JPS60171618A - Test of magnetic resistance element - Google Patents

Test of magnetic resistance element

Info

Publication number
JPS60171618A
JPS60171618A JP2776984A JP2776984A JPS60171618A JP S60171618 A JPS60171618 A JP S60171618A JP 2776984 A JP2776984 A JP 2776984A JP 2776984 A JP2776984 A JP 2776984A JP S60171618 A JPS60171618 A JP S60171618A
Authority
JP
Japan
Prior art keywords
head
magnetoresistive element
dummy
thin film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2776984A
Other languages
Japanese (ja)
Inventor
Tomio Kume
久米 富美夫
Kazumasa Hosono
和真 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2776984A priority Critical patent/JPS60171618A/en
Publication of JPS60171618A publication Critical patent/JPS60171618A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To decide the quality of an MR element before it is manufactured to obtain the effect to reduce the variation of the manufacturing process by forming the dummy element of the MR head in such a way that its current density, element temperature, strain, etc., are set to equal conditions to those set to actual heads. CONSTITUTION:The degree of dependence on electric current of a magnetic field value Hk is measured by putting the thin film of an MT element on a crystal substrate, on which a dummy element is put, so that the lengthwise and breadthwise dimensions of the thin film become proportional to those of an actual MR element and measuring its characteristic curve by making various electric currents Is to flow to the dummy element formed through the same manufacturing process as that applied to an actual MR head. In the case of a dummy element whose quantity of magnetostriction lambda is negative, the magnetic field value Hk rises as the electric current Is increases. On the other hand, in the case of an MR element whose quantity of magnetostriction lambda is positive, the magnetic field value Hk does not change even when the electric current Is increases. By forming the dummy element of the MR head in such a way that its current density, element temperature, strain, etc., are set to equal conditions to those set to an actual head, variation of the manufacturing process of the MR element can be reduced.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、磁気抵抗効果型磁気ヘッドに係り、特に該ヘ
ッドの再生特性をダミー磁気抵抗素子を利用して測定す
る試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a magnetoresistive magnetic head, and more particularly to a test method for measuring the reproduction characteristics of the head using a dummy magnetoresistive element.

(b) 従来技術と問題点 従来例を図に沿って説明する。第1図は従来の磁気抵抗
効果型磁気ヘッド(以下単にMl)!ヘッドと略称スる
)のシャントバイアス方式の透視図兼ブロック図を示す
(b) Prior art and problems A conventional example will be explained with reference to the drawings. Figure 1 shows a conventional magnetoresistive magnetic head (hereinafter simply referred to as Ml)! This is a perspective view and block diagram of the shunt bias method of the head.

図において1はNiZnフェライト・Mnzn7エライ
ト等よりなる磁性基板を示す。実際のMRヘッドにおい
ては基板を図示しない別の非磁性体にて形成し、前記磁
性基板を薄膜蒸着して形成することもある。2はチタン
薄膜、8はNiFeパーマロイよりなる磁気抵抗素子(
以下単にMR素子と5はチタン薄膜2とM几素子811
!包彼する非磁性絶縁層、6はNiFeパーマロイ等の
高透磁率薄膜であって磁性基板1と共にMR素子8を磁
気シールドしている。7と7′は電源であってMR素子
3の両端から中央の引出層に対向方向に電流を流してい
る。この電流はMR素子8に流れると共に、チタン薄膜
2にも抵抗比率に従って分流(シャント)する。このシ
ャント電流によって発生する磁界のために、MR素子8
にバイアス磁界が印加される。8は差動増幅器であって
、外部磁界に感応してMK素子3の抵抗率が変化するこ
とを利用して、差動増幅器8にて差動的に外部磁界の変
化を信号として出力するものである。
In the figure, numeral 1 indicates a magnetic substrate made of NiZn ferrite, Mnzn7 elite, or the like. In an actual MR head, the substrate may be formed of another non-magnetic material (not shown), and the magnetic substrate may be formed by thin film deposition. 2 is a titanium thin film, 8 is a magnetoresistive element made of NiFe permalloy (
Hereinafter, simply MR element 5 refers to titanium thin film 2 and M element 811.
! The enclosing nonmagnetic insulating layer 6 is a high magnetic permeability thin film such as NiFe permalloy, and magnetically shields the MR element 8 together with the magnetic substrate 1. Reference numerals 7 and 7' denote power supplies, which allow current to flow in opposite directions from both ends of the MR element 3 to the central extraction layer. This current flows to the MR element 8 and also to the titanium thin film 2 according to the resistance ratio. Due to the magnetic field generated by this shunt current, the MR element 8
A bias magnetic field is applied to the Reference numeral 8 denotes a differential amplifier, which uses the fact that the resistivity of the MK element 3 changes in response to an external magnetic field to differentially output changes in the external magnetic field as a signal. It is.

第2図は2I−のM凡素子を平行に配置したMRヘッド
(以下相互バイアス方式と呼称する)の透視図兼ブロッ
ク図を示す。同図において第1図との対応部位には同一
符号を付してその重複説明を省略する。図において3′
はMR素子3と同じ素子を所要間隔を隔てて並行せしめ
、その間隔及び周囲を非磁性絶縁層5にて被包し、更に
磁性基板1と高透磁率薄膜6とで磁気シールドしている
。引出層4は各MR素子3と8′の両端に接続する。そ
の−万は共に接地され他方の引出端部にはt源7とτが
それぞれ接続され、かつ差動増幅器8が第1図と同様に
接続されている。電源7と7′によってMR素子8と8
′に電流が流れ、この電流の発生する磁界によってMl
L素子8と3′は相互にバイアス磁界が印加される。
FIG. 2 shows a perspective view and a block diagram of an MR head (hereinafter referred to as mutual bias type) in which 2I-M elements are arranged in parallel. In this figure, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and redundant explanation thereof will be omitted. 3' in the figure
Elements identical to the MR element 3 are arranged in parallel at a required interval, and the interval and periphery thereof are covered with a non-magnetic insulating layer 5, and further magnetically shielded by a magnetic substrate 1 and a high magnetic permeability thin film 6. The extraction layer 4 is connected to both ends of each MR element 3 and 8'. -10,000 are both grounded, and the other lead-out end is connected to the t source 7 and .tau., respectively, and the differential amplifier 8 is connected in the same manner as in FIG. MR elements 8 and 8 by power supplies 7 and 7'
′, and the magnetic field generated by this current causes Ml
A bias magnetic field is mutually applied to the L elements 8 and 3'.

第3図は磁気テープ用多素子MRヘッドの製造工程の概
略説明図であって、(a)は磁性基板1あるいは図示し
ない非磁性基板上に、第1図乃至第2図に対応する高透
磁率薄膜4までが真空成膜技術にて形成される製造工程
を示し、(b)はすべての成膜が終った時点でカバープ
レート9を接着スる工程を示す。(C)は切断工程であ
ってMRヘッドが単体毎に切断され、研磨工程を経由し
て(d)に示す7L/−ム10に接着される。さらにフ
ラットケーブル11とヘッド端子間を、ワイヤボンディ
ングにより接続してM凡へ、ドが完成する。
FIG. 3 is a schematic explanatory diagram of the manufacturing process of a multi-element MR head for magnetic tape, in which (a) a high-transparency film corresponding to FIGS. A manufacturing process is shown in which up to the magnetic thin film 4 is formed by vacuum film forming technology, and (b) shows a process in which a cover plate 9 is bonded after all film formation is completed. (C) is a cutting process in which the MR head is cut into individual pieces, and then bonded to the 7L/-mu 10 shown in (d) through a polishing process. Furthermore, the flat cable 11 and the head terminal are connected by wire bonding to complete M and D.

ところで従来完成したMRヘッドには特性のばらつきを
伴なうことが多く、この特性のばらつきを支配している
主要因としては、MR素子の磁気異方性分散にあると言
われているが、その磁気異方性分散が実際のMRヘッド
の製造工程の途中において、どの程度あるかを見極める
手段がなかったために、実際のヘッドは前述のような製
造工程を経由して完成品となっtこ時点で、MRヘッド
の特性を試験してその製造ロットの合否を判定するしか
方法がなかった。
By the way, conventionally completed MR heads are often accompanied by variations in properties, and it is said that the main factor controlling these variations in properties is the magnetic anisotropic dispersion of the MR element. Because there was no way to determine the extent of magnetic anisotropy dispersion during the manufacturing process of an actual MR head, the actual head was not made into a finished product through the manufacturing process described above. At that time, the only way to determine whether a manufacturing lot was acceptable was to test the characteristics of an MR head.

従って不合格品が発生すると、製造工程に消費される多
大の工数が無駄となるため量産化を阻害する欠点となっ
ていた。
Therefore, when a rejected product occurs, a large amount of man-hours consumed in the manufacturing process are wasted, which is a disadvantage that hinders mass production.

(C) 発明の目的 本発明は上記従来の欠点に鑑みlitヘッド製造工程に
おける成膜の完了時点でMRヘッドの良否を判定する手
段の提供を目的とする。
(C) Object of the Invention In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide means for determining the quality of an MR head at the time of completion of film formation in the LIT head manufacturing process.

(d) 発明の構成 そしてこの目的は本発明によれば所定の熱伝導度及び熱
膨張率を有する非磁性基板上にヘラ―る磁気抵抗素子薄
膜に対して所定の縦横寸法比を有するダミー磁気抵抗素
子薄膜を形成してダミー素子を構成し、前記ダミー磁気
抵抗素子に流す電流値をパラメータとして抵抗率/磁界
の強さの関係を示す特性曲線の変曲点に設けた接線と最
小抵抗率のラインの交点が示す磁界値の変化あるいは前
記電流値によるバイアス磁界量の変化を測定することに
より前記磁気抵抗素子の良否の判定を行うことを特徴と
する磁気抵抗素子の試験方法であって又、前記ダミー素
子を磁気ヘッドを構成する基侭のn倍の熱伝導度を有し
、かつ同等の熱膨張率を有する非磁性基板上にヘッドと
なる磁気抵抗素子薄膜寸法の縦横比のl / n倍にて
成膜形成することもでき更に、前記ダミー磁気抵抗素子
の素子幅をヘッドとなる磁気抵抗素子薄膜の素子幅のn
倍とし、前記ダミー磁気抵抗素子に流す電流値を前記磁
気抵抗素子薄膜に流す電流値の少くともn倍にて測定す
ることを特徴とする磁気抵抗素子の試験方法を提供する
ことにより達成される。
(d) Structure and object of the invention According to the present invention, a dummy magnet having a predetermined length-width dimension ratio is formed on a non-magnetic substrate having a predetermined thermal conductivity and coefficient of thermal expansion with respect to a magnetoresistive element thin film. A dummy element is constructed by forming a resistive element thin film, and a tangent line and minimum resistivity are established at the inflection point of a characteristic curve showing the relationship between resistivity and magnetic field strength using the current value flowing through the dummy magnetoresistive element as a parameter. A method for testing a magnetoresistive element, characterized in that the quality of the magnetoresistive element is determined by measuring a change in the magnetic field value indicated by the intersection of the lines or a change in the amount of bias magnetic field due to the current value, and , the dummy element is placed on a non-magnetic substrate having a thermal conductivity n times higher than that of the base material constituting the magnetic head and having an equivalent coefficient of thermal expansion, and is placed on a non-magnetic substrate having an aspect ratio of the thin film dimension of the magnetoresistive element which becomes the head. It is also possible to form a film with n times the element width of the dummy magnetoresistive element.
This is achieved by providing a method for testing a magnetoresistive element, characterized in that the value of the current flowing through the dummy magnetoresistive element is measured at least n times the value of the current flowing through the thin film of the magnetoresistive element. .

(6) 発明の実施例 以下本発明の実施例を測定データによって詳述する。(6) Examples of the invention Examples of the present invention will be described in detail below using measurement data.

@4図は7ヤントバイアス万式のダミー素子の特性測定
データを示す。実際の基板と同等の熱伝導度及び熱膨張
率を有する非磁性基板として、水晶基板(熱伝導度0.
054W/α℃、熱膨張率15.6 X 10−’ )
を用い、該水晶基板にチタン薄膜とMR素子薄膜とを実
際のMit累子の縦横寸法が相似形になる所要の大きさ
に実際のMRヘッドと同じ製造工程で成膜した゛所謂ダ
ミー素子(素子M150tzm、素子横1150μm縦
横比23)に、種々の電流Is を流してその(抵抗率
ψ/磁界の強さU)特性曲線を測定し、該曲線の夏曲点
に設けた接線と最小抵抗率のラインの交点が示す磁界値
(以下■Vと略称する)及びバイアス磁界量の電流依存
性を調べた測定データを第4図に示しバイアス磁界量δ
は計算式により角度θに換算して表わしている。尚^は
磁歪量を示す。測定の結果、MR素子として磁歪量λが
負のものについては■−が電流lsの増加と共に上昇し
、ls=80mAでHVが低電流の場合の1.4倍にな
った。そのためバイアス角θは20’近辺でそれ以上変
化しないことが分った。−万MR素子として磁歪量λが
正のものについては11には電流■sを増しても変化せ
ず’s=80mA でも低電流の場合と同じHkを示す
ため、バイアス角θは28° と良好なことがわかった
Figure @4 shows the characteristic measurement data of 7 Yant bias dummy elements. A quartz substrate (thermal conductivity of 0.0.
054W/α℃, coefficient of thermal expansion 15.6 x 10-')
A so-called dummy element (so-called dummy element) was formed by forming a titanium thin film and an MR element thin film on the crystal substrate in the same manufacturing process as the actual MR head to the required size that the vertical and horizontal dimensions of the actual mit crystal are similar. Various currents Is were passed through an element M150tzm, element width 1150μm, aspect ratio 23), and its (resistivity ψ/magnetic field strength U) characteristic curve was measured, and the tangent line set at the summer point of the curve and the minimum resistance were measured. Figure 4 shows the measurement data of the magnetic field value (hereinafter abbreviated as ■V) indicated by the intersection of the ratio lines and the current dependence of the bias magnetic field amount.
is expressed by converting it into an angle θ using a calculation formula. Note that ^ indicates the amount of magnetostriction. As a result of the measurement, in the case of an MR element with a negative magnetostriction amount λ, - increases as the current ls increases, and at ls = 80 mA, HV was 1.4 times that in the case of a low current. Therefore, it was found that the bias angle θ does not change any further around 20'. - For a 10,000 MR element with a positive magnetostriction amount λ, there is no change in 11 even when the current ■s is increased, and even when 's = 80 mA, it shows the same Hk as in the case of a low current, so the bias angle θ is 28°. It turned out to be good.

上記MRの磁歪社人の正負2種類の所謂シャントバイア
ス方式MRヘッドパターンヲ、Mnzu7エライト基板
(熱伝導率0−081W/ag’c熱膨張率12. l
Xl0−6)k:に形成し、M凡ヘッドの縦横比40(
素子縦10μm素子横400μm )に加工する。すな
わち上記測定ダミー素子が実際のM凡ヘッド形成基板の
熱伝導度の1.74倍を有し、かつ同等の熱膨張率であ
ってM凡素子の縦横比が実際のMRヘッドの1/144
倍の関係に形成して、そのヘッド特性を前記測定電流の
115−あたる電流”s=16mA で測定したところ
、第4図に示す測定結果と同様に、磁歪量^が正のもの
の万がバイアスが正常にかかり再生特性が良好であった
The above-mentioned MR magnetostrictive MR head pattern with two types of positive and negative, so-called shunt bias type MR head pattern, Mnzu7 elite substrate (thermal conductivity 0-081W/ag'c thermal expansion coefficient 12.l)
Xl0-6) k:, and the aspect ratio of the M head is 40 (
The device is processed to have a length of 10 μm and a width of 400 μm. That is, the measurement dummy element has a thermal conductivity 1.74 times that of the actual MR head forming substrate, has an equivalent thermal expansion coefficient, and has an aspect ratio of 1/144 of the actual MR head.
When the head characteristics were measured using a current equal to 115 - 16 mA of the above-mentioned measurement current, it was found that, similar to the measurement results shown in Fig. 4, even if the magnetostriction amount is positive, the bias was applied normally and the reproduction characteristics were good.

第5図は相互バイアス方式のダミー素子の測定データを
示す。図におけるダミー素子は第4図に用いtこダミー
素子と同じ水晶基板上にM凡素子薄膜(素子縦50μm
、素子横1150μm、縦横比23)を実際のMR素子
の縦横寸法が相似形になるように、又実際のMitヘッ
ドと同じ製造工程で成膜した所謂ダミー素子に種々の電
流Isを流してその(抵抗率ψ/磁界の強さh)特性曲
線を測定し、第4図の場合と同様にLLkの電流依存度
を測定した。
FIG. 5 shows measurement data of a dummy element using a mutual bias method. The dummy element in the figure is the one used in Figure 4, and the thin film of the M element (element length 50 μm) is placed on the same crystal substrate as the dummy element.
, the element width is 1150 μm, and the aspect ratio is 23), so that the vertical and horizontal dimensions are similar to the actual MR element, and various currents Is are applied to the so-called dummy element, which is formed in the same manufacturing process as the actual Mit head. A characteristic curve (resistivity ψ/magnetic field strength h) was measured, and the current dependence of LLk was measured in the same manner as in FIG.

その結果、M)L素子として磁歪量λが負のものについ
ては[kが電流Isの増加と共に上昇し、’s=80m
AでHkが低電流の場合の1.67倍になつた。−万M
R素子として磁歪量^が正のものについては、Iikが
電流Isの増加に対して変化しないことが分った。
As a result, for an M)L element with a negative magnetostriction amount λ, [k increases as the current Is increases, and 's=80m
At A, Hk was 1.67 times that at low current. -10,000M
It was found that for R elements with a positive magnetostriction amount, Iik does not change as the current Is increases.

上記MR素子の磁歪量λが正負2種類の所謂相互バイア
ス方式MRヘッドパターンをM、、−Zn−yエライト
基板(熱伝導率0.081W/ff℃熱膨張率12、l
X10 )上に形成し、AIR素子の縦横比4゜(素子
縦10μm、素子横400μm)に加工して、そのM凡
ヘッド特性を第5図の測定電流の115にあたる電流’
s=16mAにて測定したところ、上記の試験結果で■
−の電流依存性のない磁歪量λが正のものの万がバイア
スが正常にかかり再生特性が良好であった。
The so-called mutual bias type MR head pattern in which the above-mentioned MR element has two types of magnetostriction λ, positive and negative, is fabricated on a -Zn-y elite substrate (thermal conductivity 0.081W/ff, thermal expansion coefficient 12, l
X10) and processed to have an aspect ratio of 4 degrees (element length: 10 μm, element width: 400 μm).
When measured at s=16mA, the above test results showed ■
Even though the magnetostriction amount λ was positive and had no - current dependence, the bias was applied normally and the reproduction characteristics were good.

(fン 発明の効果 以上詳細に説明したように、本発明の磁気抵抗素子の試
験方法によればMl(会ッドのダミー素子を電流密度、
素子温度、応力等が実際のヘッドと同等の条件になるよ
うに形成したことにより、MR素子の良否をヘッド化(
製品化)する以前に判定できるので、MR素子の製造工
程上のばらっき低減に効果がある。
Effects of the Invention As explained in detail above, according to the test method of the magnetoresistive element of the present invention, the dummy element of Ml (metal) is
By forming the element temperature, stress, etc. under the same conditions as the actual head, it is possible to check the quality of the MR element in the head (
Since it can be determined before commercialization, it is effective in reducing variations in the manufacturing process of MR elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシャントバイアス方式のMRヘッドの透視図兼
ブロック図、第2図は相互バイアス方式のMRヘッドの
透視図兼ブロック図、第8図はMRヘッドの製造工程の
概略説明図、第4図はシャントバイアス方式のダミー素
子の特性測定データ、第5図は相互バイアス方式のダミ
ー素子の特性測定データを示す。 図において1は磁性基板、2はチタン薄膜、3と3′は
Mlt素子、4は引出層、5は非磁性絶縁層6は高透磁
率薄膜、7とτは電源、8は差動増幅器、9はカバープ
レート、10は7レーム、11は7ラツトケーブルを示
す。 第1図 第3問
Fig. 1 is a perspective view and block diagram of a shunt bias type MR head, Fig. 2 is a perspective view and block diagram of a mutual bias type MR head, Fig. 8 is a schematic explanatory diagram of the manufacturing process of the MR head, and Fig. 4 The figure shows characteristic measurement data of a shunt bias type dummy element, and FIG. 5 shows characteristic measurement data of a mutual bias type dummy element. In the figure, 1 is a magnetic substrate, 2 is a titanium thin film, 3 and 3' are Mlt elements, 4 is an extraction layer, 5 is a non-magnetic insulating layer 6 is a high permeability thin film, 7 and τ are power supplies, 8 is a differential amplifier, 9 is a cover plate, 10 is a 7-ram cable, and 11 is a 7-rat cable. Figure 1 Question 3

Claims (3)

【特許請求の範囲】[Claims] (1)所定の熱伝導度及び熱膨張率を有する非磁性基板
上にヘッド奄る磁気抵抗素子薄膜に対して所定の縦横寸
法比を有するダミー磁気抵抗素子薄膜を形成してダミー
素子を構成し、前記ダミー磁気抵抗素子に流す電流値を
パラメータとして抵抗率/磁界の強さの関係を示す特性
曲線の変曲点に設けた接線と最小抵抗率のラインの交点
が示す磁界値の変化あるいは前記電流値によるバイアス
磁界量の変化を測定することにより前記磁気抵抗素子の
良否の判定を行うことを特徴とする磁気抵抗素子の試験
方法。
(1) A dummy magnetoresistive element is constructed by forming a dummy magnetoresistive element thin film having a predetermined length-to-width dimension ratio with respect to the magnetoresistive element thin film surrounding the head on a nonmagnetic substrate having a predetermined thermal conductivity and coefficient of thermal expansion. , a change in the magnetic field value indicated by the intersection of a tangent line provided at an inflection point of a characteristic curve showing the relationship between resistivity/magnetic field strength and a minimum resistivity line using the current value flowing through the dummy magnetoresistive element as a parameter; or A method for testing a magnetoresistive element, characterized in that the quality of the magnetoresistive element is determined by measuring changes in the amount of bias magnetic field depending on the current value.
(2)前記ダミー素子を磁気ヘッドを構成する基板のn
倍の熱伝導度を有し、かつ同等の熱膨張率を有する非磁
性基板上にヘッドとなる磁気抵抗素子薄膜寸法の縦横比
のl / n倍にて成膜形成したことを特徴とする特許
請求の範囲第(1)項記載の磁気抵抗素子の試験方法。
(2) The dummy element is the n of the substrate constituting the magnetic head.
A patent characterized in that a film is formed on a non-magnetic substrate having twice the thermal conductivity and the same coefficient of thermal expansion at an aspect ratio of l/n times the aspect ratio of the thin film of the magnetoresistive element that becomes the head. A method for testing a magnetoresistive element according to claim (1).
(3)前記ダミー磁気抵抗素子の素子幅をヘッドとなる
磁気抵抗素子薄膜の素子幅のn倍とし、前記ダミー磁気
抵抗素子に流す電流値を前記磁気抵抗素子薄膜に流す電
流値の少くともn倍にて測定することを特徴とする特許
請求の範囲第(1)項記載の磁気抵抗素子の試験方法。
(3) The element width of the dummy magnetoresistive element is n times the element width of the magnetoresistive element thin film serving as the head, and the current value flowing through the dummy magnetoresistive element is at least n times the element width of the magnetoresistive element thin film serving as the head. A method for testing a magnetoresistive element according to claim (1), characterized in that the measurement is performed at a magnification of 1.
JP2776984A 1984-02-15 1984-02-15 Test of magnetic resistance element Pending JPS60171618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2776984A JPS60171618A (en) 1984-02-15 1984-02-15 Test of magnetic resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2776984A JPS60171618A (en) 1984-02-15 1984-02-15 Test of magnetic resistance element

Publications (1)

Publication Number Publication Date
JPS60171618A true JPS60171618A (en) 1985-09-05

Family

ID=12230187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2776984A Pending JPS60171618A (en) 1984-02-15 1984-02-15 Test of magnetic resistance element

Country Status (1)

Country Link
JP (1) JPS60171618A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515475B2 (en) 2001-02-16 2003-02-04 International Business Machines Corporation Determination of track width of magnetoresistive sensors during magnetic head fabrication using magnetic fields
US6822837B2 (en) * 2001-01-19 2004-11-23 Tdk Corporation Thin-film magnetic head and method of manufacturing same, and method of forming a patterned thin film for a thin-film magnetic head
US7197813B2 (en) 2001-03-30 2007-04-03 Fujitsu Limited Method of accurate evaluation on magnetoresistive read element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822837B2 (en) * 2001-01-19 2004-11-23 Tdk Corporation Thin-film magnetic head and method of manufacturing same, and method of forming a patterned thin film for a thin-film magnetic head
US6515475B2 (en) 2001-02-16 2003-02-04 International Business Machines Corporation Determination of track width of magnetoresistive sensors during magnetic head fabrication using magnetic fields
US7197813B2 (en) 2001-03-30 2007-04-03 Fujitsu Limited Method of accurate evaluation on magnetoresistive read element

Similar Documents

Publication Publication Date Title
US6462541B1 (en) Uniform sense condition magnetic field sensor using differential magnetoresistance
US5686837A (en) Magnetic field sensor and instrument comprising such a sensor
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
US6069476A (en) Magnetic field sensor having a magnetoresistance bridge with a pair of magnetoresistive elements featuring a plateau effect in their resistance-magnetic field response
JPS649649B2 (en)
US4623867A (en) Permanent magnet biased narrow track magnetoresistive transducer
JPS6329327B2 (en)
JPS60171618A (en) Test of magnetic resistance element
JP2003078187A (en) Magnetic sensor
JP2001221838A (en) Magnetic impedance effect element and production method thereof
JPH097121A (en) Magnetoresistance type magnetic head and its production and wafer
JPS60191418A (en) Manufacture of magnetic head
US6238731B1 (en) Method of manufacturing a magnetic head
JP3339237B2 (en) Magnetoelectric conversion element
JP4034661B2 (en) Guide sensor resistance value measuring method and thin film magnetic head manufacturing method
JP4474835B2 (en) Magneto-impedance element
JP2000076630A (en) Manufacture of magnetoresistive type magnetic head and thin film magnetic head
JPH01201812A (en) Thin-film magnetic head
JPS61237218A (en) Method for biassing in magneto-resistance effect type magnetic head
JPH01116914A (en) Magneto-resistance type magnetic head
JP2002183914A (en) Composite thin film magnetic head and manufacturing method thereof
JP2001067613A (en) Formation of magnetic head
JPS60254404A (en) Manufacture of thin-film magnetic head
JP2008171530A (en) Manufacturing method of magneto-resistance effect element, and inspecting method
CN112305468A (en) Method and structure for annealing giant magnetoresistance sensor