JPS60170710A - Correcting device for error in measured angle - Google Patents

Correcting device for error in measured angle

Info

Publication number
JPS60170710A
JPS60170710A JP2659884A JP2659884A JPS60170710A JP S60170710 A JPS60170710 A JP S60170710A JP 2659884 A JP2659884 A JP 2659884A JP 2659884 A JP2659884 A JP 2659884A JP S60170710 A JPS60170710 A JP S60170710A
Authority
JP
Japan
Prior art keywords
error
angle
constant
correctors
subslit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2659884A
Other languages
Japanese (ja)
Other versions
JPH0643892B2 (en
Inventor
Shunsui Kawasaki
川崎 春水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP59026598A priority Critical patent/JPH0643892B2/en
Publication of JPS60170710A publication Critical patent/JPS60170710A/en
Publication of JPH0643892B2 publication Critical patent/JPH0643892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain a real measured angle value easily by correcting a measured angle value including an error on on-line basis according to various constants regarding error factors calculated by Fourier analytic calculation on the basis of a previously sampled measured angle value. CONSTITUTION:A subslit plate 23 which rotates coaxially with the axis of rotation of a main slit 1 is arranged opposite extremely closely to the main slit 1. A diffracted image scanned by a subslit 2 for a cosine wave and a subslit 3 for a sine wave at the peripheral edge part of the subslit plate 23 is converted photoelectrically by photodetecting elements 4 and 5 to generate the cosine and sine wave signals. A couple of the 1st correctors 7 and 8 receive and process DC component in an acutally measured wave from memory 6. Further, a constant calculating device 11 receives a phase error from the memory 6 to output a constant (a), and a couple of the 2nd correctors 9 and 10 correct the outputs of the 1st correctors. Their outputs are inputted to an angle calculating device 12 to outputs a real angle, which is displayed on a display device 13.

Description

【発明の詳細な説明】 本発明はエンコーダーを用いた電子式測角装置において
、走査波に含まれる直流成分、振幅誤差。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an electronic angle measuring device using an encoder, which detects direct current components and amplitude errors contained in scanning waves.

位相誤差を測角操作中に逐次的に除去する如き測角誤差
の補正手段に関するものである。
The present invention relates to a means for correcting angle measurement errors that sequentially removes phase errors during angle measurement operations.

近年来エンコーダーを用いた電子測角器が開発されつつ
あり、lI’J角精度も著しく向上して来た。
In recent years, electronic angle measuring instruments using encoders have been developed, and the lI'J angle accuracy has also been significantly improved.

このような電子測角器の測角原理は既に公知ではあるが
、その概要について述べる。この測角器は円周上に等配
列した目盛を有するメインスリットとと41に対向して
配置され、メインスリットと同一ピッチロ盛をもち、メ
インスリットを走査し得るように回転できるサブスリッ
ト、及び走査光情報を光電変換する受光器から成立って
いる。このサブスリッ1へ板には2種類のサブスリット
が設けら]tていて、その一つをメインスリット目盛に
完全に重ね合わせた場合に、他のサブスリットはメイン
スリブ1〜目盛ピッチの174だけシフトするように製
作されている。つまり、これら一対のサブスリッ1〜は
互に90°だけ位相が異っている。サブスリン1〜板を
回転して、これら一対のサブスリツ1へを透過して得ら
れる走査光信号は通常一方が正弦波状であり、他方は余
弦波状である。正弦波状信号をS(χ)とし余弦波信号
をC(χ)とすると(χは角度)、実測される角度χは Z=Lan−’ (S(z)/C(z))で表わさJL
る。
Although the angle measurement principle of such an electronic goniometer is already known, an outline thereof will be described. This goniometer includes a main slit having scales arranged equally on the circumference; It consists of a photoreceiver that photoelectrically converts scanning light information. There are two types of sub-slits on the plate to this sub-slit 1], and when one of them is completely overlapped with the main slit scale, the other sub-slits are shifted by 174 of the scale pitch from main slit 1. is manufactured to do so. In other words, the phases of these pair of sub-slits 1 to 1 are different from each other by 90°. Of the scanning light signals obtained by rotating the sub-slits 1 to the plate and passing through the pair of sub-slits 1, one usually has a sine wave shape and the other has a cosine wave shape. If the sine wave signal is S(χ) and the cosine wave signal is C(χ) (χ is the angle), the actually measured angle χ is expressed as Z=Lan-' (S(z)/C(z)) JL
Ru.

スリン1−のピッチより大きい円弧に相当する角度はス
リットの目盛数を光電的にt1数することによりH1測
し、目盛ピッチ以内の角度は−I:、述の式にJ、り可
成りの高分解能で内挿することが出来る。
The angle corresponding to a circular arc larger than the pitch of Surin 1- is measured by H1 by photoelectrically counting the number of graduations of the slit by t1, and the angle within the graduation pitch is -I:, and J in the above formula is quite large. Interpolation can be performed with high resolution.

実際の測角器ではメインスリットの目盛数が例えば16
2001ine/全周設けられており、その1ピツチは
80′に相当する。上述の如き内挿法を用いて数秒程度
の測角精度が期待できる。
In an actual goniometer, the number of graduations on the main slit is, for example, 16.
2001ine/all around the circumference, one pitch corresponds to 80'. Using the interpolation method described above, angle measurement accuracy of several seconds can be expected.

しかしこのように簡単な測角原理であっても実際には各
種の測角誤差要因を伴い、上記例示の如く高精度が要求
されるため尚更これら誤差要因を最小限に抑圧しなけれ
ばならない。誤差の種類は大別すると 1)偏芯誤差:
サブスリン1〜の回転中心の偏芯であり直接的な機械的
測角誤差を生じると共に走査信号が振幅変調される。 
」j)走査信号に含まれるもの:正、余弦信号の直流成
分、回折光に含まれる高調波歪み、正、余弦信号相互の
振幅差、位相誤差である。
However, even with such a simple angle measurement principle, there are actually various angle measurement error factors, and since high accuracy is required as illustrated above, it is even more necessary to suppress these error factors to a minimum. The types of errors can be broadly classified as follows: 1) Eccentricity error:
The eccentricity of the rotation center of the sub-strains 1 causes a direct mechanical angle measurement error, and the scanning signal is amplitude-modulated.
j) What is included in the scanning signal: DC components of the positive and cosine signals, harmonic distortion contained in the diffracted light, amplitude difference between the positive and cosine signals, and phase error.

本発明では、先ずサブスリン1−による目盛1ピッチ分
の走査、即ち正弦波状信号の一周期につき30ないし4
0点のサンプリング点におけるS(χ、)。
In the present invention, first, the sub line 1- scans one pitch of the scale, that is, 30 to 4 scans per period of the sine wave signal.
S(χ,) at zero sampling point.

C(χ1)の値を予め計測しておく。ついでフーリエ解
析の手法に基づき各波の直流分(フーリエ0火成分)、
高調波成分、基本波の振幅と位相差をコンピュータ計算
する。このようにして得られた数個の定数を測角器内に
記憶しておき、これら定数を駆使して上記の誤差要因i
i)を除去し正しい測角を行わしめるものである。
The value of C(χ1) is measured in advance. Next, based on the Fourier analysis method, the DC component of each wave (Fourier 0 component),
The harmonic components, the amplitude and phase difference of the fundamental wave are calculated by computer. Several constants obtained in this way are stored in the goniometer, and these constants are used to determine the error factor i mentioned above.
i) is removed and correct angle measurement is performed.

かくして本発明の目的は、予め開側された数個の定数を
測角器内に記憶させ、これら定数を用いてリアルタイム
で計測される走査信号中の諸誤差を補正し、真の角度を
得る如き比較的廉価な測角誤差の補正手段を提供するこ
とにある。
Thus, an object of the present invention is to store several constants that are opened in advance in the goniometer, and to use these constants to correct various errors in the scanning signal measured in real time to obtain the true angle. The object of the present invention is to provide a relatively inexpensive means for correcting angle measurement errors.

次いで本発明の誤差補正手段が成立するための条件につ
いて述べる。このような誤差補正を有効にする条件は2
つの走査信号がメインスリットの円周目盛のどの部位で
も同じ状態で生起しかつ経時変化をしないことである。
Next, conditions for the error correction means of the present invention to be established will be described. The conditions for enabling this kind of error correction are 2.
The two scanning signals occur in the same manner at any position on the circumferential scale of the main slit and do not change over time.

このためにはスリットの照明光学系の照度が一定なこと
等の光学的安定性、サブスリン1−の回転に伴うワフ・
フラッタ−等がないこと、回転軸のI11芯がないこと
等の機構的安定性、及び受光素子や照明光源を含む電子
回路系の安定性が要求される。これ等の安定度を理想的
な状態に保持することは不可能であるから、ここで謂う
誤差補正には自ずから限界があり、その許容範囲はこJ
しら3種類の安定性に依存する。
For this purpose, optical stability such as constant illuminance of the illumination optical system of the slit, waffing due to rotation of the sub-slim 1-, etc.
Mechanical stability such as no flutter, no I11 core of the rotating shaft, and stability of the electronic circuit system including the light receiving element and the illumination light source are required. Since it is impossible to maintain such stability in an ideal state, there is a limit to the error correction referred to here, and the permissible range is as follows.
It depends on the stability of the three types of shira.

しかし乍ら、走査信号に多少の変動があっても経時変化
が微小であり、信号が準静的振舞をする限りにおいては
誤差補正手段は、100%有効とは云えないまでも効果
的に作用する。
However, even if there is some fluctuation in the scanning signal, the change over time is small, and as long as the signal behaves quasi-statically, the error correction means will work effectively even if it is not 100% effective. do.

次に、走査信号中に含まれる誤差の発生要因について述
へる。
Next, the causes of errors included in the scanning signal will be described.

信号に含まれる直流成分と高調波歪は光学的及び電気的
要因に基づく。元来、走査光信号は両スリッ1−による
二重回折光によるモアレ縞の走査によって発生するもの
であり、このモアレ縞のビジビリティ−は常に1より小
さい為に必ず直流成分を含有する。また走査回折像は本
質的にフレネル回υi光であり、信じ変化は純粋な正弦
波ではなく高次のフーリエ成分を含みこのため高調波歪
みが信号中に存在する。こ、lL等の光学的要因の他に
電子的増幅器のDCオフセット、位相歪み、雑音などに
よってもこれら直流成分や高調波歪を生ずる。
The DC component and harmonic distortion contained in the signal are based on optical and electrical factors. Originally, a scanning optical signal is generated by scanning moire fringes by double diffracted light by both slits 1, and since the visibility of these moire fringes is always less than 1, it always contains a DC component. Furthermore, the scanning diffraction image is essentially Fresnel circular υi light, and the beam change is not a pure sine wave but contains high-order Fourier components, and therefore harmonic distortion exists in the signal. In addition to optical factors such as L and L, these DC components and harmonic distortion are also caused by DC offset, phase distortion, noise, etc. of the electronic amplifier.

なお、直流成分を予め除去する方法は既に従来公知であ
るが、正、余弦波信号に対応する2つのサブスリン]−
の夫々に隣接して180°位相の異なるサブスリン1〜
を更に一対設置し、これらの検出信号の和演算を行って
直流成分を光電的に相殺する方法が採用されている。
Note that the method of removing the DC component in advance is already known in the art, but there are two sub-series corresponding to positive and cosine wave signals]-
Subseries 1 to 1 with a 180° phase difference adjacent to each of
A method is adopted in which a pair of detectors are installed and the sum of these detection signals is performed to photoelectrically cancel out the DC component.

さらに偏芯誤差の相殺方法として周知の方法はこれら4
個1組のサブスリットを円周上180°隔てた位置に対
向配置するものがある。
Furthermore, there are four well-known methods for canceling eccentricity errors.
There is one in which a set of sub-slits are arranged facing each other at positions separated by 180° on the circumference.

位相誤差は主として正、余弦波信号に対応するサブスリ
ットの位相が正確にπ/2にならずに側音しているため
に生じ、サブスリットの製作誤差として固定的で不変な
ものである。この誤差の他の原因は電子回路系の位相シ
フトである。
The phase error mainly occurs because the phase of the subslit corresponding to the positive and cosine wave signals is not exactly π/2 but is sidetone, and is a fixed and unchanging manufacturing error of the subslit. Another cause of this error is phase shifts in the electronic circuit system.

この誤差補正手段の適用に当っては偏芯誤差は両スリッ
1〜組立時に調整して極力抑制しておかねばならない。
When applying this error correction means, eccentricity errors must be suppressed as much as possible by adjusting them at the time of assembling both slits 1.

先にも述べたように偏芯によってサブスリッ1−の姿勢
が傾いて走査信号カ月辰幅変調と位相変調髪受け、円周
位置が異ると信号の恒マ1(′性が失われるからである
As mentioned earlier, the attitude of the sub-slit 1- is tilted due to eccentricity, and the scanning signal receives radial width modulation and phase modulation. be.

本発明による測角誤差の補正手段に関する原理を説明す
る。
The principle of the angle measurement error correction means according to the present invention will be explained.

誤差補正の準備段階は諸誤差を含む正、余弦波状信号の
サンプリングである。
The preparatory stage for error correction is sampling of positive and cosine wave signals containing various errors.

サンプリングの範囲はメインスリットの1ピツチ。The sampling range is one pitch of the main slit.

即ち正、余弦波の一周期であるが、これを例えば40等
分して、正しい回転角に刻するー・岡の正弦波及び余弦
波の値を実測する。
That is, one period of a positive and cosine wave is divided into, for example, 40 equal parts and carved at the correct rotation angle.The values of Oka's sine wave and cosine wave are actually measured.

このため、サブスリットの回転軸に長いレバーを固定し
、その外端を精密な送り機構、たとえばマイクロメータ
ーヘッドで押して微、tlllfilずつレバーを回転
させる。先述の数値例によるとサブスリツ1−の直径を
80 +n mとした場合、スリットの1ピツチは16
μ(角度換算80#)である。レバー長を200 m 
mとすれば、サブスリットが80秒回転するとレバー外
端は80μ移動する。この回転角を40等分するとその
増分2秒に対応するマイクロメーターヘッドの送り量は
2μである。現行のマイクロメーターヘッドにおいてこ
の程度の精度は充分に保証しうるから、正確な回転角に
おける正、余弦波の数値が得られる。なお、サブスリッ
ト回転軸の偏芯誤差は調整されて微小量に抑えているが
、このサンプリング値の実測はメインスリットの円周玉
数箇所で行い、これら実測値の平均を誤差補正に採用す
べきである。
For this purpose, a long lever is fixed to the rotating shaft of the sub-slit, and the outer end of the lever is pushed by a precision feeding mechanism, such as a micrometer head, to rotate the lever minutely by tllllfil. According to the numerical example mentioned earlier, if the diameter of the sub-slit 1- is 80 + nm, one pitch of the slit is 16
μ (angle conversion: 80#). Lever length is 200 m
If m, then when the sub-slit rotates for 80 seconds, the outer end of the lever moves by 80μ. If this rotation angle is divided into 40 equal parts, the feed amount of the micrometer head corresponding to the increment of 2 seconds is 2 μ. Current micrometer heads can sufficiently guarantee this degree of accuracy, so that positive and cosine wave values can be obtained at accurate rotation angles. Although the eccentricity error of the sub-slit rotation axis has been adjusted to a very small amount, the sampling values were actually measured at several locations around the main slit, and the average of these measured values was used to correct the error. Should.

ついで、補正定数の割算方法について述べる。Next, a method of dividing the correction constant will be described.

このようにして実41すされた余弦波、正弦波を角度χ
の函数としてそiシぞれC(χ)、S(χ)とすると、 C(z)=a H+a2 cos (z+a:+ ) 
+Cn (Z) ・・・(l)S(χ)= b 1+ 
b 2 sin (χ+b3)+Sn(χ)・・・・(
2)で表わされる。ここでa、1.Jは実測波に含まれ
る直流成分、a2.b2は振幅、a3rb3は位相誤差
、cn(χ)、5Tl(χ)は高調波歪である。
In this way, the actual cosine and sine waves are converted to an angle χ
Let C(χ) and S(χ) be the functions of C(z)=a H+a2 cos (z+a:+ )
+Cn (Z) ... (l) S (χ) = b 1+
b 2 sin (χ+b3)+Sn(χ)・・・(
2). Here a, 1. J is a DC component included in the measured wave, a2. b2 is the amplitude, a3rb3 is the phase error, and cn(χ) and 5Tl(χ) are the harmonic distortions.

これらの実測値はフーリエ係数a。(r+) 、 bo
(n)、as(n)l bs(n)を用いて次のように
も表わせる。
These measured values are Fourier coefficients a. (r+), bo
(n), as(n)l bs(n), it can also be expressed as follows.

ここでa。C+aO5はフーリエO火成分である。Here a. C+aO5 is the Fourier O fire component.

またNの4直は通常5ないし7に選んでよいが、これは
実測される回折光の高調波成分は僅少で歪率が3%以下
であることに依る。
In addition, the number of four shifts of N may normally be selected from 5 to 7, but this depends on the fact that the actually measured harmonic component of the diffracted light is very small and the distortion rate is 3% or less.

実41りしたW個(たとえばw=4o)のSi(χ)。There are actually 41 W (for example, w=4o) Si(χ).

C+(χ)+ 1=l、2!、 3.・・・・・・・、
Wからフーリエ係数をコンピュータにて計算する手法は
既に公知であるから説明を省略する。
C+(χ)+ 1=l, 2! , 3.・・・・・・・・・、
Since the method of calculating Fourier coefficients from W using a computer is already well known, the explanation thereof will be omitted.

これらフーリエ係数が予め計算されていると、式(1)
及び(2)の係数aj、biは次のようにめられるN=
1,2.3) al =aoCl bl :Qo S rb2−(a”
 s(り+b” 5(1) 斧 。
If these Fourier coefficients are calculated in advance, Equation (1)
And the coefficients aj and bi in (2) are calculated as follows: N=
1, 2.3) al = aoCl bl :Qo S rb2-(a”
s(ri+b” 5(1) Ax.

a 3 、=tan −、’ Cb(: (1)/ a
、H(1))b 3 =ban−” [b s (1)
/ a s (1):l ==(5)以上の計算はすべ
てコンピュータにより予め計算して置き、測角装置内の
メモリーには式(5)の定数を入力する。
a3,=tan-,'Cb(: (1)/a
, H(1)) b 3 = ban-” [b s (1)
/ a s (1): l == (5) All of the above calculations are calculated in advance by a computer, and the constant of equation (5) is input into the memory in the angle measuring device.

以下では図面に従って本発明による測角誤差の補正装置
の一実施例を説明する。
An embodiment of the angle measurement error correcting device according to the present invention will be described below with reference to the drawings.

第】図は測角誤差の補正装置の一実施例を示す。FIG. 1 shows an embodiment of an angle measurement error correction device.

適当な照明光源(図示せず)により照明されたメインス
リッ1−1に極めて近接して対向配置され、メインスリ
ソ1−1の回転軸と同軸上を回転しつるサブスリン1〜
板23の辺縁部には夫々余弦波用サブスリソ1−2及び
正弦波用サブスリット3が設けられている。これら余弦
波、正弦波用サブスリッ1−2及び3の直後には受光素
子4,5が配置され。
Sub-slits 1 to 1 are arranged opposite to the main slit 1-1 in close proximity to the main slit 1-1 illuminated by a suitable illumination light source (not shown), and rotate on the same axis as the rotation axis of the main slit 1-1.
A cosine wave sub-slit 1-2 and a sine wave sub-slit 3 are provided at the edge of the plate 23, respectively. Immediately after these cosine wave and sine wave subslits 1-2 and 3, light receiving elements 4 and 5 are arranged.

サブスリノ1−2及び3により走査された回折像が光電
変換されて余Jb1.正弦波信号C(χ)、S(χ)を
発生する。メモリー6には式(5)で与えられた定数a
+ r bl (+=1+ 2+ 3)が既に記憶され
ている。一対の第1補正器7及び8では定数al、a7
 + b、+ b2を:A モIJ 6 カラ受取りて
次の演算が行われる。
The diffraction images scanned by the subsurinos 1-2 and 3 are photoelectrically converted to the remaining Jb1. Generates sinusoidal signals C(χ) and S(χ). Memory 6 contains the constant a given by equation (5)
+r bl (+=1+2+3) is already stored. In the pair of first correctors 7 and 8, constants al and a7
+ b, + b2 are received as: A mo IJ 6 and the next calculation is performed.

この第1補正器7,8の出力を夫々C+(χ)。The outputs of the first correctors 7 and 8 are respectively C+(χ).

Sl(χ)とすると、 C+(1)= (C(Z) a+)/a2 。Assuming Sl(χ), C+(1)=(C(Z)a+)/a2.

S+Cχ)= (S(χ)b+)/b2 目・・(6)
となる。式(6)と式(1)及び(2)を比較すると、
C+(χ) :cos (χ十83) 。
S+Cχ)=(S(χ)b+)/b2th...(6)
becomes. Comparing equation (6) with equations (1) and (2), we get
C+(χ):cos(χ183).

Sl (Z) =sin (Z+b3)となる。ただし
、ここでは高調波歪c、1(χ)。
Sl (Z) = sin (Z+b3). However, here, harmonic distortion c, 1(χ).

sn(χ)は誤差常数airb+に比べて3%以下のご
く僅少凧であり、数秒程度の−I11角才j′J度を保
証するには影響しないことが実験的に確認されている。
It has been experimentally confirmed that sn(χ) is a very small amount of 3% or less compared to the error constant airb+, and does not affect the guarantee of -I11 angle j'J degrees of about several seconds.

したがってここでは高調波歪による誤差補正は行わない
。定数t1算器11ではメモリー6から定数a3rb3
を受取って定数a仕出力する。
Therefore, error correction due to harmonic distortion is not performed here. The constant t1 calculator 11 retrieves the constant a3rb3 from the memory 6.
It receives and outputs constant a.

a=’、cos(a3 ))3) 一対の第2補正器9及び10では第1補正器の出力C+
(χ)、Sl(χ)及びこの定数aを用いて夫々出力C
2(χ)、S2(χ)を与える。
a=', cos(a3)) 3) In the pair of second correctors 9 and 10, the output C+ of the first corrector
(χ), Sl(χ) and this constant a, the output C
2(χ) and S2(χ) are given.

C2(Z) ” [Sl (Z) sln a3+G+
 (Z) cos b3)/a −(7)S2 (Z)
 = (Sl (z) Co5a3−c、 (z) s
in b3)/a −(8)これらの式(7) 、 (
8) 、 (6) 、 (]、)及び(2)を比較する
と式(7)、(8)は夫々正しい余弦波C2(Z)=C
O8Z。
C2 (Z) ” [Sl (Z) sln a3+G+
(Z) cos b3)/a - (7) S2 (Z)
= (Sl (z) Co5a3-c, (z) s
in b3)/a - (8) These formulas (7), (
8) Comparing , (6) , ( ], ) and (2), equations (7) and (8) are respectively correct cosine waves C2(Z)=C
O8Z.

正弦波S2(χ) =sinχを与えることが判明する
It turns out that a sine wave S2(χ)=sinχ is given.

これら出力C2(χ)、S2(χ)は角度81算器12
に入力し真の角度Z ”シan−1(S 2 (Z)/
C2(χ)〕を出力する。この測角値χは表示器13に
表示される。
These outputs C2(χ) and S2(χ) are calculated by the angle 81 calculator 12.
and enter the true angle Z ” sian-1(S 2 (Z)/
C2(χ)] is output. This angle measurement value χ is displayed on the display 13.

第2図は測角誤差補正装置の各熱出力を示したものであ
る。図の上段は余弦波信号と正弦波信号を同時に示し、
下段はそのリサージュ図形である。
FIG. 2 shows each heat output of the angle measurement error correction device. The upper part of the figure shows a cosine wave signal and a sine wave signal at the same time.
The bottom row is the Lissajous figure.

記号(a) 、 (b) 、 (c)は夫々受光素子4
,5の出力C(χ)、S(χ);第1補正器7,8の出
力C1(χ)、Sl(χ);第2補正器9,10の出力
C2Cχ)、S2(χ)を示している。
Symbols (a), (b), and (c) are the light receiving elements 4, respectively.
, 5 outputs C(χ), S(χ); outputs C1(χ), Sl(χ) of the first correctors 7, 8; outputs C2Cχ), S2(χ) of the second correctors 9, 10; It shows.

誤差補正前の歪んだ楕円が真円に近づく過程が判明する
The process by which the distorted ellipse before error correction approaches a perfect circle becomes clear.

このようにして本発明になる測角補正装置は、予めサン
プリングされた測角値をもとに、フーリエ解析d1算に
よりめられた誤差要因に関する諸定数を測角装置内に記
憶せしめ、誤差を含むA1す万位をこAしら定数により
オンラインで補正して真の81す万位をめうることが明
白となった。
In this way, the angle measurement correction device of the present invention stores in the angle measurement device various constants related to error factors determined by Fourier analysis d1 calculation based on angle measurement values sampled in advance, and corrects the error. It has become clear that the true 810,000th position can be obtained by correcting the A1 millionth place including this on-line using the Ashira constant.

なお、以」二の説明では高調波歪の補正は無視したが、
更に高精度を要求される測角装置にあってはその補正も
可能である。高調波歪C7,(χ)。
Note that the correction of harmonic distortion was ignored in the following explanation, but
Furthermore, in the case of an angle measuring device that requires high precision, this correction is also possible. Harmonic distortion C7, (χ).

Sη(χ)は真の角度χの函数であるから角度χが不明
の状態である補正前においてはその値がめられない様に
思える。しかし乍らニュー1〜ンの近似解法を駆使して
高速コンピュータにより、ti近解をめることが出来る
。何故ならば誤差を含む偽の実a+11角がこの近似解
の初期値になっているからである。しかし廉価かつ小型
化を要求される電子式セオドライトなどの実用的な測角
器においては、このような復雑かつ高速の81算装置を
実装することは許されない。高調波歪の補正を行わなく
とも前述の理由により実際の測角器では充分な精度が保
証される。
Since Sη(χ) is a function of the true angle χ, its value seems unlikely before correction when the angle χ is unknown. However, by making full use of the approximation methods of New 1 to 1 and using a high-speed computer, the ti approximate solution can be found. This is because the false real angle a+11 containing an error is the initial value of this approximate solution. However, in practical goniometers such as electronic theodolites that are required to be inexpensive and compact, it is not permissible to implement such a complex and high-speed 81 calculation device. For the reasons mentioned above, sufficient accuracy is guaranteed in an actual goniometer even without correction of harmonic distortion.

本発明による測角誤差補正装置は測地測置用の測角器の
みならず、ロボットなどの精密な測角センサーとして多
大の用途を期待しうるものである。
The angle measurement error correction device according to the present invention can be expected to find many uses not only as a goniometer for geodetic positioning, but also as a precise angle measurement sensor for robots and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はdlす万感差補正装置の一実施例を示す。 第2図は測角誤差補正装置の各部の出力を示したもので
ある。 ■・・・メインスリッ、1〜 2,3・・サブスリット
4.5・・・受光素子 6・・・メモリー7.8・・・
第1補正器 9,10・・・第2補正器11 定数′5
1算器 12・・・角度計算器13・・・表示器
FIG. 1 shows an embodiment of the universal difference correction device. FIG. 2 shows the output of each part of the angle measurement error correction device. ■...Main slit, 1~2,3...Sub slit 4.5...Light receiving element 6...Memory 7.8...
First corrector 9, 10...Second corrector 11 Constant '5
1 Calculator 12... Angle calculator 13... Display

Claims (1)

【特許請求の範囲】[Claims] エンコーダーを用いる電子的1111角装置に関して、
既知の誤差定数を基にオンラインで逐次的に角度の実測
値を補2する手段において、誤差定数を記憶したメモリ
ーと、正弦波状信号と余弦波状信号を入力して実測値の
直流成分と振幅誤差とを補正する一対の第1補正器と、
補助定数に出力する定数計算器と、この定数M1算器及
び第1補正器に接続され、実測値の位相誤差を補正する
一対の第2補正器と、角度側算器と、表示器とから成る
測角誤差の補正装置。
Regarding electronic 1111 angle devices using encoders,
A means for sequentially correcting the measured value of an angle online based on a known error constant, which inputs a memory storing the error constant, a sine wave signal and a cosine wave signal, and calculates the direct current component and amplitude error of the measured value. a pair of first correctors for correcting the
A constant calculator that outputs an auxiliary constant, a pair of second correctors that are connected to the constant M1 calculator and the first corrector and correct the phase error of the actual measurement value, an angle side calculator, and a display. An angle measurement error correction device consisting of:
JP59026598A 1984-02-15 1984-02-15 Correcting device for angle measurement error Expired - Lifetime JPH0643892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026598A JPH0643892B2 (en) 1984-02-15 1984-02-15 Correcting device for angle measurement error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026598A JPH0643892B2 (en) 1984-02-15 1984-02-15 Correcting device for angle measurement error

Publications (2)

Publication Number Publication Date
JPS60170710A true JPS60170710A (en) 1985-09-04
JPH0643892B2 JPH0643892B2 (en) 1994-06-08

Family

ID=12197958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026598A Expired - Lifetime JPH0643892B2 (en) 1984-02-15 1984-02-15 Correcting device for angle measurement error

Country Status (1)

Country Link
JP (1) JPH0643892B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354416A (en) * 1989-07-21 1991-03-08 Okuma Mach Works Ltd Position detecting apparatus
JPH03105225A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Angle sensor and torque sensor, and electric power steering apparatus controlled according to output of sensors
JPH03170011A (en) * 1989-11-29 1991-07-23 Okuma Mach Works Ltd Error detecting method by position detector and position detector with automatic error correcting function
JPH04136714A (en) * 1990-09-28 1992-05-11 Okuma Mach Works Ltd Encoder
JP2010060579A (en) * 2009-12-18 2010-03-18 Nsk Ltd Resolver, and method for adjusting position of shaft center of its stator, stator coil position adjusting method, and absolute accuracy measuring method
KR100991401B1 (en) 2008-07-29 2010-11-03 캐논 가부시끼가이샤 Detection apparatus
CN103438856A (en) * 2013-09-18 2013-12-11 沈阳飞机工业(集团)有限公司 Measuring method for front angle of circumferential edge of spiral groove numerical control end mill
JP2016085205A (en) * 2014-10-27 2016-05-19 セイコーエプソン株式会社 Position detection device, electronic apparatus, recording device, robot, and position detection method
WO2016132773A1 (en) * 2015-02-18 2016-08-25 ソニー株式会社 Information processing device, information processing method, and support arm device
JP2017517746A (en) * 2014-04-10 2017-06-29 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Measurement method of vibration displacement using state variation principle
JP2018021901A (en) * 2016-07-20 2018-02-08 Tdk株式会社 Angle sensor and angle sensor system
WO2018092416A1 (en) * 2016-11-21 2018-05-24 パナソニックIpマネジメント株式会社 Rotary encoder signal processing device and rotary encoder signal processing method
WO2019216235A1 (en) * 2018-05-11 2019-11-14 株式会社三共製作所 Angle detector
CN110506196A (en) * 2017-04-13 2019-11-26 索尼公司 Position detecting device and method for detecting position
WO2020213181A1 (en) * 2019-04-19 2020-10-22 三菱電機株式会社 Angle detection device
US10836429B2 (en) 2016-07-20 2020-11-17 Tdk Corporation Angle sensor and angle sensor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371720B2 (en) * 2009-12-03 2013-12-18 キヤノン株式会社 POSITION SIGNAL CORRECTION DEVICE AND POSITION SIGNAL CORRECTION METHOD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614903A (en) * 1979-07-18 1981-02-13 Nippon Kogaku Kk <Nikon> Interpolation method in digital length measuring or angle measuring system
JPS5757212A (en) * 1980-09-25 1982-04-06 Mitsubishi Heavy Ind Ltd Rotation angle measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614903A (en) * 1979-07-18 1981-02-13 Nippon Kogaku Kk <Nikon> Interpolation method in digital length measuring or angle measuring system
JPS5757212A (en) * 1980-09-25 1982-04-06 Mitsubishi Heavy Ind Ltd Rotation angle measuring device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354416A (en) * 1989-07-21 1991-03-08 Okuma Mach Works Ltd Position detecting apparatus
JPH03105225A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Angle sensor and torque sensor, and electric power steering apparatus controlled according to output of sensors
JPH03170011A (en) * 1989-11-29 1991-07-23 Okuma Mach Works Ltd Error detecting method by position detector and position detector with automatic error correcting function
JPH04136714A (en) * 1990-09-28 1992-05-11 Okuma Mach Works Ltd Encoder
KR100991401B1 (en) 2008-07-29 2010-11-03 캐논 가부시끼가이샤 Detection apparatus
JP2010060579A (en) * 2009-12-18 2010-03-18 Nsk Ltd Resolver, and method for adjusting position of shaft center of its stator, stator coil position adjusting method, and absolute accuracy measuring method
CN103438856A (en) * 2013-09-18 2013-12-11 沈阳飞机工业(集团)有限公司 Measuring method for front angle of circumferential edge of spiral groove numerical control end mill
CN103438856B (en) * 2013-09-18 2016-02-10 沈阳飞机工业(集团)有限公司 The measuring method of front angle of circumferential edge of spiral groove numerical control end mill
JP2017517746A (en) * 2014-04-10 2017-06-29 コリア リサーチ インスティトゥート オブ スタンダーズ アンド サイエンス Measurement method of vibration displacement using state variation principle
JP2016085205A (en) * 2014-10-27 2016-05-19 セイコーエプソン株式会社 Position detection device, electronic apparatus, recording device, robot, and position detection method
WO2016132773A1 (en) * 2015-02-18 2016-08-25 ソニー株式会社 Information processing device, information processing method, and support arm device
US10836429B2 (en) 2016-07-20 2020-11-17 Tdk Corporation Angle sensor and angle sensor system
JP2018021901A (en) * 2016-07-20 2018-02-08 Tdk株式会社 Angle sensor and angle sensor system
WO2018092416A1 (en) * 2016-11-21 2018-05-24 パナソニックIpマネジメント株式会社 Rotary encoder signal processing device and rotary encoder signal processing method
CN110506196A (en) * 2017-04-13 2019-11-26 索尼公司 Position detecting device and method for detecting position
CN110998244A (en) * 2018-05-11 2020-04-10 株式会社三共制作所 Angle detector
WO2019216235A1 (en) * 2018-05-11 2019-11-14 株式会社三共製作所 Angle detector
TWI714072B (en) * 2018-05-11 2020-12-21 日商三共製作所股份有限公司 Angle detector
JPWO2019216235A1 (en) * 2018-05-11 2021-05-13 株式会社三共製作所 Angle detector
US11573103B2 (en) 2018-05-11 2023-02-07 Sankyo Seisakusho Co. Angle detector
WO2020213181A1 (en) * 2019-04-19 2020-10-22 三菱電機株式会社 Angle detection device
JP2020176933A (en) * 2019-04-19 2020-10-29 三菱電機株式会社 Angle detection device

Also Published As

Publication number Publication date
JPH0643892B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JPS60170710A (en) Correcting device for error in measured angle
US5026998A (en) Shaft alignment checking method
US6188341B1 (en) Encoder interpolation circuit which corrects an interpolation angle between a received sine-wave encoder signal and a cosine-wave encoder signal
JP4142942B2 (en) Rotary encoder
JP5973773B2 (en) Rotation angle detector
US4794251A (en) Apparatus for measuring lengths or angles
JPH0141923B2 (en)
WO1989000674A1 (en) An optical angle-measuring device
JP2007178320A (en) Rotary encoder
CN108827190B (en) High-precision angle measurement error detection device based on double autocollimators and detection method thereof
US5414516A (en) Position measuring apparatus
JPS61228309A (en) Method for detecting position
US5041988A (en) Method and device for measuring a surface contour
Wang et al. Autocorrection of interpolation errors in optical encoders
JP2839341B2 (en) Calibration device for position signal
US5698851A (en) Device and method for precise angular measurement by mapping small rotations into large phase shifts
JPH0410974B2 (en)
JPH0526686A (en) Optical encoder
KR101361625B1 (en) Position Measuring Apparatus and Position Measuring Method
JPS63256814A (en) Position detector
JPS61112914A (en) Angle measuring device particularly for geodetic instrument
JPS6211113A (en) Position detector
JP2002250639A (en) Absolute position detection encoder
JPH02272310A (en) Rotation angle measuring instrument
SU1174740A1 (en) Device for calibrating testing of pointer-type devices with circular scale