JPS60169559A - Manufacture of high hardness boron nitride film - Google Patents

Manufacture of high hardness boron nitride film

Info

Publication number
JPS60169559A
JPS60169559A JP2301784A JP2301784A JPS60169559A JP S60169559 A JPS60169559 A JP S60169559A JP 2301784 A JP2301784 A JP 2301784A JP 2301784 A JP2301784 A JP 2301784A JP S60169559 A JPS60169559 A JP S60169559A
Authority
JP
Japan
Prior art keywords
ion
substrate
boron
ions
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2301784A
Other languages
Japanese (ja)
Other versions
JPH0259862B2 (en
Inventor
Mamoru Sato
守 佐藤
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kyocera Corp filed Critical Agency of Industrial Science and Technology
Priority to JP2301784A priority Critical patent/JPS60169559A/en
Priority to US06/700,697 priority patent/US4656052A/en
Publication of JPS60169559A publication Critical patent/JPS60169559A/en
Publication of JPH0259862B2 publication Critical patent/JPH0259862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0647Boron nitride

Abstract

PURPOSE:To obtain a high hardness BN film of high quality when a BN film is manufactured by vacuum deposition and ion irradiation, by adjusting the ratio between boron contained in an evaporating source and nitrogen contained in ions to a prescribed value and by applying prescribed acceleration energy. CONSTITUTION:Boron is vacuum-deposited on a substrate from an evaporating source contg. boron, and ions are irradiated on the substrate from an ion generating source for generating ions contg. nitrogen. At this time, the ratio between boron contained in the evaporating source and nitrogen contained in the ions is adjusted to B/N=4-25, and ion acceleration energy per one atom in the ions is regulated to 5-100keV. Said vacuum deposition and irradiation are carried out in an atmosphere contg. nitrogen atoms or a nitrogen compound activated to a lower energy level than the ions. Thus, a high-hardness BN film of high quality consisting of cubic BN and hexagonal close packing BN is obtd.

Description

【発明の詳細な説明】 本発明は高硬度窒化ホウ素膜の製造方法に係り、詳細に
は真空蒸茄法及びイメン照射法から構成される傅」硬度
窒化ホウ紫膜(以下、窒化ホウ素をBNと略ず)の製造
方法に1列する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high hardness boron nitride film. (abbreviated) manufacturing method.

BN(Cは、立方晶9化ホウ素(以下、CBNと略す)
、六力最密充填望化ホウ累(以下、WBNと略す)、六
方晶窒化ホウ素(以下、J、tBΔIと略す)の結晶構
成があり、この中で、CBN及びWBNは、耐熱衝外性
、熱伝導性、硬度及び耐摩耗性、並びに高温での鉄族金
梳に対する耐性にも優れて(・るため、抽々の広範な用
途に注目されており、これに伴い、艮質のCBNやW 
E A/の製造がM弗されている。
BN (C is cubic boron 9ide (hereinafter abbreviated as CBN)
, hexagonal close-packed boron nitride (hereinafter abbreviated as WBN), and hexagonal boron nitride (hereinafter abbreviated as J, tBΔI). Because of its excellent thermal conductivity, hardness and abrasion resistance, as well as resistance to iron group metal combing at high temperatures, it is attracting attention for a wide range of applications. Ya W
The production of E A/ has been completed.

公知の製法技術として、高価な装置を使用して数万気圧
且つ十数百度という超高圧・超高温のもとで合成できる
方法があるが、近時、気相成長法によって、基体の表面
に効率的にCBNやWBNを合成して、その薄膜を生成
することも研究されている。
As a known manufacturing technique, there is a method that uses expensive equipment to synthesize at ultra-high pressure and ultra-high temperature of tens of thousands of atmospheres and tens of hundreds of degrees Celsius. Research has also been conducted into efficiently synthesizing CBN and WBN and producing thin films thereof.

薄膜形成技術には、化学蒸着法及び物理蒸着法に大きく
分類され、就中、イオンを用いた物理蒸着法がBN膜の
研究の主流になっている。これには、イオン化された原
子を加速し、その後、減速して基体上に被着させるとい
うイオンビームデポジション法、クラスターイオンを加
速して基体に衝突させて一度に多量の原子を被着させる
というクラスターイオンブレーティング法、イオン化し
て加速した希ガス等でスパッタした原子を基体に被着さ
せるというイオンビームスパッタリング法等がある。こ
の方法においては、そのイオンの運動エネルギーは数e
V〜数百eVであり、イオン種が基体の内部に注入され
ることはほとんどなく、そのために、薄膜と基体との密
着性については十分でなかった。
Thin film forming techniques are broadly classified into chemical vapor deposition and physical vapor deposition, with physical vapor deposition using ions being the mainstream in research on BN films. This method involves accelerating ionized atoms, then decelerating them and depositing them on the substrate, and accelerating cluster ions so that they collide with the substrate to deposit a large number of atoms at once. There is a cluster ion blating method known as ion beam sputtering, and an ion beam sputtering method in which atoms sputtered with ionized and accelerated rare gas are deposited on a substrate. In this method, the kinetic energy of the ion is several e
V to several hundred eV, and the ion species are hardly injected into the inside of the substrate, so that the adhesion between the thin film and the substrate is not sufficient.

更に、イオンミキシング法においては、基体上にある物
質を蒸着し、次いで、希ガスなどのイオン種を数百Ke
V以上の運動エネルギーで照射すると、蒸着物質の原子
はイオン種の衝突によって反跳するため、基体内部に侵
入し、これに伴って、基体と蒸着層との間に両者の成分
から構成される新しい薄膜が形成され、然る後、残余の
蒸着膜を化学的方法で除去し、そして、基体表面上に新
しい薄膜を形成するのであり、これによれは、イオン種
のエネルギーが太き(なってもイオン電流を大きくする
必要もなく、また、多量の異種原子を基体表面近くに注
入することができるが、注入される原子と基体の溝底原
子との混合比を一定に保つことが困難である。
Furthermore, in the ion mixing method, a substance is deposited on a substrate, and then an ionic species such as a rare gas is added to several hundred Ke
When irradiated with a kinetic energy of V or more, the atoms of the vapor deposited material recoil due to the collision of the ion species, so they penetrate into the interior of the substrate, and as a result, a gap between the substrate and the vapor deposited layer consisting of both components is formed. A new thin film is formed, after which the remaining deposited film is removed by chemical methods and a new thin film is formed on the substrate surface, which increases the energy of the ionic species. However, it is difficult to maintain a constant mixing ratio between the implanted atoms and the groove bottom atoms of the substrate. It is.

したがって、上述のようなイオンを用いる薄膜形成技術
においても、末だCBNやWBNの合成が報告されてい
なかった。
Therefore, even in the thin film formation technology using ions as described above, the synthesis of CBN and WBN has not been reported.

本発明者等は上記事情に鑑み、鋭意研究の結果、先に、
ホウ素を含有する蒸発源及び少なくとも窒素から成るイ
オン種を発生せしめるイオン発生源によって、基体上に
それぞれ蒸着及びイオン照射することによって、良質の
CBNやWBNが形成できることを見い出した。
In view of the above circumstances, as a result of intensive research, the present inventors first
It has been found that high-quality CBN and WBN can be formed by vapor deposition and ion irradiation onto a substrate using an evaporation source containing boron and an ion source that generates ion species consisting of at least nitrogen, respectively.

本発明は上記知見に基づき完成されたものであり、その
目的は良質のCBNやWBNから成る薄膜を基体上に合
成する新規な高硬度BN膜の製造方法を提供せんとする
ものである。
The present invention has been completed based on the above findings, and its purpose is to provide a novel method for producing a high-hardness BN film by synthesizing a thin film made of high-quality CBN or WBN on a substrate.

本発明の他の目的は、上述した高品質のCBNやWBN
から成る薄膜を、高い膜生成速度で基体上に形成させる
方法を提供するにある。
Another object of the present invention is to provide the above-mentioned high quality CBN and WBN.
An object of the present invention is to provide a method for forming a thin film on a substrate at a high film formation rate.

本発明の他の目的は、高いエネルギー効率で、高品質窒
化ホウ素膜を基体上に形成させ得る方法を提供するにあ
る。
Another object of the present invention is to provide a method for forming a high quality boron nitride film on a substrate with high energy efficiency.

本発明によれば、ホウ素を含有する窯発源から基体上に
ホウ素分を蒸着させると共に、少なくともり素を含むイ
オン種を発生せしめるイオン発生源から基体上に該イオ
ン種を照射して、該基体上に窒化ホウ素を生成させる窒
化ホウ素膜の製造方法であって、該蒸発源及びイオン種
に含まれる望素当りのホウ素の原子比(B/N)を4乃
至25とし、該イオン種のイオン加速エネルギーを該イ
オン種の原子当り5乃至1GOI(eVとし、且つ蒸着
及び照射を、イオン種よりも低エネルギーのレベルに活
性化された♀素原子又は窒素化合物の雰囲気中で行うこ
とを特徴とする篩硬度窒化ホウ素膜の製造方法が提供さ
れる。
According to the present invention, a boron component is vapor-deposited onto a substrate from a kiln source containing boron, and the substrate is irradiated with ionic species from an ion source that generates ionic species containing at least boron. A method for producing a boron nitride film in which boron nitride is produced on a substrate, the atomic ratio (B/N) of boron per desired element contained in the evaporation source and ionic species being 4 to 25, The ion acceleration energy is set to 5 to 1 GOI (eV) per atom of the ion species, and the deposition and irradiation are performed in an atmosphere of ♀ elemental atoms or nitrogen compounds activated to a lower energy level than the ion species. A method for manufacturing a boron nitride film having a sieve hardness is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、基体上に、ホウ素を含有する蒸発源
からその蒸着物質を蒸着させると同時に、少なくとも窒
素から成るイオン種を発生せしめるイオン発生源からそ
のイオン種を基体上に照射することにより、CBNやW
BNが合成される。また、基体上に前記蒸着物質が蒸着
された後に、前記イオン種を照射してCBNや1.(/
 E Nを合成し、かように蒸着層の形成とイオン照射
を交互に繰り返して高硬度BN膜の膜厚を大きくするこ
ともできる。
In the present invention, by depositing a deposition material onto a substrate from an evaporation source containing boron, and at the same time irradiating the substrate with ion species from an ion generation source that generates ion species consisting of at least nitrogen, CBN and W
BN is synthesized. Further, after the vapor deposition material is deposited on the substrate, the ion species may be irradiated with CBN or 1. (/
It is also possible to increase the thickness of a highly hard BN film by synthesizing EN and alternately repeating the formation of a vapor deposited layer and ion irradiation in this manner.

これによれば、蒸着ホウ素膜の形成と同時に、又はその
形成後に、打ち込まれた♀素原子によるめり込み効果、
並びにイオンが膜中で静止する時に発生するエネルギー
の熱的効果によって、数万気圧且つ十数百度に似かよっ
た高励起状態を瞬間的且つ局部的につくり出し、CBN
やWBNを生成させるのに不可欠なホウ素原子及び窒素
原子のSP3混成軌道が形成される。この現象に基づい
て、かかるホウ素原子と窒素原子がsp リ:’r合を
し、それがCHNやWBNの結晶核となり、CBNやW
B Nを形成していく。
According to this, at the same time as or after the formation of the vapor-deposited boron film, the sinking effect due to implanted ♀ elementary atoms,
In addition, due to the thermal effect of the energy generated when ions come to rest in the film, a highly excited state similar to tens of thousands of atmospheres and tens of hundreds of degrees Celsius is created instantaneously and locally, and CBN
SP3 hybrid orbitals of boron atoms and nitrogen atoms, which are essential for producing WBN and WBN, are formed. Based on this phenomenon, such boron atoms and nitrogen atoms undergo spri:'r combination, which becomes the crystal nucleus of CHN and WBN, and becomes the crystal nucleus of CBN and WBN.
BN will be formed.

前記ホウ素を含有する蒸発源には、金目ホウ素又はホウ
素化合物(チツ化ホウ素、酸化ホウ素、慌化ホウ素、ホ
ウ化リン、ホウ化水素、アルミニウム若しくはマグネシ
ウム含有の金属ホウ化物、遷移金属のホウ化物)の中か
ら一種又は二棹以上が用いられる。
The evaporation source containing boron includes metallic boron or a boron compound (boron titanide, boron oxide, boron fusilicate, phosphorus boride, hydrogen borohydride, metal boride containing aluminum or magnesium, boride of transition metal). One or more of these are used.

前記イオン種には、所定のイオン加速エネルギーを有す
るイオン種でBを含有する蒸発源に作用してCBHの薄
膜を形成するものであればよい。
The ion species may be any ion species as long as it has a predetermined ion acceleration energy and acts on the evaporation source containing B to form a thin film of CBH.

具体的には、窒素原子イオン(AI+) : 窒素分子
イオン(#2+);アンモニアイオン(N#3+)のよ
うな窒素化合物イオン;窒化ホウ素イオン(BAl+)
の如きホウ素化合物イオン;又は不活性ガスイオン(例
えばA、、+)のいずれか1種であることが好ましい。
Specifically, nitrogen atom ions (AI+): nitrogen molecule ions (#2+); nitrogen compound ions such as ammonia ions (N#3+); boron nitride ions (BAl+)
or an inert gas ion (for example, A, +).

また、B s A’ sII e或いはAl、B2 A
’ 4 等をイオン化してイオン種として用いろことも
できる。更に、上述した窒素含有イオン種と共に、ホウ
素イオン(B十)、ホウ化水素イオン(B 211 o
”’ )等のイオン種を併用することもできる。
Also, B s A' sII e or Al, B2 A
' 4 etc. can also be ionized and used as an ionic species. Furthermore, in addition to the above-mentioned nitrogen-containing ion species, boron ions (B 10) and borohydride ions (B 211 o
Ionic species such as "') can also be used in combination.

このようなイオン種は、後述する装置によって創生され
、必要により、η貴分析用のマグネトロンを用いて磁気
的に選択されて、基体表面に供給される。
Such ion species are created by a device to be described later, and if necessary, are magnetically selected using a magnetron for η-preparation analysis and supplied to the substrate surface.

前電;基体には、セラミックス、超硬合金、サーメット
又は各01¥の金属若しくは合金などイ01であっても
よく、その旧質は問わない。ただい基体が’j−f3.
気絶縁体の場合に(ま、荷電しでいる場所と荷電してい
ない場所とではそこに形成された蒸着膜の’t?r i
4−か異なり膜全体の特性のバラツキが生じ易すくなる
ので、基体としては電気伝導体であることが好ましい。
The substrate may be made of ceramics, cemented carbide, cermet, or metals or alloys, regardless of its old quality. The base is 'j-f3.
In the case of a gas insulator (well, the difference between charged and uncharged areas is that of the vapor deposited film formed there.
4- Since variations in the properties of the entire film are likely to occur due to differences in the characteristics of the film, it is preferable that the substrate be an electrical conductor.

しかし、電気絶縁体であってもその表面に常法により電
気伝導体の薄膜を形成すれはか よい。
However, even if the material is an electrical insulator, it is sufficient to form a thin film of an electrical conductor on its surface by a conventional method.

本発明においては、蒸発源及びイオン種に含有されるな
かで、窒素に対するホウ素の原子比(B/NJJA子比
)が4〜25であり、且つそのイオン種のイオン加速エ
ネルギーがイオン種の原子当り5〜100Ki+Vであ
ることが重要である。
In the present invention, the atomic ratio of boron to nitrogen (B/NJJA ratio) in the evaporation source and the ion species is 4 to 25, and the ion acceleration energy of the ion species is higher than that of the ion species. It is important that the voltage is between 5 and 100 Ki+V.

このB/N原子比が4未満であると非晶質状態のBNが
形成されやすくなり、25を越えると、ホウ素が過剰と
なり、膜中に、非晶質状態のホウ素が形成されやす(な
る。
When this B/N atomic ratio is less than 4, amorphous BN is likely to be formed; when it exceeds 25, boron is in excess, and amorphous boron is likely to be formed in the film. .

この最適条件は5〜18の範囲であることが実験上確か
められている。
It has been experimentally confirmed that this optimum condition is in the range of 5 to 18.

また、イオン種のイオン加速エネルギーが5Ke V未
満の場合には、蒸着膜へのイオン種の注入量が減少して
スパッタ現象が支配的となり、また100Ke’G’を
超えると基体表面の蒸着層よりも可成り深くイオン種が
注入されるので蒸着層にCBNやWBNを主体とする高
硬度BNが生成しにくくなり、また、蒸着層が高温にな
りすぎて11BNの生成が支配的となってCBNを主体
とする高硬度BNが生成しにく(なる。
Furthermore, when the ion acceleration energy of the ion species is less than 5 Ke V, the amount of ion species implanted into the deposited film decreases and the sputtering phenomenon becomes dominant, and when it exceeds 100 Ke'G', the deposited layer on the substrate surface Since the ion species are implanted much deeper than the above, it becomes difficult for high hardness BN mainly composed of CBN and WBN to be formed in the vapor deposited layer, and the vapor deposited layer becomes too high in temperature and the formation of 11BN becomes dominant. High hardness BN, which is mainly composed of CBN, is difficult to produce.

なお、ホウ素を含有する蒸発源としてBNを用いれば、
必要とするイオン加速エネルギーが小さくてすみ、かつ
効率よ<CBNやWBNの薄膜を成長させることができ
る。
Note that if BN is used as an evaporation source containing boron,
The required ion acceleration energy is small, and thin films of CBN and WBN can be grown efficiently.

本発明においては更に、B/N原子比が4〜25と、ホ
ウ素が著しく過剰であることに関連して、前述した蒸着
及びイオン種の照射処理を、該イオン種よりも低エネル
ギーのレベルに活性化された窒素原子又は窒素化合物の
雰囲気中で行うことも重要である。即ち、本発明は、ホ
ウ素含有蒸発のと高エネルギー窒素含有イオン種とが共
存する条件下においては、該イオン種よりも低レベルに
活性化された窒素原子も、CBN及び/又はWBNの生
成に有効に関与するという新規知見に基づくものである
In the present invention, in connection with the B/N atomic ratio of 4 to 25, which is a significant excess of boron, the above-mentioned vapor deposition and ion species irradiation treatments are performed at a lower energy level than the ion species. It is also important to carry out the reaction in an atmosphere of activated nitrogen atoms or nitrogen compounds. That is, the present invention provides that under conditions where boron-containing evaporation and high-energy nitrogen-containing ionic species coexist, nitrogen atoms activated to a lower level than the ionic species also contribute to the production of CBN and/or WBN. This is based on new findings regarding effective involvement.

本発明のイオン化合成法に用いるイオン榊は、既に指摘
した逼り原子当り5乃至100A’gVの高エネルギー
を有する。−力、イオンビームデポジション法、クラス
ターイオンブレーティング法、イオンビームスパッタリ
ング法等の通常の薄膜形成技術に用いられるイオンの運
動エネルギーは、イオン化合成法のそれに比してはるか
に低い数eV〜数百eVのオーダーである。
The ion sakaki used in the ionization synthesis method of the present invention has a high energy of 5 to 100 A'gV per atom as already pointed out. - The kinetic energy of ions used in conventional thin film formation techniques such as force, ion beam deposition, cluster ion blating, and ion beam sputtering is much lower than that of ionization synthesis methods, ranging from several eV to several eV. It is on the order of 100 eV.

本発明においては、このように低しベルニ励起された窒
素原子や窒素化合物をイオン化合成の雰囲気中に供存さ
せることにより、蒸発源及びイオン種に窒素原子が著し
く不足している状態を補完し、良質なりN膜が形成され
るようにしたのである。
In the present invention, by providing such low Berni-excited nitrogen atoms and nitrogen compounds in the atmosphere for ionization synthesis, it is possible to compensate for the severe lack of nitrogen atoms in the evaporation source and ionic species. In this way, a good quality N film is formed.

しかも、本発明によれば、蒸発源及びイオン種における
B/N原子比を4乃至25の範囲とすることにより、極
めて品質の高いBN膜が形成されることは、後述する例
に示す通りであり、更に雰囲気からのg素原子の補完に
より単位時間光りの膜の生成速度が著しく増大すること
も後述する例から明白である。更に、イオン種照射をめ
り込み効果及び熱的効果に主として利用し、反応体を低
エネルギーレベルに励起された雰囲気として補給するこ
とにより、Bφ生成のエネルギー効率をも顕著に向上さ
せ得る。
Moreover, according to the present invention, by setting the B/N atomic ratio in the evaporation source and ionic species to a range of 4 to 25, a BN film of extremely high quality can be formed, as shown in the example described later. Furthermore, it is clear from the examples described later that the rate of formation of a film of light per unit time increases significantly by supplementing g atoms from the atmosphere. Furthermore, the energy efficiency of Bφ production can also be significantly improved by utilizing ionic species irradiation primarily for the immersion and thermal effects and replenishing the reactants as an atmosphere excited to a low energy level.

本発明において、低エネルギーレベルに励起された9紫
或いは窒素化合物の雰囲気を、基体表面の近傍に形成さ
せるには種々の手段を採用し得る。
In the present invention, various means can be employed to form an atmosphere of violet or nitrogen compounds excited to a low energy level in the vicinity of the substrate surface.

最も簡便な手段は、前述したイオン発生源から高エネル
ギーのイオン種と共に低エネルギーレベルに活性化され
た窒素原子や窒素化合物をも、基体表面に供給すること
である。また、別法として、窒素ガスや窒素化合物の気
流中でアーク放電を生じさせて、低レベルに活性化され
た窒素原子や窒素化合物を形成させ、これを蒸着及び照
射域に導入することもできる。
The simplest method is to supply to the substrate surface not only high-energy ion species but also nitrogen atoms and nitrogen compounds activated to a low-energy level from the ion source described above. Alternatively, arc discharge can be generated in a stream of nitrogen gas or nitrogen compounds to form low levels of activated nitrogen atoms or nitrogen compounds, which can then be introduced into the deposition and irradiation area. .

本発明においてはまた、イオン種のイオン加速エネルギ
ーを所定範囲に設定するに伴って、基体に対するイオン
種のdose rate(基体単位面積当りのイオン電
流)を、イオン種の照射によって基体に発生する熱量が
、基体の単位面at (、’)当り口、01〜20Wに
なるように設定することが重要である。20Wを越すと
、ホウ素蒸着層が高温になりすぎてHBNの生成が支配
的となり、CBNやWBNから成る高硬度BNが形成さ
れに<クナリ、他力、0.01W未満では、イオン種に
よるめり込み効果及び熱的効果が得られず、CBNやT
V B Nが合成されにくくなる。
In the present invention, the ion acceleration energy of the ion species is set within a predetermined range, and the dose rate (ion current per unit area of the base) of the ion species relative to the substrate is determined by adjusting the amount of heat generated in the substrate by irradiation of the ion species. It is important to set the unit surface at (,') of the base so that it is 01 to 20W. If it exceeds 20W, the boron vapor deposition layer becomes too high and the formation of HBN becomes dominant, and high hardness BN consisting of CBN and WBN is formed. CBN and T
V BN becomes difficult to synthesize.

更に、本発明においては、基体の温度を一200〜50
0℃に設定するのがよい。
Furthermore, in the present invention, the temperature of the substrate is -200 to 50
It is best to set the temperature to 0°C.

基体の温度が一200〜700℃に設定されていると、
局所的且つ瞬間的に生成された高励起状態が保持されや
すくなると同時に、生成したCBNやWBNがl1BN
に変換しないように佃結させることができる。この稈二
体瀞度が一200℃未満であると基体表面に形成したB
N膜が痕離しやすくなり、70ロ′Cをilりえると、
生成したCBNやWIJ)NがIi B Nに変換しや
すくなる。この基体温度の最適温度ば0〜40O℃であ
ることが実験上、確かめられている。
When the temperature of the base is set at 1200 to 700℃,
At the same time, the locally and instantaneously generated highly excited state is easily maintained, and at the same time, the generated CBN and WBN become l1BN.
You can bind it so that it does not convert to . If this culm two-body consistency is less than 1200°C, the B formed on the substrate surface
The N film becomes easier to separate, and when heated to 70°C,
The generated CBN and WIJ)N can be easily converted to IiBN. It has been experimentally confirmed that the optimum temperature of this substrate is 0 to 400C.

次r(、本発明による高硬度BN膜の製造に用いられる
装置を第1図により説明する。
Next, an apparatus used for producing a high hardness BN film according to the present invention will be explained with reference to FIG.

まず、イオン化されるべきガス例えId、N2はリーク
バルブ1を経てイオン源2に導入され、ここでイオン化
されたのち、加速器6で加速されて所定のイオン加速エ
ネルギーが付与される。イオンは次に分析マグネット4
に導入され、ここで必要とするイオン種のみが磁気的に
選択されて反応室5に供給される。
First, gases to be ionized, such as Id and N2, are introduced into the ion source 2 through the leak valve 1, and after being ionized there, they are accelerated by the accelerator 6 and given a predetermined ion acceleration energy. The ions are then transferred to analysis magnet 4.
Here, only the required ion species are magnetically selected and supplied to the reaction chamber 5.

反応室5は真空ポンプ(例えばターボ分子ポンプ)6に
よって10−’ I’orr以下の高真空に維持される
。基体7は基体ホルダ8に固定され、ここに上記したイ
オン種が照射される。照射に際しては、基体に均一にイ
オン種を照射するために、収連レンズ9にイオン種を通
過させる。
The reaction chamber 5 is maintained at a high vacuum of 10-'I'orr or less by a vacuum pump (for example, a turbomolecular pump) 6. The substrate 7 is fixed to a substrate holder 8, and is irradiated with the above-mentioned ion species. During irradiation, the ion species are passed through the convergence lens 9 in order to uniformly irradiate the substrate with the ion species.

10ば、基体7の下に配置された蒸着装置である。装置
の加熱力法は、電子ビーム加熱、レーザ線加熱など適宜
な方法が用いられる。この中にはBを含有する蒸発源が
収容されている。Bを含有する蒸発源の蒸着層及び蒸着
速度は、基体ホルダ8の横に配設した例えば石英板使用
の振!#J型膜厚計11によって測定すれはよい。
10 is a vapor deposition device placed under the base 7; As the heating power method of the apparatus, an appropriate method such as electron beam heating or laser beam heating is used. This contains an evaporation source containing B. The evaporation layer and the evaporation rate of the evaporation source containing B can be determined using, for example, a quartz plate placed next to the substrate holder 8. It is best to measure with #J type film thickness meter 11.

また、イオン種の原子数、すなわち、イオンTIH11
>tf、は、二次′電子追返し電極12を付設した電流
積算計16によって正確に測定することができる。
Also, the number of atoms of the ionic species, i.e., the ion TIH11
>tf can be accurately measured by a current integrator 16 equipped with a secondary electron repulsion electrode 12.

更に、低レベルに活性化された窒素原子の雰囲気を形成
するために、アーク放電室14を設け、この放電室にN
2ガスを供給し、差動排気で励起された9素原子を反応
室5内に導く。
Furthermore, in order to form an atmosphere of nitrogen atoms activated to a low level, an arc discharge chamber 14 is provided, and this discharge chamber is filled with N.
2 gases are supplied, and the nine atoms excited by differential pumping are introduced into the reaction chamber 5.

このような装置において、基体7を所定位置にセットし
、反応室5内を所定の真空度に保ち、蒸着装置1oを作
動してBを含有する蒸発源を基体7に所定量蒸着させ、
そこに所定のイオン種を所定のイオン加速エネルギーで
照射すれば、基体表面にはCBN及びWB N ′(r
?生体とする高硬度HNの薄膜が形成される。
In such an apparatus, the substrate 7 is set at a predetermined position, the interior of the reaction chamber 5 is maintained at a predetermined degree of vacuum, and the vapor deposition apparatus 1o is operated to deposit a predetermined amount of an evaporation source containing B onto the substrate 7.
If a predetermined ion species is irradiated there with a predetermined ion acceleration energy, CBN and WB N'(r
? A thin film of high hardness HN is formed to be used as a living body.

なお、このときBを含有する蒸発源、イオン種はいずれ
も基体の1方向からのみ蒸着又は照射されるので、基体
の全表面にCBN及びWBN生体の高硬度BN薄膜全形
成する場合にはこの基体に回転、揺動などの運動を与え
ればよい。
At this time, both the evaporation source and the ion species containing B are evaporated or irradiated from only one direction of the substrate, so when forming a high hardness BN thin film of CBN and WBN living body on the entire surface of the substrate, this is necessary. The base body may be subjected to motion such as rotation or rocking.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1゜ 図に示した装置を用いて高純度N2ガスをり−クバル1
からPIG型イオン源21C導入した。
Example 1: Using the apparatus shown in the figure, high purity N2 gas was removed.
A PIG type ion source 21C was introduced.

発生したイオンに加速器6で種々の加速エネルギを付与
した。このイオンビームを分析マグネット4で質量分析
しN2 のみを磁気的に選択した。
Various acceleration energies were applied to the generated ions using an accelerator 6. This ion beam was subjected to mass analysis using an analysis magnet 4, and only N2 was magnetically selected.

他方基体としてシリコン板を用い、これを基体ホルダ8
にセットし反応室5内f 650 l/secのターボ
分子ポンプで1 x 10 ’Torrの真空度に保持
した。
On the other hand, a silicon plate is used as the substrate, and this is attached to the substrate holder 8.
The inside of the reaction chamber 5 was maintained at a vacuum level of 1 x 10' Torr using a turbo molecular pump at f 650 l/sec.

ついで金属Bf収答する電子ビーム蒸M装置10を作動
して金属B’y蒸発させ、N2 イオンの照射と同時に
シリコン板7の上に蒸着さぜ1こ。この時反応室5内の
ガス分析し1こところ活性化した窒素ガス雰囲気になっ
ていた。
Next, the electron beam evaporation device 10 that absorbs metal Bf is operated to evaporate metal B'y, and the metal B'y is evaporated onto the silicon plate 7 at the same time as N2 ion irradiation. At this time, the gas inside the reaction chamber 5 was analyzed and found to be an activated nitrogen gas atmosphere.

Bの蒸着量、蒸着速度は振動型膜厚計11で測定し、N
2+イオンの個数は電流積算計16で測定しB / N
を算出した。N2+イオンのイオン加速エネルギを変え
、Bの蒸着量を変化させて薄膜形成を行なった。
The amount of B vapor deposited and the vapor deposition rate were measured using a vibrating film thickness meter 11.
The number of 2+ ions is measured with a current integrator 16, and B / N
was calculated. A thin film was formed by changing the ion acceleration energy of N2+ ions and changing the amount of B deposited.

N2+イオンノ加速エネルギ35KeV、B/N−10
の条件で真空度0.5 X 10 ”Torrの状態で
2時間続け、厚さ2μmのBN膜を形成はせた。
N2+ ion acceleration energy 35KeV, B/N-10
A BN film having a thickness of 2 μm was formed under the following conditions for 2 hours at a vacuum degree of 0.5×10” Torr.

得られたBN膜をX線回折により分析したところCBN
(111)及びW−BN (002)と同定できるピー
クが確認できその存在が判明できた。
Analysis of the obtained BN film by X-ray diffraction revealed that CBN
Peaks that can be identified as (111) and W-BN (002) were confirmed, and their existence was confirmed.

実施例2 実施例1において、B/NN子比及びドーズ・レートを
変化させる以外は実施例1と同様にしてBN膜の生成を
行った。
Example 2 A BN film was produced in the same manner as in Example 1 except that the B/NN ratio and the dose rate were changed.

得られた結果を第1表に示す。The results obtained are shown in Table 1.

第1表の結果から、BlN比が25を越えると、電気抵
抗及び硬度の低下を生じ、またBlN比が4よりも低い
とHBNの生成が顕著になって硬度の低下を生じること
がわかる。
From the results in Table 1, it can be seen that when the BlN ratio exceeds 25, the electrical resistance and hardness decrease, and when the BlN ratio is lower than 4, the formation of HBN becomes noticeable and the hardness decreases.

また、試別8乃至11の実験からは、W/σ2にも最適
範囲があり、本発明の範囲よりも低いと、イオン照射の
効果がなく、また高いと発熱達が高<HBNの生成がf
A著になる。またBlN比を4以上としたことにより膜
生成速度が著しく増大することがわかる。
In addition, from the experiments in Trials 8 to 11, there is an optimal range for W/σ2, and if it is lower than the range of the present invention, there is no effect of ion irradiation, and if it is higher, the heat generation is high < HBN generation. f
Becomes the author of A. Furthermore, it can be seen that by setting the BlN ratio to 4 or more, the film formation rate increases significantly.

実施例6゜ 基体としてTiC−TiN系ザーメットを使用し、イオ
ン種を55KeV、及びB/N比を10とし、基体の温
度を変化させる以外は実施例1と同様にしてBN膜の生
成を行った。
Example 6゜A BN film was produced in the same manner as in Example 1 except that TiC-TiN cermet was used as the substrate, the ionic species was 55 KeV, and the B/N ratio was 10, and the temperature of the substrate was changed. Ta.

生成膜について、X−線回折による結晶の同定及び硬度
の測定を行った。
Regarding the produced film, the crystals were identified by X-ray diffraction and the hardness was measured.

得られた結果を第2!そに示す。The results obtained are the second one! Shown there.

第2表 実施例4゜ 本実施例は、本発明方法の雰囲気における低レベルの励
起望素原子の存在を実証するためのものである。
Table 2 Example 4 This example demonstrates the presence of low levels of excited atoms in the atmosphere of the process of the invention.

第2図に示す通り、N2+イオンが照射されない位置に
金属板15を設置しμμAメーター16にて電流を測定
した。結果は第6辰の通シであった。
As shown in FIG. 2, a metal plate 15 was installed at a position not irradiated with N2+ ions, and the current was measured with a μμA meter 16. The result was the 6th Tatsushi.

第 6 表 加速電圧 基体の電流 金属板15の電流KV μA/
cIrL2 μA/cnt260 14 0.033 32 15 0、(] 40 34 16 0.047 36 17 0.057 38 20 0.067 40 20 0.077 反応室内は残留ガス分析により窒素ガス雰囲気になって
いることが判っており、上記の結果より基体の周囲に活
性化された窒素原子金倉む雰囲気が形成されていること
が確認された。
Table 6 Acceleration voltage Base current Current of metal plate 15 KV μA/
cIrL2 μA/cnt260 14 0.033 32 15 0, (] 40 34 16 0.047 36 17 0.057 38 20 0.067 40 20 0.077 The reaction chamber has a nitrogen gas atmosphere according to residual gas analysis. From the above results, it was confirmed that an atmosphere containing activated nitrogen atoms was formed around the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる一装置の配置図であ
り、 第2図は実施例4で電流の測定に用いた回路図である。 2・・イオン源、7 基体、10・蒸発源。 特許出願人 工業技術院長 指足代理人 速 水 諒 三 復代理人 弁理士 鈴木郁男 特許出願人 京セラ株式会社 代理人 弁理土鈴木郁男
FIG. 1 is a layout diagram of an apparatus used to carry out the method of the present invention, and FIG. 2 is a circuit diagram used for measuring current in Example 4. 2. Ion source, 7. Substrate, 10. Evaporation source. Patent Applicant: Ryo Hayami, Director of the Agency of Industrial Science and Technology; Patent Attorney: Ikuo Suzuki; Patent Attorney: Ikuo Suzuki, Attorney at Kyocera Corporation.

Claims (1)

【特許請求の範囲】 (1) ホウ素を含有する蒸発源から基体上にホウ素分
を蒸着させると共に、少なくとも窒素を含むイオン種を
発生せしめるイオン発生源から基体上に該イオン種を照
射して、該基体上に窒化ホウ素を生成させる窒化ホウ素
膜の製造方法であって、該蒸発源及びイオン種に含まれ
る望素当りのホウ素の原子比(B/N)を4乃至25ど
し、該イオン種のイオン加速エネルギーを該イオン種の
原子当り5乃至100KeT7とし、且つ蒸着及び照射
を、イオン種よりも低エネルギーのレベルに活性化され
た窒素原子又は窒素化合物の雰囲気中で行うことを特徴
とする高硬度窒化ホウ素膜の製造方法。 (Z 前記基体の温度を−2,0CI乃至7(JO℃に
設定することを特徴とする特許請求の範囲第1項記載の
製法。 (6)前記イオン種の照射を、イオン称の照射に伴つて
基体に発生する熱量がICm”dすo、o i乃至20
Wになるように設定して行う特許請求の範囲第1項記載
の製法。
[Scope of Claims] (1) Depositing boron on a substrate from an evaporation source containing boron, and irradiating the substrate with ion species from an ion generation source that generates ionic species containing at least nitrogen, A method for producing a boron nitride film in which boron nitride is produced on the substrate, the atomic ratio (B/N) of boron per desired element contained in the evaporation source and ion species being 4 to 25, The ion acceleration energy of the species is 5 to 100 KeT7 per atom of the ion species, and the deposition and irradiation are performed in an atmosphere of nitrogen atoms or nitrogen compounds activated to a lower energy level than the ion species. A method for producing a high hardness boron nitride film. (Z) The manufacturing method according to claim 1, characterized in that the temperature of the substrate is set at -2.0 CI to 7 (JO °C). Accordingly, the amount of heat generated in the base is ICm"dso, o i ~ 20
The manufacturing method according to claim 1, which is carried out by setting W.
JP2301784A 1984-02-13 1984-02-13 Manufacture of high hardness boron nitride film Granted JPS60169559A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2301784A JPS60169559A (en) 1984-02-13 1984-02-13 Manufacture of high hardness boron nitride film
US06/700,697 US4656052A (en) 1984-02-13 1985-02-12 Process for production of high-hardness boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301784A JPS60169559A (en) 1984-02-13 1984-02-13 Manufacture of high hardness boron nitride film

Publications (2)

Publication Number Publication Date
JPS60169559A true JPS60169559A (en) 1985-09-03
JPH0259862B2 JPH0259862B2 (en) 1990-12-13

Family

ID=12098717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301784A Granted JPS60169559A (en) 1984-02-13 1984-02-13 Manufacture of high hardness boron nitride film

Country Status (1)

Country Link
JP (1) JPS60169559A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production
JPS63250454A (en) * 1987-04-06 1988-10-18 Hitachi Ltd Corrosion-and wear resistant member and its production
JPH0254758A (en) * 1988-08-18 1990-02-23 Nissin Electric Co Ltd Thin film-forming equipment
JPH02236269A (en) * 1989-03-07 1990-09-19 Nissin Electric Co Ltd Formation of boron nitride film
JPH0397848A (en) * 1989-09-07 1991-04-23 Nissin Electric Co Ltd Production of cutting tool made of high speed steel coated with thin boron nitride film
JPH03160605A (en) * 1989-11-17 1991-07-10 Nissin Electric Co Ltd Magnetic head and its production
JPH03191050A (en) * 1989-12-20 1991-08-21 Nissin Electric Co Ltd Production of thin high-hardness film containing boron nitride
JPH03229857A (en) * 1990-02-02 1991-10-11 Nissin Electric Co Ltd Formation of thin film of boron nitride
JPH0442411A (en) * 1990-06-08 1992-02-13 Nissin Electric Co Ltd Magnetic head
JPH0499262A (en) * 1990-08-10 1992-03-31 Nissin Electric Co Ltd Optical glass device forming die and its production
US5277939A (en) * 1987-02-10 1994-01-11 Semiconductor Energy Laboratory Co., Ltd. ECR CVD method for forming BN films

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164869A (en) * 1986-01-16 1987-07-21 Nissin Electric Co Ltd High hardness coating material and its production
US5277939A (en) * 1987-02-10 1994-01-11 Semiconductor Energy Laboratory Co., Ltd. ECR CVD method for forming BN films
JPS63250454A (en) * 1987-04-06 1988-10-18 Hitachi Ltd Corrosion-and wear resistant member and its production
JPH08972B2 (en) * 1987-04-06 1996-01-10 株式会社日立製作所 Ion mixing method and apparatus
JPH0254758A (en) * 1988-08-18 1990-02-23 Nissin Electric Co Ltd Thin film-forming equipment
JPH02236269A (en) * 1989-03-07 1990-09-19 Nissin Electric Co Ltd Formation of boron nitride film
JPH0397848A (en) * 1989-09-07 1991-04-23 Nissin Electric Co Ltd Production of cutting tool made of high speed steel coated with thin boron nitride film
JPH03160605A (en) * 1989-11-17 1991-07-10 Nissin Electric Co Ltd Magnetic head and its production
JPH03191050A (en) * 1989-12-20 1991-08-21 Nissin Electric Co Ltd Production of thin high-hardness film containing boron nitride
JPH03229857A (en) * 1990-02-02 1991-10-11 Nissin Electric Co Ltd Formation of thin film of boron nitride
JPH0442411A (en) * 1990-06-08 1992-02-13 Nissin Electric Co Ltd Magnetic head
JPH0499262A (en) * 1990-08-10 1992-03-31 Nissin Electric Co Ltd Optical glass device forming die and its production

Also Published As

Publication number Publication date
JPH0259862B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US4657774A (en) Method for thin film formation
US4656052A (en) Process for production of high-hardness boron nitride film
JPS60195094A (en) Production of diamond thin film
WO1988010321A1 (en) Process for the deposition of diamond films
JPS5941510B2 (en) Beryllium oxide film and its formation method
JPS60169559A (en) Manufacture of high hardness boron nitride film
JPH0351787B2 (en)
JPH04959B2 (en)
JPH0259864B2 (en)
JPS63137159A (en) Formation of thin crystalline metallic film
JPS60181262A (en) Production of boron nitride film having high hardness
JPS61227163A (en) Production of high hardness boron nitride film
JPH0515788B2 (en)
JP2611521B2 (en) Method of forming boron nitride thin film
JP2791034B2 (en) Carbon ion beam generation method
JP4294138B2 (en) Mold release processing method by reactive sputtering using ECR plasma
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2504255B2 (en) Method of forming boron nitride thin film
JP2611522B2 (en) Method of forming boron nitride thin film
JPH04285154A (en) Formation of carbon thin film
JPH0397847A (en) Formation of boron nitride film
JPS60127299A (en) Gas-phase synthesis of diamond
JPS60223113A (en) Forming method of thin-film
JP4408505B2 (en) Method and apparatus for forming diamond-like carbon film
JPH0733580B2 (en) Method for producing cubic boron nitride film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term