JPS60169440A - Production of glycol ester - Google Patents

Production of glycol ester

Info

Publication number
JPS60169440A
JPS60169440A JP59024127A JP2412784A JPS60169440A JP S60169440 A JPS60169440 A JP S60169440A JP 59024127 A JP59024127 A JP 59024127A JP 2412784 A JP2412784 A JP 2412784A JP S60169440 A JPS60169440 A JP S60169440A
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
component
palladium
containing nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024127A
Other languages
Japanese (ja)
Other versions
JPH0521905B2 (en
Inventor
Nobuaki Shimizu
延晃 清水
Hiroaki Kezuka
博明 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP59024127A priority Critical patent/JPS60169440A/en
Publication of JPS60169440A publication Critical patent/JPS60169440A/en
Priority to US07/059,153 priority patent/US5008445A/en
Publication of JPH0521905B2 publication Critical patent/JPH0521905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce the titled compound in high efficiency, remarkably improving the life of the catalyst, by reacting a carboxylic acid with an olefin and O2 using a catalyst containing a Pd component and an oxygen-containing nitrogen compound at a specific ratio to the Pd component and added with a metal halide. CONSTITUTION:The objective compound is produced by reacting a carboxylic acid with an olefin and O2 at 15-120 deg.C under atmospheric or positive pressure for 1-5hr, using a catalyst composed mainly of a Pd component, an oxygen-containing nitrogen compound and a metal halide and optionally a carrier such as activated carbon, etc. supporting the above components, wherein the molar ratio of the oxygen-containing nitrogen compound to the Pd component is selected to be <2, preferably 0.5-1.5. The used catalyst can be reduced and regenerated to the Pd component by introducing H2 gas into the reactor at 20-150 deg.C under atmospheric pressure -10kg/cm<2>G for about 0.1-1hr. EFFECT:The catalyst can be easily and effectively reduced and regenerated, and can be used repeatedly keeping the high catalytic activity.

Description

【発明の詳細な説明】 本発明はグリコールエステル類の製造方法に関し、詳し
くは特定の触媒を用いてカルボン酸、オレフィンおよび
酸素を反応させ、効率よくグリコールエステル類を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glycol esters, and more particularly to a method for efficiently producing glycol esters by reacting a carboxylic acid, an olefin, and oxygen using a specific catalyst.

従来から、グリコールエステル類を製造する方法として
、パラジウム成分および含酸素窒素化合物ならびに金属
ハロゲン化物からなる触媒を用いて、カルボン酸中にオ
レフィンと酸素を導入して反応させる方法が知られてい
る(特公昭45−32413号公報、特開昭51−82
213号公報など)。
Conventionally, as a method for producing glycol esters, a method has been known in which an olefin and oxygen are introduced into a carboxylic acid and reacted using a catalyst consisting of a palladium component, an oxygen-containing nitrogen compound, and a metal halide ( Japanese Patent Publication No. 45-32413, Japanese Patent Publication No. 51-82
Publication No. 213, etc.).

しかしながら、これらの従来技術においては、反応初期
における触媒活性は充分に高いが、反応開始後数時間で
触媒劣化に伴う活性の低下がはなはだしく、触媒の還元
による再生触媒についても充分に活性の回復を図りえな
いという問題があった。
However, in these conventional technologies, although the catalytic activity is sufficiently high at the beginning of the reaction, the activity decreases significantly due to catalyst deterioration several hours after the reaction starts, and even the regenerated catalyst by catalyst reduction cannot fully recover the activity. There was a problem that could not be solved.

本発明は、このパラジウム系触媒の活性低下が含酸素窒
素化合物の使用割合に左右されることを見出し、この知
見に基づいて含酸素窒素化合物の使用割合を特定するこ
とにより、従来の欠点を改良したものである。
The present invention has found that the decrease in activity of palladium-based catalysts is affected by the proportion of oxygen-containing nitrogen compounds used, and based on this knowledge, the present invention has improved the conventional drawbacks by specifying the proportion of oxygen-containing nitrogen compounds used. This is what I did.

すなわち本発明は、(A)パラジウム成分。That is, the present invention provides (A) a palladium component.

(B)含酸素窒素化合物および(C)金属ハロゲン化物
を主成分とする触媒を用いて、カルボン酸。
(B) A carboxylic acid using a catalyst containing an oxygen-containing nitrogen compound and (C) a metal halide as main components.

オレフィンおよび酸素を反応させてグリコールエステル
類を製造するにあたり、触媒中の(A)パラジウム成分
に対する(B)含酸素窒素化合物の比率(モル比)が2
未満であることを特徴とするグリコールエステル類の製
造方法を提供するものである。
When producing glycol esters by reacting olefins and oxygen, the ratio (molar ratio) of (B) oxygen-containing nitrogen compound to (A) palladium component in the catalyst is 2.
The present invention provides a method for producing glycol esters characterized in that:

本発明の方法に用いる触媒は上述の如<(A)。The catalyst used in the method of the present invention is as described above (A).

(B)、(C)成分よりなるものであるが、ここで(A
)成分であるパラジウム成分としては、金属パラジウム
でもまたパラジウム化合物でも良い。
It consists of components (B) and (C), but here (A
) The palladium component may be metal palladium or a palladium compound.

このパラジウム化合物としては、塩化パラジウムナトリ
ウム、硝酸パラジウム、酢酸パラジウム。
Examples of this palladium compound include sodium palladium chloride, palladium nitrate, and palladium acetate.

塩化パラジウム、臭化パラジウムなどのパラジウム塩あ
るいは酸化パラジウム等をあげることができる。これら
パラジウム成分をこのまま使用することが好ましいが、
活性炭などの担体に担持して使用することもできる。こ
のパラジウム成分の使用量は特に制限はないが、通常は
反応系に 0.001〜0.1モル/lの割合で存在さ
せればよい。 また 触媒の(B)成分である含酸素窒素化合物とじては、硝
酸、−酸化窒素、二酸化窒素、亜硝酸エステル、さら社
は硝酸リチウム、硝酸ナトリウムなどの硝酸塩、あるい
は亜硝酸鋼、亜硝酸リチウム。
Examples include palladium salts such as palladium chloride and palladium bromide, and palladium oxide. Although it is preferable to use these palladium components as they are,
It can also be used by being supported on a carrier such as activated carbon. There is no particular restriction on the amount of this palladium component to be used, but it is usually sufficient to have it present in the reaction system at a ratio of 0.001 to 0.1 mol/l. In addition, the oxygen-containing nitrogen compounds that are component (B) of the catalyst include nitric acid, nitrogen oxide, nitrogen dioxide, nitrite esters, and Sarasha's nitrates such as lithium nitrate and sodium nitrate, or nitrite steel, lithium nitrite. .

亜硝酸ナトリウムなどの亜硝酸塩があげられる。Examples include nitrites such as sodium nitrite.

この含酸素窒素化合物の使用量は、(A)成分であるパ
ラジウム成分に対して、2未満(モル比)とすべきであ
り、好ましくは0.5〜1.5(モル比)とすべきであ
る。ここで含酸素窒素化合物の使用量が、パラジウム成
分に対して2以上(モル比)、ことに5以上にすると、
触媒の初期活性は向上するが、パラジウム成分を再生使
用する場合の活性低下が大きく、実用性に乏しいものと
なる。
The amount of this oxygen-containing nitrogen compound used should be less than 2 (mole ratio), preferably 0.5 to 1.5 (mole ratio), to the palladium component (A) component. It is. Here, if the amount of oxygen-containing nitrogen compound used is 2 or more (molar ratio), especially 5 or more with respect to the palladium component,
Although the initial activity of the catalyst is improved, the activity is greatly reduced when the palladium component is reused, making it impractical.

さらに触媒の(C)成分である金属ハロゲン化物は、塩
化リチウム、塩化ナトリウム、塩化銅。
Further, the metal halide which is the component (C) of the catalyst is lithium chloride, sodium chloride, and copper chloride.

塩化マンガン、塩化亜鉛、塩化コバルト、塩化ビスマス
など様々なものがあげられる。この金属ハロゲン化物の
使用量は、特に制限はないが、(A)成分であるパラジ
ウム成分に対して1〜3(モル比)が好ましい。この範
囲外ではグリコールエステル類の転化率が低下すること
となる。(A)成分にハロゲンが含まれる場合には、(
C)成分の添加量を少なくすることができる。
Various substances include manganese chloride, zinc chloride, cobalt chloride, and bismuth chloride. The amount of the metal halide to be used is not particularly limited, but is preferably 1 to 3 (molar ratio) to the palladium component (A). Outside this range, the conversion rate of glycol esters will decrease. (A) If component contains halogen, (
C) The amount of component added can be reduced.

本発明の方法は、上述の(A)、(B)、(C)成分を
主成分とする触媒を用いて、カルボン酸、オレフィンお
よび酸素を反応させてグリコールエステル類を製造する
わけであるが、この反応原料であるカルボン酸やオレフ
ィンは、目的とするグリコールエステル類の種類に応じ
て様々なものが考えられるが、例えばカルボン酸として
は酢酸、プロピオン酸、酪酸、イソ酪酸などがあり、ま
たオレフィンとしては、エチレン、プロピレン、ブテン
−1,ブテン−2,シクロペンテン、シクロヘキセンな
どがあげられる。また酸素としては、純粋な酸素ガスに
限らず、空気などでもよく、酸素に窒素、二酸化炭素、
メタン、エタン、プロパンあるいはブタンなどを加えて
希釈した混合ガスであってもよい。
In the method of the present invention, glycol esters are produced by reacting carboxylic acid, olefin, and oxygen using a catalyst containing the above-mentioned components (A), (B), and (C) as main components. Various carboxylic acids and olefins can be used as raw materials for this reaction, depending on the type of glycol ester desired. Examples of carboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, etc. Examples of the olefin include ethylene, propylene, butene-1, butene-2, cyclopentene, cyclohexene, and the like. In addition, oxygen is not limited to pure oxygen gas, but may also be air, etc. In addition to oxygen, nitrogen, carbon dioxide,
A mixed gas diluted with methane, ethane, propane, or butane may also be used.

これらの反応原料の使用量は特に制限はないが、オレフ
ィンと酸素の比率は1.8 : 1〜2.2 : 1の
範囲が好ましく、酸素が多すぎると爆発の危険性があり
、逆にオレフィンが多すぎると、転化率が充分でない。
There is no particular restriction on the amount of these reaction raw materials used, but the ratio of olefin to oxygen is preferably in the range of 1.8:1 to 2.2:1; too much oxygen may pose a risk of explosion; If there is too much olefin, the conversion rate will not be sufficient.

なお反応は、各種の条件下で行うことができるが、通常
は温度15〜120℃、好ましくは40〜80℃、圧力
常圧〜加圧、反応時間1〜5 時間の範囲で適宜選択す
ればよい。
The reaction can be carried out under various conditions, but usually the temperature is 15 to 120°C, preferably 40 to 80°C, the pressure is normal pressure to increased pressure, and the reaction time is appropriately selected from the range of 1 to 5 hours. good.

反応終了後、20〜150℃、好ましくは50〜70℃
、常圧〜10 Kg/ aiG、好ましくは常圧〜5K
g/cJGの条件下で水素ガスを導入して0.1〜1時
間程度使用した触媒の還元再生を行えば、速やかにかつ
、充分な活性の回復を図ることができる。
After the reaction is completed, the temperature is 20 to 150°C, preferably 50 to 70°C.
, normal pressure ~ 10 Kg/aiG, preferably normal pressure ~ 5K
By introducing hydrogen gas under conditions of g/cJG and performing reductive regeneration of the catalyst used for about 0.1 to 1 hour, the activity can be quickly and sufficiently restored.

ここで再生された触媒成分はそのまま本発明で用いる触
媒の(A)成分として用いれば良い。
The catalyst component regenerated here may be used as it is as the component (A) of the catalyst used in the present invention.

本発明においては、触媒中における(A)パラジウム成
分と(B)含酸素窒素化合物の使用比率が一定範囲内に
あるため、触媒の還元再生が容易かつ効果的に行え、高
活性に維持した状態で繰り返し使用することができる。
In the present invention, since the ratio of the (A) palladium component and (B) oxygen-containing nitrogen compound used in the catalyst is within a certain range, the catalyst can be reductively regenerated easily and effectively, maintaining a highly active state. Can be used repeatedly.

従って本発明によれば、触媒寿命の大幅な延長を図りな
がら、エチレングリコールエステル、ブロビレングリコ
ールエステル等のグリコールエステル類を効率よく製造
することができる。
Therefore, according to the present invention, glycol esters such as ethylene glycol ester and brobylene glycol ester can be efficiently produced while significantly extending the life of the catalyst.

次に本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 攪拌機、冷却器およびガス導入管を取り付けた100m
1の四つロフラスコに、金属パラジウム1ミリモル、硝
酸リチウム1ミリモル、塩化リチウム2ミリモルおよび
酢酸60m1を入れ、60℃の油浴により加熱しながら
激しく攪拌した。5分間後に、エチレンを12m17分
の割合で、酸素を6mβ/分の割合で導入した。ここで
導入したエチレンおよび酸素は全て反応に消費され排ガ
スの生成はなかった。反応の開始後4時間で、エチレン
と酸素の導入を停止し、反応系に窒素ガスを導入してエ
チレンおよび酸素を除去した後、60℃、常圧において
水素ガスを20m4/分の割合で20分間導入すること
により劣化触媒を再生した。ついで、再び窒素ガスを導
入して水素を除去した後フラスコ内の液体のみを取り出
し、フラスコ内に残留する再生パラジウムに対して、硝
酸リチウム1ミリモル、塩化リチウム2ミリモルおよび
酢酸5 Q m 7!を加え、上記と同様にエチレンお
よび酸素を導入して第2回目の反応を行った。
Example 1 100m equipped with stirrer, cooler and gas introduction pipe
1 mmol of metal palladium, 1 mmol of lithium nitrate, 2 mmol of lithium chloride, and 60 ml of acetic acid were placed in a four-bottle flask, and the mixture was vigorously stirred while being heated in an oil bath at 60°C. After 5 minutes, ethylene was introduced at a rate of 12 m17 min and oxygen at a rate of 6 mβ/min. All of the ethylene and oxygen introduced here were consumed in the reaction, and no exhaust gas was generated. 4 hours after the start of the reaction, the introduction of ethylene and oxygen was stopped, nitrogen gas was introduced into the reaction system to remove ethylene and oxygen, and then hydrogen gas was added at a rate of 20 m4/min at 60°C and normal pressure. The deteriorated catalyst was regenerated by introducing the catalyst for a few minutes. Next, after introducing nitrogen gas again to remove hydrogen, only the liquid in the flask was taken out, and 1 mmol of lithium nitrate, 2 mmol of lithium chloride, and 5 Q m 7! of acetic acid were added to the recycled palladium remaining in the flask. was added, and ethylene and oxygen were introduced in the same manner as above to conduct a second reaction.

上記反応〜触媒再生の操作を30回繰り返した。The above reaction to catalyst regeneration operation was repeated 30 times.

これら第1回目から第30回目までの反応で得られた生
成物を分析した結果のうち、第1回目、第15回目およ
び第30回目について第1表に示す。
Among the results of analyzing the products obtained from the 1st to 30th reactions, Table 1 shows the results for the 1st, 15th, and 30th reactions.

300回目再生後、再生パラジウムに対してX線光電子
スペクトル分析および赤外吸収スペクトル分析を行った
結果、失活した触媒(p d (CN)りの存在は全く
認められなかった。
After the 300th regeneration, the regenerated palladium was subjected to X-ray photoelectron spectroscopy and infrared absorption spectroscopy, and as a result, no presence of deactivated catalyst (p d (CN)) was observed.

実施例 2 実施例1におけるエチレンに代えてプロピレンを導入し
、かつ反応時間を3時間としたこと以外は、実施例1と
同様に行った。反応結果を第2表に示す。
Example 2 The same procedure as in Example 1 was conducted except that propylene was introduced in place of ethylene in Example 1 and the reaction time was 3 hours. The reaction results are shown in Table 2.

300回目再生後、再生パラジウムに対してX線光電子
スペクトル分析および赤外吸収スペクトル分析を行った
結果、失活した触媒(P d (CN)z)の存在は全
く認められなかった。
After the 300th regeneration, the regenerated palladium was subjected to X-ray photoelectron spectroscopy and infrared absorption spectroscopy, and as a result, no presence of deactivated catalyst (P d (CN)z) was observed.

比較例 1 実施例2における硝酸リチウムの使用量を4ミリモルと
したこと以外は、実施例2と同様にして反応〜触媒再生
の操作を20回行った。この場合、第3回目以降の反応
において反応液中に黄色の微粉末の生成がみられ、第9
回目から未反応ガスの生成が見られた。反応の結果を第
3表に示す。200回目再生後、再生パラジウムに対し
てX線光電子スペクトル分析および赤外吸収スペクトル
分析を行った結果、失活した触媒の存在がかなりの貴誌
められた。
Comparative Example 1 The operations of reaction to catalyst regeneration were performed 20 times in the same manner as in Example 2, except that the amount of lithium nitrate used in Example 2 was 4 mmol. In this case, formation of yellow fine powder was observed in the reaction solution in the third and subsequent reactions, and
Generation of unreacted gas was observed from the second time onward. The results of the reaction are shown in Table 3. After the 200th regeneration, the regenerated palladium was subjected to X-ray photoelectron spectroscopy and infrared absorption spectroscopy, which revealed the presence of a deactivated catalyst.

比較例 2 実施例2における硝酸リチウムの使用量を15ミリモル
としたこと以外は、実施例2と同様にして反応〜触媒再
生の繰作を3回行った。第3回の反応ではプロピレンの
転化率が著しく低下したため、4回目以降の反応を行わ
なかった。結果を第4表に示す。3回目の再生後に得ら
れたパラジウム成分に対してX線光電子スペクトル分析
および赤外吸収スペクトル分析を行った結果、はとんど
が失活触媒であった。
Comparative Example 2 The reaction and catalyst regeneration were repeated three times in the same manner as in Example 2, except that the amount of lithium nitrate used in Example 2 was 15 mmol. In the third reaction, the conversion rate of propylene decreased significantly, so the fourth and subsequent reactions were not performed. The results are shown in Table 4. X-ray photoelectron spectroscopy and infrared absorption spectroscopy were performed on the palladium component obtained after the third regeneration, and the results showed that most of the palladium components were deactivated catalysts.

第1表 エチレングリコールモノアセテート及びエチレングリコ
ールジアセテートの合計を示す。
Table 1 shows the total amount of ethylene glycol monoacetate and ethylene glycol diacetate.

第 2 表 Oプロピレングリコールモノアセテート及びプロピレン
グリコールジアセテートの合計を示す。
Table 2 O shows the total of propylene glycol monoacetate and propylene glycol diacetate.

第 3 表 1j 11 7”ロピレングリコールモノアセテート及
ヒフロピレングリコールジアセテートの合計を示す。
Table 3 1j 11 7'' Shows the total of lopylene glycol monoacetate and hypropylene glycol diacetate.

第 4 表Table 4

Claims (1)

【特許請求の範囲】[Claims] 1、(A)パラジウム成分、 (B)含酸素窒素化合物
および(C)金属ハロゲン化物を主成分とする触媒を用
いて、カルボン酸、オレフィンおよび酸素を反応させて
グリコールエステル類を製造するにあたり、触媒中の(
A)パラジウム成分に対する(B)含酸素窒素化合物の
比率(モル比)が2未満であることを特徴とするグリコ
ールエステル類の製造方法。
1. In producing glycol esters by reacting carboxylic acid, olefin, and oxygen using a catalyst containing (A) a palladium component, (B) an oxygen-containing nitrogen compound, and (C) a metal halide, in the catalyst (
A method for producing glycol esters, characterized in that the ratio (molar ratio) of (B) oxygen-containing nitrogen compound to A) palladium component is less than 2.
JP59024127A 1984-02-10 1984-02-10 Production of glycol ester Granted JPS60169440A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59024127A JPS60169440A (en) 1984-02-10 1984-02-10 Production of glycol ester
US07/059,153 US5008445A (en) 1984-02-10 1987-06-05 Process for the production of glycol monoesters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024127A JPS60169440A (en) 1984-02-10 1984-02-10 Production of glycol ester

Publications (2)

Publication Number Publication Date
JPS60169440A true JPS60169440A (en) 1985-09-02
JPH0521905B2 JPH0521905B2 (en) 1993-03-25

Family

ID=12129642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024127A Granted JPS60169440A (en) 1984-02-10 1984-02-10 Production of glycol ester

Country Status (1)

Country Link
JP (1) JPS60169440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296503A2 (en) * 1987-06-25 1988-12-28 Idemitsu Kosan Company Limited Process for producing glycol esters
JPS6452738A (en) * 1987-08-24 1989-02-28 Idemitsu Kosan Co Production of glycol esters
JPH0196149A (en) * 1987-10-08 1989-04-14 Idemitsu Kosan Co Ltd Production of glycol esters
US7859601B2 (en) * 2001-04-12 2010-12-28 Sony Corporation Signal processing device, housing rack, and connector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182213A (en) * 1974-12-13 1976-07-19 Kuraray Co Gurikooruaseteetono seizohoho
JPS58177936A (en) * 1982-04-12 1983-10-18 Idemitsu Kosan Co Ltd Preparation of glycol ester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182213A (en) * 1974-12-13 1976-07-19 Kuraray Co Gurikooruaseteetono seizohoho
JPS58177936A (en) * 1982-04-12 1983-10-18 Idemitsu Kosan Co Ltd Preparation of glycol ester

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296503A2 (en) * 1987-06-25 1988-12-28 Idemitsu Kosan Company Limited Process for producing glycol esters
JPS6452738A (en) * 1987-08-24 1989-02-28 Idemitsu Kosan Co Production of glycol esters
JPH0196149A (en) * 1987-10-08 1989-04-14 Idemitsu Kosan Co Ltd Production of glycol esters
US7859601B2 (en) * 2001-04-12 2010-12-28 Sony Corporation Signal processing device, housing rack, and connector

Also Published As

Publication number Publication date
JPH0521905B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
JP2702864B2 (en) Catalyst regeneration method
US4016200A (en) Process for preparing carboxylic acid esters from toluene and xylene
JPS60169440A (en) Production of glycol ester
US3959352A (en) Process for preparing a carboxylic ester
WO2004011411A1 (en) Method of producing trimellitic acid
JPH07289907A (en) Production of catalyst for producing nitrile
CA1253507A (en) Preparation process of indoles
JPH0475903B2 (en)
JP3918640B2 (en) Process for producing aliphatic dicarboxylic acids
US5008445A (en) Process for the production of glycol monoesters
JPS6033413B2 (en) Ethanol manufacturing method
JP3837482B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
JP3230243B2 (en) Phenol production catalyst and phenol production method
JPS58177936A (en) Preparation of glycol ester
JPH0975734A (en) Method for regenerating catalyst
JP2697787B2 (en) Method for producing trimellitic acid
JP2000000466A (en) Catalyst for production of synthetic gas and production of synthetic gas
JPH01299253A (en) Production of allyl acetate
JP3147422B2 (en) Method for producing naphthalenedicarboxylic acid
JPS61178933A (en) Production of oxygen-containing compound
JPS5913482B2 (en) Method for producing olefin from aldehyde
JP2001224970A (en) Method for regenerating carbonylated catalyst
JP3206340B2 (en) Continuous production method of dimethyl carbonate
JP3912074B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP3229655B2 (en) Method for producing indole