JPH0475903B2 - - Google Patents

Info

Publication number
JPH0475903B2
JPH0475903B2 JP59260790A JP26079084A JPH0475903B2 JP H0475903 B2 JPH0475903 B2 JP H0475903B2 JP 59260790 A JP59260790 A JP 59260790A JP 26079084 A JP26079084 A JP 26079084A JP H0475903 B2 JPH0475903 B2 JP H0475903B2
Authority
JP
Japan
Prior art keywords
reaction
palladium
oxygen
catalyst
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59260790A
Other languages
Japanese (ja)
Other versions
JPS61140545A (en
Inventor
Hiroaki Kezuka
Nobuaki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP59260790A priority Critical patent/JPS61140545A/en
Publication of JPS61140545A publication Critical patent/JPS61140545A/en
Priority to US07/059,153 priority patent/US5008445A/en
Publication of JPH0475903B2 publication Critical patent/JPH0475903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はグリコールエステル類の製造方法に関
し、詳しくは触媒の損失が少なく、かつ高活性で
用いることによりグリコールエステル類を効率よ
く製造する方法に関する。 従来からグリコールエステル類を製造する方法
として、パラジウム成分および含酸素窒素化合物
ならびに金属ハロゲン化物からなる触媒を用い
て、カルボン酸中にオレフインと酸素を導入して
反応させる方法が知られている(特公昭45−
32413号公報、特開昭51−82213号公報など)。 しかしながら、これらの従来技術においては、
反応初期における触媒活性は充分に高いが、反応
開始後数時間で触媒劣化に伴う活性の低下がはな
はだしく、触媒の還元による再生触媒についても
充分に活性の回復を図りえないという問題があつ
た。 本発明の目的は、パラジウム系触媒の再生方法
を改良することにより触媒の損失が少なく、かつ
高活性となりグリコールエステル類を効率よく製
造する方法を提供することである。 本発明は(A)パラジウム成分、(B)含酸素窒素化合
物および(C)金属ハロゲン化物を主成分とする触媒
を用いて、カルボン酸、オレフインおよび酸素を
反応させてグリコールエステル類を製造する方法
において、反応停止後に触媒の(A)パラジウム成分
を水素還元し、次いで固−液分離して得た液状物
よりグリコールエステル類を分離すると共に、残
留分に(B)含酸素窒素化合物、(C)金属ハロゲン化物
およびカルボン酸を加えて撹拌後、固−液分離を
行ない液状物を反応系に戻し、一方固型分に溶媒
を加えたのち水素還元して(A)パラジウム成分を再
生し、触媒成分として再使用することを特徴とす
るグリコールエステル類の製造方法である。 本発明の方法に用いる触媒は上述の如く(A)、
(B)、(C)成分よりなるものであるが、ここで(A)成分
であるパラジウム成分としては、金属パラジウム
が好適であるが、パラジウム化合物でも良い。こ
のパラジウム化合物としては、塩化パラジウムナ
トリウム、硝酸パラジウム、酢酸パラジウム、塩
化パラジウム、臭化パラジウムなどのパラジウム
塩や酸化パラジウム等をあげることができる。こ
れらパラジウム成分をこのまま使用することが好
ましいが、活性炭などの担体に担持して使用する
こともできる。このパラジウム成分の使用量は特
に制限はないが、通常は反応系に0.001〜0.1モ
ル/の割合で存在させればよい。また、触媒の
(B)成分である含酸素窒素化合物としては、硝酸、
一酸化窒素、二酸化炭素、亜硝酸エステル、さら
には硝酸リチウム、硝酸ナトリウムなどの硝酸
塩、あるいは亜硝酸銅、亜硝酸リチウム、亜硝酸
ナトリウムなどの亜硝酸塩があげられる。この含
酸素窒素化合物の使用量は(A)成分であるパラジウ
ムに対して0.5(モル比)以上であれば特に限定は
ないが、2(モル比)以上、特に5〜20(モル比)
とすることが好ましい。このようにすれば、反応
液中の生成物濃度を高くすることができる。含酸
素窒素化合物の濃度を2以上にした場合、これま
での方法では触媒の劣化が著しく、劣化した触媒
の再生には極めて煩雑な操作を必要とした。しか
し、本発明の方法では劣化した触媒を容易、かつ
連続的に再生することができるため、含酸素窒素
化合物の濃度を2以上にすることができる。 さらに、触媒の(C)成分である金属ハロゲン化物
としては塩化リチウム、塩化ナトリウム、塩化
銅、塩化マンガン、塩化亜鉛、塩化コバルト、塩
化ビスマスなど様々なものがあげられる。この金
属ハロゲン化物の使用量は特に制限はないが、(A)
成分であるパラジウム成分に対して1〜3(モル
比)が好ましい。この範囲外ではグリコールエス
テル類の転化率が低下することとなる。(A)成分に
ハロゲンが含まれる場合には、(C)成分の添加量を
少なくすることができる。 本発明の方法は、上述の(A)、(B)、(C)成分を主成
分とする触媒を用いてカルボン酸、オレフインお
よび酸素を反応させてグリコールエステル類を製
造するわけであるが、この反応原料であるカルボ
ン酸やオレフインは、目的とするグリコールエス
テル類の種類に応じて様々なものが使用でき、例
えばカルボン酸としては酢酸、プロピオン酸、酪
酸、イソ酪酸などがあり、またオレフインとして
はエチレン、プロピレン、ブテン−1、ブテン−
2、シクロペンテン、シクロヘキセンなどがあげ
られる。また、酸素としては純粋な酸素ガスに限
らず、空気などでもよく、酸素に窒素、二酸化炭
素、メタン、エタン、プロパン、ブタンなどを加
えて希釈した混合ガスであつてもよい。 これらの反応原料の使用量は特に制限はない
が、オレフインと酸素の比率(モル比)は1.8:
1〜2.2:1の範囲が好ましく、酸素が多すぎる
と爆発の危険性があり、逆にオレフインが多すぎ
ると、転化率が充分でない。 なお、反応は各種の条件下で行なうことができ
るが、通常は温度15〜120℃、好ましくは40〜80
℃、圧力常圧〜加圧、反応時間1〜5時間の範囲
で適宜選択すればよい。 反応後、反応系に窒素ガス等を導入して反応を
停止させたのち20〜150℃、好ましくは50〜80℃、
常圧〜10Kg/cm2G、好ましくは常圧付近で水素ガ
スを導入して0.1〜1時間程度パラジウム成分の
水素還元を行なう。この場合、オフガスの量がチ
ヤージ量の10%を超えた時点を目安として反応を
停止して水素還元処理を行なうことが望ましい。 次いで、過、沈降分離などの操作にて固−液
分離して得た液状物について蒸留を行ない生成物
たるグリコールエステル類を分離する。なお、蒸
留残渣として触媒の(B)成分、(C)成分が得られる
が、これらは後記する再生系に戻して再生後、再
び使用する。 他方、残留分は主に還元再生した(A)成分を含む
ものであり、これに(B)成分、(C)成分およびカルボ
ン酸を加え、15〜120℃、好ましくは40〜80℃に
1分間以上、好ましくは5〜10分間加熱、撹拌す
る。これにより、第1段目の水素還元により再生
されたパラジウムが溶解し、有用なパラジウム成
分として次の固−液分離により液状物として反応
系に戻すことができる。 しかる後、再び固−液分離を行ない、得られた
液状物は反応系に戻す。一方、固型分に対し水、
酢酸、エタノール、プロパノール、ペンタノー
ル、ジオキサン、デカリン、プロピレングリコー
ルジアセテートなどから選ばれた溶媒を加えたの
ち再度水素還元を行なう。水素還元は常圧〜10
Kg/cm2、好ましくは常圧〜5Kg/cm2、80〜300℃、
好ましくは100〜150℃の条件下で水素を導入し、
0.1〜10時間、好ましくは0.5〜3時間行なう。 このように、本発明では触媒のパラジウム成分
の再生を2段階にて行なうため、パラジウム成分
は非常に高活性のものとなる。しかも、この(A)成
分たるパラジウムのほか(B)成分や(C)成分も回収
し、再生して用いるため、触媒の損失量が極めて
少ない。 したがつて、本発明によれば触媒の再生により
触媒寿命を大幅に延長させつつ、化学品中間体な
どとして有用なエチレングリコールエステル、プ
ロピレングリコールエステル等のグリコールエス
テル類を効率よく製造することができる。 次に、本発明を実施例によりさらに詳しく説明
する。 実施例 1 撹拌機、冷却器およびガス導入管を取り付けた
100mlの四つ口フラスコに、金属パラジウム1ミ
リモル、硝酸リチウム15ミリモル、塩化リチウム
2ミリモルおよび酢酸60mlを入れ、60℃の油浴に
より加熱しながら5分間激しく撹拌した。しかる
後、プロピレンを12ml/分の割合で、酸素を6
ml/分の割合で導入した。ここで導入したプロピ
レンおよび酸素は全て反応に消費され、排ガスの
生成はなかつた。反応の開始後5時間でプロピレ
ンと酸素の導入を停止し、反応系に窒素ガスを導
入してプロピレンおよび酸素を除去した。次に、
100℃、常圧において水素ガスを20ml/分の割合
で60分間導入することにより劣化触媒を再生し
た。次いで、再び窒素ガスを導入して水素を除去
した後、フラスコ内の液体のみを取り出し、フラ
スコ内に残留する再生パラジウムに対して塩化リ
チウム2ミリモル、硝酸リチウム15ミリモルおよ
び酢酸60mlを加え、60℃の油浴により加熱しなが
ら30分間激しく撹拌した。冷却後、沈澱物を別
し、溶液は再び反応槽に戻した。 一方、沈澱には酢酸15mlを加え、さらに水素を
4Kg/cm2の圧力で供給し、150℃にて1時間加熱、
撹拌した。この処理物についてX線光電子スペク
トル分析および赤外吸収スペクトルで分析したと
ころ、0価のパラジウムであつた。ここで得られ
たパラジウムは再び塩化リチウム、硝酸リチウム
および酢酸の存在する再生槽へ戻した。 上記の如く操作してプロピレンの酸化反応を10
回行なつた結果を第1表および第1図(生成物:
プロピレングリコールモノアセテート)に示す。 比較例 1 実施例1において、最初の水素添加後に固−液
分離を行ない、得られた固型物に塩化リチウム、
硝酸リチウムおよび酢酸を加えて反応させた後、
反応物を固−液分離することなく反応槽に戻し、
プロピレンの酸化反応を4回繰返した。結果を第
1表および第1図に示す。なお、4回目の反応が
終了したのち塩化リチウム、硝酸リチウムおよび
酢酸を加えて反応させ、過して得た液中のパ
ラジウムを分析したところ、この中にはパラジウ
ムが殆ど存在しなかつた。 実施例 2 実施例1の反応中においてオフガスの量がチヤ
ージ量の10%を上まわつた時点で反応を中止し、
再生工程に移すことにしてプロピレンの酸化反応
を10回行なつた。結果を第1表に示す。 実施例 3、4 比較例1において得られた沈澱物について種々
の温度および水素圧で加圧還元再生を行なつて得
た沈澱物に塩化リチウム2ミリモル、硝酸リチウ
ム1ミリモルおよび酢酸60mlを加えて実施例1と
同様に反応を1回だけ行なつた。結果を第2表に
示す。 実施例 5〜9 実施例3において酢酸の代りに他の有機溶媒を
用いて再生処理を行ない、以下実施例1と同様に
1回だけ反応を行なつた。結果を第2表に示す。 比較例 2 比較例1において硝酸リチウム1ミリモルを使
用したこと以外は比較例1と同様にして反応を1
回だけ行なつた。結果を第2表に示す。 実施例 10 撹拌機、冷却器およびガス導入管を取付けた
300mlのオートクレーブへ金属パラジウム2ミリ
モル、塩化リチウム4ミリモル、硝酸リチウム20
ミリモルおよび酢酸120mlを入れ、60℃に加熱し
て5分間激しく撹拌した。 その後、窒素ガスでオートクレーブ内を3.1
Kg/cm2Gに加圧したのち、プロピレン100ml/分
および酸素50ml/分の割合で導入し、1時間30分
反応を行なつた。以後は実施例1と同様にして反
応停止、水素還元、再生を行ない反応を10回繰返
した。結果を第3表に示す。なお、再生処理にお
いては塩化リチウム4ミリモル、硝酸リチウム20
ミリモルおよび酢酸120mlを用いた。 実施例 11 実施例10において硝酸リチウムの使用量を2ミ
リモルとしたこと以外は実施例10と同様に行なつ
た。結果を第3表に示す。 実施例 12 実施例11においてオフガスの量がチヤージ量の
10%を上まわつた時点で反応を中止し、再生工程
へ移したこと以外は実施例11と同様に行なつた。
結果を第3表に示す。
The present invention relates to a method for producing glycol esters, and more particularly to a method for efficiently producing glycol esters by using a catalyst with little loss and high activity. As a conventional method for producing glycol esters, a method is known in which olefin and oxygen are introduced into carboxylic acid and reacted using a catalyst consisting of a palladium component, an oxygen-containing nitrogen compound, and a metal halide (especially Kosho 45-
32413, JP-A-51-82213, etc.). However, in these conventional technologies,
Although the catalytic activity is sufficiently high at the beginning of the reaction, the activity drops significantly due to catalyst deterioration several hours after the start of the reaction, and there is a problem in that it is not possible to sufficiently recover the activity of the regenerated catalyst by reducing the catalyst. An object of the present invention is to provide a method for efficiently producing glycol esters by improving the method for regenerating palladium-based catalysts, resulting in less catalyst loss and high activity. The present invention is a method for producing glycol esters by reacting a carboxylic acid, an olefin, and oxygen using a catalyst whose main components are (A) a palladium component, (B) an oxygen-containing nitrogen compound, and (C) a metal halide. After the reaction has stopped, the (A) palladium component of the catalyst is reduced with hydrogen, and then the glycol esters are separated from the liquid obtained by solid-liquid separation, and the residue contains (B) oxygen-containing nitrogen compounds, (C ) After adding the metal halide and carboxylic acid and stirring, perform solid-liquid separation and return the liquid to the reaction system, while adding a solvent to the solid and hydrogen reduction to regenerate (A) the palladium component; This is a method for producing glycol esters, which is characterized in that they are reused as catalyst components. The catalyst used in the method of the present invention is as described above (A),
It consists of components (B) and (C), and metal palladium is suitable as the palladium component (A) here, but a palladium compound may also be used. Examples of the palladium compound include palladium salts such as sodium palladium chloride, palladium nitrate, palladium acetate, palladium chloride, and palladium bromide, and palladium oxide. Although it is preferable to use these palladium components as they are, they can also be supported on a carrier such as activated carbon. The amount of this palladium component to be used is not particularly limited, but it may normally be present in the reaction system at a ratio of 0.001 to 0.1 mol/mol. Also, the catalyst
As the oxygen-containing nitrogen compound which is component (B), nitric acid,
Examples include nitric oxide, carbon dioxide, nitrite esters, nitrates such as lithium nitrate and sodium nitrate, and nitrites such as copper nitrite, lithium nitrite, and sodium nitrite. The amount of this oxygen-containing nitrogen compound to be used is not particularly limited as long as it is 0.5 (molar ratio) or more relative to palladium, which is component (A), but it is 2 (molar ratio) or more, especially 5 to 20 (molar ratio).
It is preferable that In this way, the concentration of the product in the reaction solution can be increased. When the concentration of the oxygen-containing nitrogen compound is 2 or more, the catalyst deteriorates significantly in the conventional methods, and extremely complicated operations are required to regenerate the deteriorated catalyst. However, in the method of the present invention, a deteriorated catalyst can be easily and continuously regenerated, so that the concentration of oxygen-containing nitrogen compounds can be increased to 2 or more. Furthermore, various metal halides that are component (C) of the catalyst include lithium chloride, sodium chloride, copper chloride, manganese chloride, zinc chloride, cobalt chloride, and bismuth chloride. There are no particular restrictions on the amount of metal halide used, but (A)
It is preferably 1 to 3 (molar ratio) to the palladium component. Outside this range, the conversion rate of glycol esters will decrease. When component (A) contains a halogen, the amount of component (C) added can be reduced. In the method of the present invention, glycol esters are produced by reacting carboxylic acid, olefin, and oxygen using a catalyst containing the above-mentioned components (A), (B), and (C) as main components. Various carboxylic acids and olefins, which are raw materials for this reaction, can be used depending on the type of target glycol ester. For example, carboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, etc.; is ethylene, propylene, butene-1, butene-1
2. Examples include cyclopentene and cyclohexene. Further, the oxygen is not limited to pure oxygen gas, and may be air or the like, or a mixed gas obtained by adding nitrogen, carbon dioxide, methane, ethane, propane, butane, etc. to oxygen and diluting it. There is no particular restriction on the amount of these reaction materials used, but the ratio (mole ratio) of olefin to oxygen is 1.8:
A ratio of 1 to 2.2:1 is preferred; too much oxygen poses a risk of explosion, while too much olefin results in insufficient conversion. The reaction can be carried out under various conditions, but usually at a temperature of 15 to 120°C, preferably 40 to 80°C.
℃, pressure from normal pressure to elevated pressure, and reaction time may be appropriately selected within the range of 1 to 5 hours. After the reaction, nitrogen gas or the like is introduced into the reaction system to stop the reaction, and then the temperature is increased to 20 to 150°C, preferably 50 to 80°C.
Hydrogen gas is introduced at normal pressure to 10 Kg/cm 2 G, preferably near normal pressure, and hydrogen reduction of the palladium component is carried out for about 0.1 to 1 hour. In this case, it is desirable to stop the reaction and perform the hydrogen reduction treatment when the amount of off-gas exceeds 10% of the charge amount. Next, the liquid obtained by solid-liquid separation by filtration, sedimentation, etc. is distilled to separate the glycol ester products. Incidentally, components (B) and (C) of the catalyst are obtained as distillation residues, which are returned to the regeneration system described later and used again after regeneration. On the other hand, the residual content mainly contains component (A) that has been regenerated by reduction, to which component (B), component (C) and carboxylic acid are added and heated at 15 to 120°C, preferably 40 to 80°C. Heat and stir for at least 5 minutes, preferably 5 to 10 minutes. As a result, the palladium regenerated by the first-stage hydrogen reduction is dissolved, and can be returned as a liquid to the reaction system as a useful palladium component through the subsequent solid-liquid separation. Thereafter, solid-liquid separation is performed again, and the resulting liquid is returned to the reaction system. On the other hand, water compared to solid content,
After adding a solvent selected from acetic acid, ethanol, propanol, pentanol, dioxane, decalin, propylene glycol diacetate, etc., hydrogen reduction is performed again. Hydrogen reduction is at normal pressure ~10
Kg/cm 2 , preferably normal pressure to 5 Kg/cm 2 , 80 to 300°C,
Introducing hydrogen preferably under conditions of 100 to 150 °C,
It is carried out for 0.1 to 10 hours, preferably 0.5 to 3 hours. As described above, in the present invention, the palladium component of the catalyst is regenerated in two stages, so that the palladium component becomes extremely highly active. Furthermore, in addition to the palladium component (A), the components (B) and (C) are also recovered and regenerated for use, so the amount of loss of the catalyst is extremely small. Therefore, according to the present invention, glycol esters such as ethylene glycol ester and propylene glycol ester, which are useful as chemical intermediates, can be efficiently produced while significantly extending the catalyst life by regenerating the catalyst. . Next, the present invention will be explained in more detail with reference to Examples. Example 1 Attaching a stirrer, cooler and gas introduction pipe
1 mmol of metal palladium, 15 mmol of lithium nitrate, 2 mmol of lithium chloride, and 60 ml of acetic acid were placed in a 100 ml four-necked flask, and the mixture was vigorously stirred for 5 minutes while being heated in an oil bath at 60°C. After that, propylene was added at a rate of 12 ml/min and oxygen was added at a rate of 6 ml/min.
It was introduced at a rate of ml/min. All of the propylene and oxygen introduced here were consumed in the reaction, and no exhaust gas was produced. The introduction of propylene and oxygen was stopped 5 hours after the start of the reaction, and nitrogen gas was introduced into the reaction system to remove propylene and oxygen. next,
The deteriorated catalyst was regenerated by introducing hydrogen gas at a rate of 20 ml/min for 60 minutes at 100°C and normal pressure. Next, after introducing nitrogen gas again to remove hydrogen, only the liquid in the flask was taken out, and 2 mmol of lithium chloride, 15 mmol of lithium nitrate, and 60 ml of acetic acid were added to the recycled palladium remaining in the flask, and the mixture was heated at 60°C. The mixture was stirred vigorously for 30 minutes while heating with an oil bath. After cooling, the precipitate was separated and the solution was returned to the reaction tank. Meanwhile, 15 ml of acetic acid was added to the precipitate, hydrogen was further supplied at a pressure of 4 kg/cm 2 , and the mixture was heated at 150°C for 1 hour.
Stirred. When this treated product was analyzed by X-ray photoelectron spectroscopy and infrared absorption spectroscopy, it was found to be zero-valent palladium. The palladium obtained here was returned to the regeneration tank where lithium chloride, lithium nitrate and acetic acid were present. Propylene oxidation reaction is carried out as described above.
The results of this cycle are shown in Table 1 and Figure 1 (Product:
propylene glycol monoacetate). Comparative Example 1 In Example 1, solid-liquid separation was performed after the first hydrogenation, and lithium chloride,
After adding and reacting lithium nitrate and acetic acid,
Returning the reactant to the reaction tank without solid-liquid separation,
The propylene oxidation reaction was repeated four times. The results are shown in Table 1 and Figure 1. After the completion of the fourth reaction, lithium chloride, lithium nitrate, and acetic acid were added and reacted, and when the resulting liquid was analyzed for palladium, it was found that almost no palladium was present. Example 2 During the reaction of Example 1, the reaction was stopped when the amount of off-gas exceeded 10% of the charge amount,
The propylene oxidation reaction was carried out 10 times by moving to the regeneration process. The results are shown in Table 1. Examples 3 and 4 The precipitate obtained in Comparative Example 1 was subjected to pressure reduction regeneration at various temperatures and hydrogen pressures, and 2 mmol of lithium chloride, 1 mmol of lithium nitrate and 60 ml of acetic acid were added to the precipitate. As in Example 1, the reaction was carried out only once. The results are shown in Table 2. Examples 5 to 9 In Example 3, the regeneration treatment was carried out using another organic solvent instead of acetic acid, and the reaction was carried out only once in the same manner as in Example 1. The results are shown in Table 2. Comparative Example 2 The reaction was carried out in the same manner as Comparative Example 1 except that 1 mmol of lithium nitrate was used in Comparative Example 1.
I only did it once. The results are shown in Table 2. Example 10 Agitator, cooler and gas inlet pipe installed
Add 2 mmol of metallic palladium, 4 mmol of lithium chloride, and 20 mmol of lithium nitrate to a 300 ml autoclave.
Millimoles and 120 ml of acetic acid were added, heated to 60°C, and stirred vigorously for 5 minutes. Then 3.1 inside the autoclave with nitrogen gas.
After pressurizing to Kg/cm 2 G, propylene was introduced at a rate of 100 ml/min and oxygen was introduced at a rate of 50 ml/min, and the reaction was carried out for 1 hour and 30 minutes. Thereafter, the reaction was stopped, hydrogen reduced, and regenerated in the same manner as in Example 1, and the reaction was repeated 10 times. The results are shown in Table 3. In the regeneration process, 4 mmol of lithium chloride and 20 mmol of lithium nitrate were used.
mmol and 120 ml of acetic acid were used. Example 11 The same procedure as in Example 10 was carried out except that the amount of lithium nitrate used in Example 10 was changed to 2 mmol. The results are shown in Table 3. Example 12 In Example 11, the amount of off-gas is equal to the amount of charge.
The same procedure as in Example 11 was carried out except that the reaction was stopped when the concentration exceeded 10% and the process proceeded to the regeneration step.
The results are shown in Table 3.

【表】 *1 プロピレングリコールモノアセテート
*2 プロピレングリコールジアセテート
[Table] *1 Propylene glycol monoacetate *2 Propylene glycol diacetate

【表】 *1、*2:第1表と同じ
[Table] *1, *2: Same as Table 1

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応回数と反応生成物量との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the number of reactions and the amount of reaction products.

Claims (1)

【特許請求の範囲】 1 (A)パラジウム成分、(B)含酸素窒素化合物およ
び(C)金属ハロゲン化物を主成分とする触媒を用い
て、カルボン酸、オレフインおよび酸素を反応さ
せてグリコールエステル類を製造する方法におい
て、反応停止後に触媒の(A)パラジウム成分を水素
還元し、次いで固−液分離して得た液状物よりグ
リコールエステル類を分離すると共に、残留分に
(B)含酸素窒素化合物、(C)金属ハロゲン化物および
カルボン酸を加えて撹拌後、固−液分離を行ない
液状物を反応系に戻し、一方固型分に溶媒を加え
たのち水素還元して(A)パラジウム成分を再生し、
触媒成分として再使用することを特徴とするグリ
コールエステル類の製造方法。 2 カルボン酸が酢酸、プロピオン酸、酪酸もし
くはイソ酪酸である特許請求の範囲第1項記載の
方法。 3 オレフインが炭素数2〜8個のものである特
許請求の範囲第1項記載の方法。
[Claims] 1. Glycol esters are produced by reacting carboxylic acids, olefins, and oxygen using a catalyst containing (A) a palladium component, (B) an oxygen-containing nitrogen compound, and (C) a metal halide. In this method, after the reaction has stopped, the (A) palladium component of the catalyst is reduced with hydrogen, and then the glycol esters are separated from the liquid obtained by solid-liquid separation, and the remaining amount is
After adding and stirring (B) an oxygen-containing nitrogen compound, (C) a metal halide and a carboxylic acid, solid-liquid separation is performed and the liquid is returned to the reaction system, while a solvent is added to the solid and hydrogen reduction is performed. (A) Regenerate the palladium component,
A method for producing glycol esters, characterized in that they are reused as catalyst components. 2. The method according to claim 1, wherein the carboxylic acid is acetic acid, propionic acid, butyric acid or isobutyric acid. 3. The method according to claim 1, wherein the olefin has 2 to 8 carbon atoms.
JP59260790A 1984-02-10 1984-12-12 Production of glycol ester Granted JPS61140545A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59260790A JPS61140545A (en) 1984-12-12 1984-12-12 Production of glycol ester
US07/059,153 US5008445A (en) 1984-02-10 1987-06-05 Process for the production of glycol monoesters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260790A JPS61140545A (en) 1984-12-12 1984-12-12 Production of glycol ester

Publications (2)

Publication Number Publication Date
JPS61140545A JPS61140545A (en) 1986-06-27
JPH0475903B2 true JPH0475903B2 (en) 1992-12-02

Family

ID=17352769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260790A Granted JPS61140545A (en) 1984-02-10 1984-12-12 Production of glycol ester

Country Status (1)

Country Link
JP (1) JPS61140545A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0296503B1 (en) * 1987-06-25 1994-02-16 Idemitsu Kosan Company Limited Process for producing glycol esters
JPS6452738A (en) * 1987-08-24 1989-02-28 Idemitsu Kosan Co Production of glycol esters
JPS643152A (en) * 1987-06-25 1989-01-06 Idemitsu Kosan Co Ltd Production of glycol esters
JPH0196149A (en) * 1987-10-08 1989-04-14 Idemitsu Kosan Co Ltd Production of glycol esters

Also Published As

Publication number Publication date
JPS61140545A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
EP0082641B1 (en) Catalysts for the production of alcohols from olefins and synthesis gas and process employing such catalysts
US3317592A (en) Catalyzed oxidation reactions
EP0329337A2 (en) The production of formic acid from a nitrogenous base, carbon dioxide and hydrogen
JPH0475903B2 (en)
JPS58246A (en) Catalyst for carbonylation of alcohol
JP2937292B2 (en) Continuous production method of dimethyl carbonate
US4354037A (en) Process for preparing benzenecarboxylic acids
JPS58128327A (en) Manufacture of olefin
JPS58177936A (en) Preparation of glycol ester
JPS60169440A (en) Production of glycol ester
JPS60155148A (en) Increased selectivity for oxidation of olefin to alpha, beta-unsaturated carboxylic acid
EP0798043A1 (en) Regeneration of gas phase fluorination catalysts
JPS63115836A (en) Improved manufacture of mixture of cyclohexanol and cyclohexane
JPS6341892B2 (en)
JP2664046B2 (en) Method for producing alcohols from carbon dioxide
Matsuzaki 99 Novel method for dimethyl carbonate synthesis using methyl nitrite
JPS61143332A (en) Synthesis of oxygen-containing compound
JPH06329567A (en) Production of 1,6-hexanediol
JP3804697B2 (en) Method for producing methyl formate
JPH013152A (en) Method for producing glycol esters
EP1728778B1 (en) Process for the production of trimellitic acid
US5008445A (en) Process for the production of glycol monoesters
JP2962454B2 (en) Continuous production method of dimethyl carbonate
JP2001224970A (en) Method for regenerating carbonylated catalyst
JPS6318931B2 (en)