in focus, the image of the light source will pass through a part of the imaging lens 24 (region D) on the optical axis of the imaging lens. The image is focused on a point on the optical axis of the focusing surface 23, and then the light receiving element 2 is focused by the light receiving lens 26.
An image is formed on the boundary line between areas A and H on 7. Subject plane 25
When the light source image moves in the optical axis direction, the light source image moves in a direction perpendicular to the optical axis, and therefore the light source image on the focusing plane 23 also moves in a direction perpendicular to the optical axis, so that the light source image formed by the light receiving lens 26 moves from the boundary line between areas A and B of the light receiving element 727 to the area A side or the area B side. This movement is detected by, for example, taking a difference signal between the output of area A and the output of area B.
By moving the lens so that this difference signal is always zero, it is possible to maintain the conjugate relationship between the subject and the focal plane, that is, the exact focus. This principle can be applied to the embodiments described above.

なお、前記の各実施例は測距用赤外光の投光および受光
の両者を撮影レンズを通して行う測距方式の場合に関す
るものであるが、他−の実施例として投光または受光の
一方のみ撮影レンズを通してファインダの一部を経由す
る前記の構成の光路によって行い、投光または受光の他
方は撮影レンズ系外に配した光学系によって行う実施例
もoJ能である。この場合には撮影レンズ糸外に配され
た光学系又は素子を走査させ、受光された信号から被写
体を見込む角度を検知して像影レンズの繰出址と連動さ
せる公知の自動ピント合せの原理を適用するのが好まし
い。
Note that each of the above-mentioned embodiments relates to a distance measurement method in which both the emission and reception of infrared light for distance measurement are performed through the photographing lens, but other embodiments include a case in which only one of the emission and reception of infrared light is performed. An embodiment in which the optical path having the above-mentioned configuration passes through the photographic lens and passes through a part of the finder, and the other of light projection and light reception is performed by an optical system disposed outside the photographic lens system, is also possible. In this case, the well-known principle of automatic focusing is used, in which an optical system or element disposed outside the photographic lens is scanned, the angle at which the subject is viewed is detected from the received light signal, and this is linked with the extension of the imaging lens. It is preferable to apply.

以上説明したように本発明によれば、TTLファインダ
ーの構成要素であるプリズムの面にて可視光束のみを全
反射させてファインダー接訳レンズに導き、測距用の非
可視(例えば赤外)光束のみ該プリズムの面を屈折透過
させて測距を行うのであるから、従来例における如きハ
ーフミラ−やダイクロイックミラー等のビームスノリツ
タ−は使用せず、従って撮影光に影響を与えないはかジ
でな(TTL7アインダーの性能にも何ら影響を与えな
いでTTL測距用光学系をカメラに組込むことが可能で
あシ、しかも製造容易でコストも安いという利点がある
As explained above, according to the present invention, only the visible light beam is totally reflected on the surface of the prism, which is a component of the TTL finder, and guided to the finder translating lens, and the non-visible (for example, infrared) light beam for distance measurement is Since the distance is measured by refracting and transmitting the prism surface, a beam snortter such as a half mirror or dichroic mirror as in the conventional example is not used. (It is possible to incorporate a TTL distance measuring optical system into a camera without affecting the performance of the TTL7 finder, and it has the advantage of being easy to manufacture and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成概要図、第2図は
第1図の構成を部分的に変更した実施例の部分的配置概
要図、第3図は本発明の他の実施例を示す斜視図、第4
図は本発明に適用されるに適した測距原理図である。 1・・・撮影レンズ、 2・・・可動ミラー、3・・・
ピント板、 4・・・コンデンサレンズ、5.6・・・
プリズム、 7・・・接眼レンズ、8・・・補助プリズ
ム、 9・・・受光レンズ、10・・・受光素子、 1
1・・・ペンタダハプリズム、12・・・投光用補助プ
リズム、 13・・・投光用レンズ、14・・・投光用ブ0源、1
5・・・受光用補助プリズム、 16・・・受光用レンズ、17・・・受光素子、21・
・・赤外光源、 22・・・投光用レンズ、23・・・
ピント面、 24・・・撮影レンズ、25・・・被写体
面、 26・・・受光用レンズ、27・・・受光素子。 第3図
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 2 is a partial layout schematic diagram of an embodiment in which the configuration of FIG. 1 is partially changed, and FIG. 3 is another embodiment of the present invention. Perspective view showing an example, 4th
The figure is a diagram of a distance measurement principle suitable for application to the present invention. 1...Photographing lens, 2...Movable mirror, 3...
Focusing board, 4... Condenser lens, 5.6...
Prism, 7... Eyepiece lens, 8... Auxiliary prism, 9... Light receiving lens, 10... Light receiving element, 1
DESCRIPTION OF SYMBOLS 1...Penta roof prism, 12...Auxiliary prism for light projection, 13...Lens for light projection, 14...B0 source for light projection, 1
5... Light receiving auxiliary prism, 16... Light receiving lens, 17... Light receiving element, 21...
...Infrared light source, 22...Lens for projection, 23...
Focus plane, 24... Photographing lens, 25... Subject plane, 26... Light receiving lens, 27... Light receiving element. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 撮影レンズを通った光束を全反射プリズムによシ接眼部
へ導くファインダーを備えたカメラにおいて、該全反射
プリズムの全反射面を撮影レンズを通った可視光束は全
反射するが撮影レンズを通る測距用非可視光束は屈折透
過させるような角度に設定し、上記全反射プリズムの近
傍に該全反射面を屈折透過する測距用非可視光束を導く
測距用の光学系を配置したことを特徴とするカメラ。
In a camera equipped with a finder that guides the light flux that has passed through the photographic lens to the eyepiece through a total reflection prism, the visible light flux that has passed through the photographic lens is totally reflected on the total reflection surface of the total reflection prism, but passes through the photographic lens. The angle is set so that the invisible light beam for distance measurement is refracted and transmitted, and an optical system for distance measurement is arranged near the total reflection prism to guide the invisible light beam for distance measurement that is refracted and transmitted through the total reflection surface. A camera featuring
JP12570083A 1983-07-11 1983-07-11 Camera provided with range finder optical system placed in ttl finder Pending JPS6017415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12570083A JPS6017415A (en) 1983-07-11 1983-07-11 Camera provided with range finder optical system placed in ttl finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12570083A JPS6017415A (en) 1983-07-11 1983-07-11 Camera provided with range finder optical system placed in ttl finder

Publications (1)

Publication Number Publication Date
JPS6017415A true JPS6017415A (en) 1985-01-29

Family

ID=14916547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12570083A Pending JPS6017415A (en) 1983-07-11 1983-07-11 Camera provided with range finder optical system placed in ttl finder

Country Status (1)

Country Link
JP (1) JPS6017415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067836A (en) * 2015-09-28 2017-04-06 リコーイメージング株式会社 Ocular optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067836A (en) * 2015-09-28 2017-04-06 リコーイメージング株式会社 Ocular optical system

Similar Documents

Publication Publication Date Title
JPS60263912A (en) Focus detecting device of camera
JPH0498236A (en) Camera
JPH0533366B2 (en)
US3618498A (en) Chromatic rangefinder
US4429964A (en) Mirror-reflex camera with electronic rangefinder
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
JPS6017415A (en) Camera provided with range finder optical system placed in ttl finder
JPH11325887A (en) Branch optical system automatic focus detector
JPS6255769B2 (en)
JPS63259521A (en) Composite type focusing detection device
JP2757541B2 (en) Focus detection device and observation device having the same
JPS6187114A (en) Single-lens reflex camera having automatic focus mechanism
JPS6167012A (en) Focus detecting device
JPS62183416A (en) Focus detecting device
JPH029323B2 (en)
JPS6190113A (en) Single-lens reflex camera with automatic focusing mechanism
JPH02248918A (en) Color separation optical system for tricolor
JPS6280511A (en) Optical system for range finding
JPS59185305A (en) Focus detector
JPS6068310A (en) Optical system of single-lens reflex camera capable of focus detection
JPH0451127A (en) Single lens reflex camera
JPH0498233A (en) Focus detecting device
JPH01147440A (en) Three optical paths splitting optical system
JPS627028A (en) Optical system having fodus detecting device
JPS59185304A (en) Optical system for range-finding of camera