JPS60168622A - Temperature pattern measuring device of resin of injection molding machine - Google Patents

Temperature pattern measuring device of resin of injection molding machine

Info

Publication number
JPS60168622A
JPS60168622A JP2298684A JP2298684A JPS60168622A JP S60168622 A JPS60168622 A JP S60168622A JP 2298684 A JP2298684 A JP 2298684A JP 2298684 A JP2298684 A JP 2298684A JP S60168622 A JPS60168622 A JP S60168622A
Authority
JP
Japan
Prior art keywords
cylinder
temperature
resin
molding machine
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2298684A
Other languages
Japanese (ja)
Other versions
JPS646932B2 (en
Inventor
Tomoyuki Akashi
友行 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2298684A priority Critical patent/JPS60168622A/en
Publication of JPS60168622A publication Critical patent/JPS60168622A/en
Publication of JPS646932B2 publication Critical patent/JPS646932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the inside temperature of a cylinder correctly, by a method wherein the temperatures of a cylinder and resin at a plurality of different points in a radial direction from each other are measured, which are corrected by comparing the same with a model prepared beforehand, in a predetermined cross-sectional position in an axial direction of the injection cylinder. CONSTITUTION:A plurality of protrusions 16 is provided on predetermined cross-sectional positions A, A' in an axial direction of an injection cylinder 11 and a temperature detector 15 is proviced on the external circumferential part of the protrusions. The temperature detector 15 is formed of a thermocouple 15-1 for measurement of the temperatures of the cylinder at the vicinity r0 of an inside wall of the cylinder and the vicinity r1 of the external circumference of the same and a thermopile 15-2 for measurement of the temperature of resin to be obtained by connecting the thermocouples to detect a temperature difference between the vicinity r0 of the inside wall of the cylinder and a contact point r2 of the inside of the protrusion 16 in series in the circumferential direction of the cylinder with each other. A model prepared beforehand by a shape of the cylinder and a physical property value and measured temperature values of the cylinder and the resin are compared with each other, the measure temperature values are adjusted one after another and the resin temperature in the inside of the cylinder is obtained through calculation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、射出成形機のシリンダ内の樹脂の温度パター
ンを計測する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an apparatus for measuring the temperature pattern of resin within a cylinder of an injection molding machine.

射出成形機において、精密な射出成形品を製造するには
、シリンダ内の樹脂温度、特にシリンダ中心軸部分の樹
脂温度の正確な制御を必要とする。そして、樹脂温度を
制御する(=は、樹脂の正確な温度を計測しなければな
らない。
In an injection molding machine, in order to manufacture precision injection molded products, it is necessary to accurately control the resin temperature within the cylinder, particularly the resin temperature at the central axis of the cylinder. Then, to control the resin temperature, the accurate temperature of the resin must be measured.

〔従来技術〕[Prior art]

従来、射出成形機のシリンダ内の樹脂の温度を計測する
方法として、外挿法と直接法とが知られている。
Conventionally, the extrapolation method and the direct method are known as methods for measuring the temperature of resin within the cylinder of an injection molding machine.

外挿法は、シリンダの温度を複数点で検出し。The extrapolation method detects the cylinder temperature at multiple points.

その検出値を外挿してシリンダ内壁付近の樹脂温度を推
定する方法である。しかし、樹脂の温度は、樹脂の流れ
の様子や剪断発熱量によって。
This method estimates the resin temperature near the inner wall of the cylinder by extrapolating the detected value. However, the temperature of the resin depends on the flow of the resin and the amount of heat generated by shearing.

後で詳述するように、シリンダ内壁付近とシリンダ中心
軸付近ではかなりの温度差があり、このような単純な推
定法では、実際の樹脂の温度を計測できない。従って、
樹脂の温度を精度良く推定するためには、何らかの方法
で樹脂温度を測定することが必要である。
As will be explained in detail later, there is a considerable temperature difference between the inner wall of the cylinder and the center axis of the cylinder, and such a simple estimation method cannot measure the actual temperature of the resin. Therefore,
In order to accurately estimate the temperature of the resin, it is necessary to measure the resin temperature by some method.

一方、樹脂温度を測定するために、直接法では、直接樹
脂の流れの中に1個の測定端(例えば、トーピードでの
温度計測)を設けている。
On the other hand, in order to measure resin temperature, in the direct method, one measurement end (for example, temperature measurement with a torpedo) is provided directly in the resin flow.

しかし、この方法では、樹脂の流れを乱すばかりでなく
、測定端自体の熱容量及びシリンダ部への熱伝導のため
に、やはり、真の樹脂温度を直接測定することが困難で
あった。更に、実際の樹脂(=は温度分布があり、1個
の測定端による検出値のみでは、全体の樹脂温度を正確
に代表しているとはいえない。
However, this method not only disturbs the flow of the resin, but also has difficulty in directly measuring the true resin temperature due to the heat capacity of the measuring end itself and heat conduction to the cylinder section. Furthermore, the actual resin (= has a temperature distribution, and it cannot be said that the value detected by only one measurement end accurately represents the entire resin temperature.

従って、従来のようなシリンダ内壁刊近の樹脂温度(外
挿法)又は樹脂内の1点の樹脂温度(直接法)を用いて
樹脂の温度制御を行ったのでは、シリンダ内壁付近とシ
リンダ中心軸付近とでは樹脂の温度にかなりの差がある
だめ、精密な射出成形品を製造するのが困難であった。
Therefore, if the temperature of the resin is controlled using the resin temperature near the cylinder inner wall (extrapolation method) or the resin temperature at one point within the resin (direct method), it is difficult to control the resin temperature near the cylinder inner wall and at the center of the cylinder. Because there is a considerable difference in the temperature of the resin near the shaft, it has been difficult to produce precise injection molded products.

以下宗臼 〔発明の目的〕 本発明の目的は、射出成形機のシリンダ内の樹脂の正確
な温度パターンを計測できる装置を提供することにある
OBJECT OF THE INVENTION An object of the present invention is to provide an apparatus that can accurately measure the temperature pattern of resin within a cylinder of an injection molding machine.

〔発明の構成〕[Structure of the invention]

本発明によれば、射出成形機のシリンダの温度及び該シ
リンダ内の樹脂の温度を複数点で検出する手段と、該複
数の検出値を用いて樹脂の温度パターンを計算する手段
とを有する射出成形機の樹脂温度パターン計測装置が得
られる。
According to the present invention, an injection molding machine having means for detecting the temperature of a cylinder of an injection molding machine and the temperature of resin in the cylinder at a plurality of points, and means for calculating a temperature pattern of the resin using the plurality of detected values. A resin temperature pattern measuring device for a molding machine is obtained.

〔発明の実施例〕[Embodiments of the invention]

以下9図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to nine drawings.

第1図は2本発明の適用される射出成形機の一例を示す
もので、ホッパー(図示せず)からの材料なる樹脂が、
シリンダ11内に供給され。
FIG. 1 shows an example of an injection molding machine to which the present invention is applied, in which resin material from a hopper (not shown) is
is supplied into the cylinder 11.

スクリュ12の回転により混練されつつ、その溝にそっ
てシリンダ11先端部(図の左方向)に送られる。この
際、樹脂13は、vリンダ11外周のバンドヒータ14
により加熱されるとともに、混練作用によって発生する
摩擦熱(剪断発熱)が加わって溶融状態となる。
The mixture is kneaded by the rotation of the screw 12 and sent along the groove to the tip of the cylinder 11 (towards the left in the figure). At this time, the resin 13 is applied to the band heater 14 on the outer periphery of the V cylinder 11.
In addition to being heated by the kneading action, frictional heat (shear heat generation) generated by the kneading action is added, resulting in a molten state.

シリンダ11先端部に溶融樹脂13が貯えられるにつれ
て、スクリュ12は後方(図の右方向)に後退する。こ
の後退量を9例えば、リミットスイッチ(図示せず)に
よって規制し、スクリュ12の回転を一定位置で停止さ
せることにより射出量を制御する。
As the molten resin 13 is stored at the tip of the cylinder 11, the screw 12 retreats rearward (to the right in the figure). This retreat amount is regulated by, for example, a limit switch (not shown), and the injection amount is controlled by stopping the rotation of the screw 12 at a certain position.

シリンダ11内の樹脂13は、射出時にスクリュ12を
前方(図の左方向)に駆動することによって、金型(図
示せず)内に射出され、固化された後、金型から取出さ
れる。
The resin 13 in the cylinder 11 is injected into a mold (not shown) by driving the screw 12 forward (leftward in the figure) during injection, solidified, and then taken out from the mold.

第1図のA −A’断面を示した第2図をも参照すると
2本発明に係る温度検出器15は、樹脂13の流れの中
に、なるべく熱容量を小さくかつ樹脂16の流れを乱さ
ないように工夫され。
Referring also to FIG. 2, which shows the cross section A-A' in FIG. It has been devised as follows.

シリンダ11の円周方向に配列された突起16のある断
面部分、即ち、シリンダ11及び樹脂15の半径方向の
温度分布を考慮して配置されている。もっと詳細に言う
と、温度検出器15は、シリンダ11の内壁近傍、所謂
シリンダ11と樹脂13の境界近傍(シリンダ11の中
心軸からの距離(半径)r”ro)とシリンダ11の外
周近傍(半径r :’ rl )との温度を検出する熱
電対15−1と、シリンダ11の内壁近傍(半径r =
 r[l )と突起16内の接触点(半径r = r2
でr2< ro )との温度差を検出する熱電対をシリ
ンダ11の円周方向に直列に接続して配置したサーモパ
イル15−2とを有している。サーモパイル15−2で
は、2点く半径r ”’ r(1とr2)間の温度差が
小さい場合でも検出値が増幅されるので。
The cross-sectional portion of the cylinder 11 where the projections 16 are arranged in the circumferential direction, that is, the temperature distribution of the cylinder 11 and the resin 15 in the radial direction are taken into consideration. More specifically, the temperature sensor 15 is located near the inner wall of the cylinder 11, so-called the boundary between the cylinder 11 and the resin 13 (distance (radius) r''ro from the central axis of the cylinder 11), and near the outer periphery of the cylinder 11 ( A thermocouple 15-1 detects the temperature with radius r:'rl) and a thermocouple 15-1 detects the temperature with radius r:'rl), and near the inner wall of the cylinder 11 (radius r =
r [l ) and the contact point within the protrusion 16 (radius r = r2
The cylinder 11 has a thermopile 15-2 in which thermocouples are connected in series in the circumferential direction of the cylinder 11 to detect the temperature difference between the cylinder 11 and the cylinder 11. In the thermopile 15-2, the detected value is amplified even when the temperature difference between the two radiuses r'''r (1 and r2) is small.

精度よく樹脂15の半径r=r2の温度を検出できる。The temperature of the radius r=r2 of the resin 15 can be detected with high accuracy.

第3図を参照すると9本発明による樹脂温度パターン計
測装置は、上述したようなシリンダ11の温度θC及び
樹脂16の温度θ1を複数点で検出する温度検出器15
と、これら検出値θ。。
Referring to FIG. 3, the resin temperature pattern measuring device according to the present invention includes a temperature detector 15 that detects the temperature θC of the cylinder 11 and the temperature θ1 of the resin 16 at a plurality of points as described above.
and these detected values θ. .

θ1を用いて樹脂15の温度パターンを後述する手順に
よって計算する演算装置17とから成り。
It consists of an arithmetic device 17 that calculates the temperature pattern of the resin 15 using θ1 according to a procedure described later.

演算装置17は、具体的にはマイクロコンビニ−夕やア
ナログコンピュータ等により実現される。
The arithmetic unit 17 is specifically realized by a micro convenience store, an analog computer, or the like.

先ず、シリンダ11および樹脂13の半径r方向の温度
分布パターンの例を第4図に示す。
First, an example of the temperature distribution pattern in the radius r direction of the cylinder 11 and the resin 13 is shown in FIG.

第4図(a)は、樹脂13内部の発熱が小さいとき、即
ち樹脂16の流速が遅いときや樹脂13の粘性係数が低
いときのシリンダ及び樹脂の温度パターンθ。(r)、
Or(r)を示し、第4図(b)は、樹脂16の内部の
発熱が大きいとき、即ち樹脂16の流速が速いときや樹
脂16の粘性係数が高いときのシリンダ及び樹脂の温度
パターンθ。(r)、Or(r)を示している。
FIG. 4(a) shows the temperature pattern θ of the cylinder and resin when the heat generation inside the resin 13 is small, that is, when the flow rate of the resin 16 is slow or the viscosity coefficient of the resin 13 is low. (r),
Or(r), and FIG. 4(b) shows the temperature pattern θ of the cylinder and resin when the heat generation inside the resin 16 is large, that is, when the flow rate of the resin 16 is high or when the viscosity coefficient of the resin 16 is high. . (r) and Or(r) are shown.

第4図に示されるように、樹脂16の半径r方向の温度
分布パターンor(r)は、樹脂の流れや剪断発熱1j
lによって大きく異なり、シリンダ11と樹脂13の境
界面(半径r==ro)で、シ来のよ°うに、シリンダ
11の内壁付近の樹脂温度Or <rO> (外挿法)
や、樹脂16内の1点の樹脂温度or(rs)(o≦r
g<ro)(直接法)を樹脂温度Ir(r)の代表温度
として樹脂温度の制御に用いたのでは、樹脂温度全体を
精度よく制御す。
As shown in FIG. 4, the temperature distribution pattern or(r) in the radius r direction of the resin 16 is determined by the resin flow and shear heat generation 1j
At the interface between the cylinder 11 and the resin 13 (radius r==ro), the resin temperature near the inner wall of the cylinder 11 is Or<rO> (extrapolation method)
Or, the resin temperature at one point in the resin 16 or(rs) (o≦r
If g<ro (direct method) is used to control the resin temperature as the representative temperature of the resin temperature Ir(r), the entire resin temperature can be controlled accurately.

るのが困難である。difficult to understand.

本発明では、演算装置17によって、第4図に示される
ような樹脂温度パターンθr(r)を計測するものであ
る。以下、演算装置17による温度分布パターンの計算
手順について詳細に説明する。
In the present invention, the arithmetic unit 17 measures the resin temperature pattern θr(r) as shown in FIG. Hereinafter, the procedure for calculating the temperature distribution pattern by the arithmetic unit 17 will be explained in detail.

先ず、シリンダ温度θ。C℃)及び樹脂温度θ1〔℃〕
を半径r cm)と時間t〔秒〕との関数とし。
First, the cylinder temperature θ. C℃) and resin temperature θ1 [℃]
Let be a function of radius r cm) and time t [seconds].

それぞれθ。−θ。(r+ t) + θ、=θr(r
、t)とする。
θ respectively. −θ. (r+t) + θ, = θr(r
, t).

このとき、熱的関係から。At this time, from a thermal relationship.

の基本偏微分方程式を満足する必要がある。ここで、λ
。0υ秒〕、λ、(m’/秒〕は、それぞれシリンダ1
′1及び樹脂13の温度伝導率を表わし。
It is necessary to satisfy the basic partial differential equation of Here, λ
. 0υ seconds], λ, (m'/second) are cylinder 1, respectively.
'1 and the temperature conductivity of the resin 13.

qp〔W/lP?〕は単位体積当りの剪断発熱量+ K
p〔−・℃/J )はその係数、、/(V)〔℃/秒〕
は流れに起因する変・数を表わす。また、このとき。
qp [W/lP? ] is the shear heating value per unit volume + K
p[-・℃/J) is its coefficient, /(V)[℃/sec]
represents a variable or number caused by the flow. Also, at this time.

同時に。at the same time.

Fr I r−r、= Kh qh −Ka(θ。Ir
=r、−0゜)先1 r=ro”” K’。(θ。l 
r=r(1+Δj Or l r:+ro ) (2)
の境界条件を満足する必要がある。ここで。
Fr I r-r, = Kh qh - Ka (θ. Ir
= r, -0°) first 1 r = ro”” K'. (θ.l
r=r(1+Δj Or l r:+ro) (2)
It is necessary to satisfy the following boundary conditions. here.

Δr[m〕(> 0 )は微少変位、 Q、h[W/n
1′〕はヒータ14の単位面積当りの加熱fit l 
Kh Crn、・℃/ W 〕はその係数、θ。〔℃〕
はシリンダ11の周囲温度 Ka[17m] + K/
。[1/m) 、 K/r (1/m〕は。
Δr[m] (> 0) is minute displacement, Q, h[W/n
1′] is the heating fit l per unit area of the heater 14
Kh Crn, ℃/W] is its coefficient, θ. [℃]
is the ambient temperature of the cylinder 11 Ka [17m] + K/
. [1/m], K/r (1/m).

熱伝達に関する係数をそれぞれ表わす。Each represents a coefficient related to heat transfer.

能であるため、θ。+ orを θ。”(r、t)=Σα□Pi(r) 1=0 (3) θr″(r、 1)=ΣbIQi(r)1=0 のように半径rの多項式で近似する。このとき。Therefore, θ. + or θ. ”(r, t)=Σα□Pi(r) 1=0 (3) θr″(r, 1)=ΣbIQi(r)1=0 It is approximated by a polynomial of radius r as shown in FIG. At this time.

Pi(r)やQi(r)の関数としては2種々のものが
考えられるが。
There are two possible functions for Pi(r) and Qi(r).

Pi (r) :、ZO,’jr’ Qi(r)=上内rj j=Q の形のものがよく使われる。Pi(r):,ZO,'jr' Qi(r)=upper rj j=Q The shape of is often used.

ここで、(6)式の係数α0.b、は2次式(”Ol 
l RO) = /r”Ol ROdr(4) (Wri 、 Rr) = /rWri Rrdrが最
小になるようにめられる。ここで、Ro。
Here, the coefficient α0 of equation (6). b, is a quadratic equation ("Ol
l RO) = /r”Ol ROdr (4) (Wri, Rr) = /rWri Rrdr is set to be minimized. Here, Ro.

Rr )i (3) 式(7)θ。′、θ?を(1)式
に代入したときの残差、即ち。
Rr )i (3) Formula (7) θ. ′, θ? The residual when substituting into equation (1), ie.

・・−訛−[・。儒+・。÷算I Rr= a、e、” [λre+λ1÷’B、” 十K
p qp + f (v) ]を示し、 w04. W
riは重み関数を示している。
...-accent-[・. Confucianism +. ÷ Calculation I Rr= a, e, "[λre+λ1÷'B," 10K
p qp + f (v) ], w04. W
ri indicates a weighting function.

最終的には、この問題は。Ultimately, this problem is.

a = A、α+B+ Qh の微分方程式を解く問題に帰着される。これら一連の計
算は、(1)式のような分布定数系の方程式に対する解
析的な解をめるかわりに有限の要素に対象を分解して近
似的な解をめる手法、所謂、有限要素法により実行され
、ディジタルコンピュータやアナログコンピュータを用
いて実現される。なお、(5)式において、A1゜A2
 、 B4. B2は有限要素法によって(1)〜(4
)式よりdIWされる係数マトリックスであり、a−(
a(1al−aN) T、 b−(bn b+ ”’ 
”M) T+ ” −,11,” +])=’bで、上
つき添字Tは転置を表わず。
The problem is reduced to solving the differential equation of a = A, α + B + Qh. These series of calculations are performed using the so-called finite element method, which instead of finding an analytical solution to a distributed constant system equation such as equation (1), decomposes the object into finite elements and finds an approximate solution. It is implemented using a digital computer or an analog computer. In addition, in equation (5), A1゜A2
, B4. B2 is calculated by (1) to (4) using the finite element method.
) is a coefficient matrix that is calculated by dIW from the formula, a−(
a(1al-aN) T, b-(bn b+ ”'
``M) T+ '' -, 11, '' + ]) = 'b, and the superscript T does not represent transposition.

t 温度検出器15の検出値θ。0.θ4、から初期条件 θ。、(ri 、 o ) −0X、。a> (o) 
P4 (rt)(6) θri (ri + 0)−Σ bl(o) Qi (
ri)−0 を満足するように、α0.blの初期値を計算する。
t Detection value θ of the temperature detector 15. 0. θ4, to initial condition θ. , (ri, o) -0X,. a> (o)
P4 (rt) (6) θri (ri + 0)−Σ bl(o) Qi (
ri) −0, α0. Calculate the initial value of bl.

この初期条件と(1) 、(2)式を満足するように(
5)式を用いてa工(At)、b工(At)を計算する
。ここで、Atは微少時間を示す。これにより(6)式
から温度分布の推定値θ。“、θ?をめることができる
In order to satisfy this initial condition and equations (1) and (2), (
5) Calculate a (At) and b (At) using the formula. Here, At indicates minute time. As a result, the estimated value θ of the temperature distribution can be obtained from equation (6). “, θ? can be calculated.

ところで、(1) 、(2)式の係数λ。、λr+Kl
)+Kh、Ka、にβ。、 K/rは、樹脂16やシリ
ンダ11の熱的物性によって決まるため、予め実験や物
理定数表からめた値では種々の樹脂やシリンダに対して
対応できない。そこで、温度分布パターンの推定精度を
上げるためには、(5)式によってめた温度分布パター
ンと新たに検出したθ。0.θ1□の差が小さくなるよ
うに、 (1) 、 (2)式の係数を修正する。実際
には、 (1) 、 (2)式からめられた(5)式の
係数マトリックスA1゜A2.B、、B2を修正するこ
とになる〔系の同定〕。
By the way, the coefficient λ in equations (1) and (2). ,λr+Kl
)+Kh, Ka, and β. , K/r are determined by the thermal properties of the resin 16 and the cylinder 11, and thus values determined in advance from experiments or physical constant tables cannot be applied to various resins and cylinders. Therefore, in order to improve the estimation accuracy of the temperature distribution pattern, the temperature distribution pattern determined by equation (5) and the newly detected θ are used. 0. Modify the coefficients of equations (1) and (2) so that the difference in θ1□ becomes smaller. Actually, the coefficient matrix A1°A2. of equation (5) derived from equations (1) and (2). B, , B2 will be corrected [system identification].

この推定値θ。′、θ?の計算と系の同定を、以下に示
すように検出値θ。0.θ1□を用いて繰返し行うこと
によって、温度分布パターンを正確に計算できるように
なる。
This estimated value θ. ′, θ? Calculate and identify the system with the detected value θ as shown below. 0. By repeating the calculation using θ1□, it becomes possible to accurately calculate the temperature distribution pattern.

繰返しJ1算手順 ■温度検出器15による初期温度θ。i (ri * 
”) +θri(r□、0)の計測。
Repeat J1 calculation procedure ■Initial temperature θ measured by temperature detector 15. i (ri *
”) Measurement of +θri(r□, 0).

■ (6)式を満足するようなa、bの初期値a(o)
 、 b(o)の決定。
■ Initial value a(o) of a and b that satisfies equation (6)
, b(o) determination.

■ (5)式によりa(At) 、 b(At)をめる
■ Calculate a(At) and b(At) using equation (5).

■ (3)式よりθ。□′(r工、At)、θ1□“(
r工、At)をめる。
■ From equation (3), θ. □'(r, At), θ1□"(
r engineering, At).

■n1A度検出器15によりθ。、(rl+ At) 
、 θri(r□+Δt)を計測。
■ θ by n1A degree detector 15. , (rl+At)
, θri(r□+Δt) is measured.

■ θ。、′とθ。1.θ1□′とθ1□の差が最小に
なるように、(5)式の係数マトリックスA+ 、 A
2 。
■ θ. ,′ and θ. 1. In order to minimize the difference between θ1□′ and θ1□, the coefficient matrices A+ and A of equation (5) are
2.

B、 、 B2を修正する。Modify B, , B2.

■ θci(r、、At)、θri(r□、At)を初
期値として■に戻る。
(2) Return to (2) with θci (r, , At) and θri (r□, At) as initial values.

す、下同じ手順で繰返す。Then, repeat the same steps below.

本発明による装置(第6図)で、最終的にめる温度分布
パターンは、■の過程で得られたa、bを(6)式の多
項式に代入して、任意の半径rに対して0゜′、θ?を
計算することによって得られる。以上が温度検出値θ。
In the device according to the present invention (Fig. 6), the final temperature distribution pattern can be obtained for any radius r by substituting a and b obtained in step (2) into the polynomial of equation (6). 0゜', θ? It is obtained by calculating . The above is the detected temperature value θ.

0.θ1、を用いた温度分布パターンの一般的な計算手
順であるが。
0. This is a general calculation procedure for a temperature distribution pattern using θ1.

その結果、具体的には9例えば第5図に示すように、3
点の温度θ。、=θ。(r、)、θrl=θr(ro)
(=θ。2=0゜(ro))、 θr2=θr(rz)
から、全体の温度分布パターンθ?が得られることにな
る。
As a result, specifically 9, for example, as shown in FIG.
Point temperature θ. ,=θ. (r,), θrl=θr(ro)
(=θ.2=0°(ro)), θr2=θr(rz)
From, the overall temperature distribution pattern θ? will be obtained.

すなわち、上の繰返し計算によって、はじめ第5図の点
線に示された温度分布パターンから第5図の実線に示さ
れた真の温度分布パターンが精度良くめられることにな
る。
That is, through the above repeated calculations, the true temperature distribution pattern shown by the solid line in FIG. 5 can be accurately determined from the temperature distribution pattern shown by the dotted line in FIG.

なお、(5)式よりbをめるためには、剪断発熱fft
qpの値がわかっている必要がある。又。
In addition, in order to calculate b from equation (5), the shear heat generation fft
It is necessary to know the value of qp. or.

はじめ時刻t = toでの半径r−ro、r4.r2
における温度θ。(ro、 to) (−θr (rO
+ t(1) ) + θ。(rI + シO) +θ
r(rz、to)を測定して、第6図の点線に示すよう
な温度分布パターンが得られたとしても9発熱により、
温度分布パターンが次第に変化して。
Radius r-ro at initial time t=to, r4. r2
temperature θ at (ro, to) (-θr (rO
+ t(1) ) + θ. (rI + shiO) +θ
Even if r(rz,to) is measured and a temperature distribution pattern as shown by the dotted line in Figure 6 is obtained, due to heat generation,
The temperature distribution pattern gradually changes.

時刻1 = 1.での半径r:rQ、 rl、 rzに
おける温度θ。(r、、 t、) ’(=θr(ro+
 tI))、θ。(rl g tI ) +or(r2
+1+)に対応した第6図の実線に示すような温度分布
パターンになる。そこで、はじめ、剪断発熱量qpとし
て実験でめられた値を使用するとしても、第6図に示さ
れるような、変化の様子が実際の系とモデルの系で同じ
になるように。
Time 1 = 1. radius r: rQ, rl, temperature θ at rz. (r,, t,) '(=θr(ro+
tI)), θ. (rl g tI ) +or(r2
+1+), resulting in a temperature distribution pattern as shown by the solid line in FIG. Therefore, even if we initially use the value found experimentally as the shear heating value qp, we will make sure that the changes are the same in the actual system and the model system, as shown in Figure 6.

以下に述べるように、モデルの剪断発熱量qp$を修正
していく。
As described below, the shear calorific value qp$ of the model is corrected.

第7図は、剪断発熱量q、の推定法を示したブロック線
図で+ GRは実際の射出成形機の熱特性を表わす伝達
関数、GEは推定値θ?、θ0′をEI算するために仮
定したモデルの熱特性を表わす伝達関数を示している。
Figure 7 is a block diagram showing a method for estimating the shear heat generation amount q, where + GR is a transfer function representing the thermal characteristics of the actual injection molding machine, and GE is the estimated value θ? , θ0' are shown as transfer functions representing the thermal characteristics of the model assumed for calculating the EI.

ヒータの加熱量qhは測定1JT能であるだめ、伝達関
数OR+GEの両方の入力(既知量)として加えられて
いる。実際の糸GRに加えられる真の剪断発熱量Qpは
、実験で予め推定することができるが、正確な値ではな
いので、モデルの糸GEに加えられる剪断発熱量として
、推定値q♂を与える。
Since the heating amount qh of the heater cannot be measured for 1JT, it is added as an input (known amount) to both of the transfer functions OR+GE. The true shear heat value Qp added to the actual yarn GR can be estimated in advance through experiments, but it is not an accurate value, so the estimated value q♂ is given as the shear heat value added to the model yarn GE. .

実際の糸GRの出力なる温度計測値θ1□、θ。、と。The temperature measurement values θ1□, θ are the actual outputs of the thread GR. ,and.

モデルの糸GEの出力なる推定温度θ1、′、θ。、′
とは、推定剪断発熱量q♂が実際の剪断発熱@q。
The estimated temperatures θ1, ′, θ are the outputs of the model yarn GE. ,′
means that the estimated shear heat value q♂ is the actual shear heat value @q.

と異なるために、偏差e=(θ1.−θ1.”、θ。、
−〇1.1)が生じる。そこで、この偏差eを用いて推
定剪断発熱量qp+を、θ1□1=01..θ。、′−
θ。、となるように変更する。この過程を何回か繰返す
ことによって、最終的に(Lp”=、(1,となり、実
際の剪断発熱量qpが推定されることになる。ここで、
推定剪断発熱11q−を偏差eが零になるように修正す
るには、いろいろな方法が考えられるが。
, the deviation e=(θ1.−θ1.”, θ.,
-〇1.1) occurs. Therefore, using this deviation e, the estimated shear calorific value qp+ is calculated as θ1□1=01. .. θ. ,′−
θ. , change it so that By repeating this process several times, (Lp"=, (1,
Various methods can be considered to correct the estimated shear heat generation 11q- so that the deviation e becomes zero.

実際の剪断発熱量q、が時間的に余り変化しない場合、
偏差eを入力とし、推定剪断発熱ti q、7を出力す
る第7図の伝達関数Hとして、第8図に示されるような
、積分器に/Sが一例としてあげられる。ここで、には
定数で推定の速度を規定している。
If the actual shear heating value q does not change much over time,
An example of the transfer function H shown in FIG. 7, which inputs the deviation e and outputs the estimated shear heat generation ti q,7, is /S in an integrator as shown in FIG. Here, the estimation speed is defined by a constant.

なお、この実施例では+ 1fjj度検出器15として
、熱電対とサーモパイルを使用した場合について述べて
いるが、この温度検出器には、特願昭57−68704
のような多接点熱電対を使用しても良いし、抵抗温度計
、或いはサーミスタ温度N1などを使用しても良いのは
言うまでもない。
Although this embodiment describes the case where a thermocouple and a thermopile are used as the +1fjj degree detector 15, this temperature detector is
Needless to say, a multi-contact thermocouple such as the one described above may be used, or a resistance thermometer or thermistor temperature N1 may be used.

更に9本実施例では、半径r方向の温度分布のみを考慮
に入れた場合について述べているが。
Furthermore, in this embodiment, a case is described in which only the temperature distribution in the radial r direction is taken into account.

温度検出器15を第9図に示すようにシリンダ11の軸
2方向にも設け、測定点を増やすことによって、実線矢
印の如き半径r方向の熱流ばかりでなく1点線矢印の如
き隣接ゾーンからの熱流をも考慮して温度分布パターン
を推定することができる。このとき、(6)式は。
As shown in FIG. 9, the temperature detector 15 is also installed in the two axial directions of the cylinder 11, and by increasing the number of measurement points, it is possible to detect not only the heat flow in the radius r direction as shown by the solid line arrow, but also the heat flow from the adjacent zone as shown by the dotted line arrow. The temperature distribution pattern can also be estimated by taking heat flow into account. At this time, equation (6) is.

θQ” (r + Z + j ) =ΣΣaljpj
□(r) P21 (z)J or”b+ Z、、 t)−ΣΣbx3 Q+i (r
) Q25 (”)J のように変更する。又1円周ψ方向の温度分布をも考慮
に入れるときは θC”(r、z、ψ、1;) or”(r、z、ψ+も) を考えれば良い。
θQ” (r + Z + j) = ΣΣaljpj
□(r) P21 (z) J or”b+ Z,, t)-ΣΣbx3 Q+i (r
) Q25 (")J. Also, when taking into account the temperature distribution in the ψ direction of one circumference, change θC" (r, z, ψ, 1;) or" (r, z, ψ + also) Just think about it.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように1本発明では。 As is clear from the above description, one aspect of the present invention is as follows.

予め与えられたシリンダの形状、シリンダや樹脂の物性
値からモデルを作り、シリンダ及び樹脂の有限の温度計
測値を用いて、該検出された場所以外のシリンダ及び樹
脂の全体的な温度分布パターンを逐次精度よく推定する
ことができる。その際、シリンダや樹脂の物性は9種類
や温度条件によって異なるため、温度分布パターンの推
定に用いられるモデルは、樹脂やシリンダの温度計測値
の時間的変化の様子(応答)によって逐次修正され精度
を上げていく。そして。
A model is created from the shape of the cylinder given in advance and the physical property values of the cylinder and resin, and the overall temperature distribution pattern of the cylinder and resin other than the detected location is calculated using the finite temperature measurement values of the cylinder and resin. Sequential estimation can be performed with good accuracy. At this time, since the physical properties of cylinders and resins differ depending on the nine types and temperature conditions, the model used to estimate the temperature distribution pattern is successively revised based on the temporal changes (responses) of the measured temperature values of the resin and cylinders. I'm going to raise it. and.

モデルの中に射出速度や剪断発熱量を入れることによっ
て、さらに精度よく温度分布パターンの推定を行なうこ
とが可能となる。
By incorporating the injection speed and shear heat generation amount into the model, it becomes possible to estimate the temperature distribution pattern with even greater accuracy.

更に2本発明では、直接樹脂温度を測定する検出端を工
夫して、シリンダへの熱伝導や検出器自体の熱容量をな
るべく小さく抑え、又、これらによる誤差及び剪断発熱
量に対する誤差に対しても、巧みに実時間で温度変化を
見ながら修正している。又、モデルとしては、最初に熱
的相互関係すなわちモデルの形と初期値を与えるだけで
良く、後は、射出成形機の条件に伴って逐次精度が良く
なるようにモデルを修正していく。
Furthermore, in the present invention, the detection end that directly measures the resin temperature is devised to suppress heat conduction to the cylinder and the heat capacity of the detector itself as much as possible, and also to prevent errors caused by these and errors in shear heat generation. , skillfully corrects the temperature changes while watching them in real time. In addition, as for the model, it is sufficient to first provide thermal correlations, that is, the shape and initial values of the model, and then the model is modified so that the accuracy improves successively in accordance with the conditions of the injection molding machine.

従っ″(9本装置によってめられた温度分布パターンか
ら9例えば直接に測定不可能なシリンダ中心軸部分の温
度によって、樹脂の温度制御を行なえば、シリンダ中心
軸部分の樹脂温度を正確に制御することができ、射出成
形品の精度を向上させることができる。
Therefore, if the temperature of the resin is controlled based on the temperature distribution pattern determined by this device, for example, the temperature of the central axis of the cylinder, which cannot be directly measured, the temperature of the resin at the central axis of the cylinder can be accurately controlled. It is possible to improve the accuracy of injection molded products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用される射出成形機のシリンダ先端
部分を示した断面図、第2図は第1図のA−A”断面図
、第6図は本発明による樹脂温度パターン計6(す装置
の構成を示すブロック図。 第4図はシリンダおよび樹脂の湿度分布パターンの一例
を示した図、第5図は本発明による温度分布パターンの
推定例を示した図、第6図は樹脂内部の発熱による温度
分布パターンの変化の一例を示した図、第7図は剪断発
熱量の推定法を示したブロック線図、第8図は第7図の
伝達関数Hの一例を示した図、第9図は半径方向及び軸
方向に測定点を設けて温度分布パターンをめる例を示し
た断面図である。 11・・・シリンダ、12・・・スクリュ、13・・・
樹脂、14・・・バンドヒータ、15・・・温度検出器
。 16・・・突起、17・・・演算装置。 第2図 篇9r茹 第4図 第5図
FIG. 1 is a sectional view showing the tip of a cylinder of an injection molding machine to which the present invention is applied, FIG. 2 is a sectional view taken along line A-A'' in FIG. 1, and FIG. 6 is a resin temperature pattern meter 6 according to the present invention. (Block diagram showing the configuration of the device. FIG. 4 is a diagram showing an example of the humidity distribution pattern of the cylinder and resin, FIG. 5 is a diagram showing an example of estimating the temperature distribution pattern according to the present invention, and FIG. 6 is a diagram showing an example of the humidity distribution pattern of the cylinder and resin. A diagram showing an example of a change in temperature distribution pattern due to heat generation inside the resin, Figure 7 is a block diagram showing a method for estimating the shear calorific value, and Figure 8 shows an example of the transfer function H in Figure 7. 9 are cross-sectional views showing examples of measuring temperature distribution patterns by providing measurement points in the radial and axial directions. 11...Cylinder, 12...Screw, 13...
Resin, 14...Band heater, 15...Temperature detector. 16...Protrusion, 17... Arithmetic device. Figure 2 Part 9r Boiled Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、軸方向に延びるシリンダ内に樹脂を充填して射出す
る射出成形機に使用される樹脂温度パターン計測装置に
おいて、前記シリンダの軸方向所定断面位置における前
記シリンダの6A度を半径方向に異なる複数点で51測
する手段と、前記所定断面位置における前記樹脂の温度
を半径方向に異なる複数点で計測する手段と、前記シリ
ンダ及び前記樹脂の計測値から前記所定断面位置におけ
る樹脂の断面内の温度パターンをa1算する手段とを有
することを特徴とする射出成形機の樹脂温度パターン計
測装置。 以下余白
[Scope of Claims] 1. In a resin temperature pattern measuring device used in an injection molding machine that fills and injects resin into a cylinder extending in the axial direction, the temperature of the cylinder at a predetermined cross-sectional position in the axial direction of the cylinder is 6A degrees. means for measuring the temperature of the resin at a plurality of different points in the radial direction; means for measuring the temperature of the resin at the predetermined cross-sectional position at a plurality of different points in the radial direction; 1. A resin temperature pattern measuring device for an injection molding machine, comprising means for calculating a1 a temperature pattern in a cross section of the resin. Margin below
JP2298684A 1984-02-13 1984-02-13 Temperature pattern measuring device of resin of injection molding machine Granted JPS60168622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298684A JPS60168622A (en) 1984-02-13 1984-02-13 Temperature pattern measuring device of resin of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298684A JPS60168622A (en) 1984-02-13 1984-02-13 Temperature pattern measuring device of resin of injection molding machine

Publications (2)

Publication Number Publication Date
JPS60168622A true JPS60168622A (en) 1985-09-02
JPS646932B2 JPS646932B2 (en) 1989-02-07

Family

ID=12097861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298684A Granted JPS60168622A (en) 1984-02-13 1984-02-13 Temperature pattern measuring device of resin of injection molding machine

Country Status (1)

Country Link
JP (1) JPS60168622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110925A (en) * 1987-10-24 1989-04-27 Nissei Plastics Ind Co Temperature detecting method of injection molding machine
JP2008290464A (en) * 2008-09-08 2008-12-04 Sumitomo Heavy Ind Ltd Injection molding machine and its temperature monitoring method
KR20160115826A (en) * 2015-03-27 2016-10-06 스미도모쥬기가이고교 가부시키가이샤 Injection molding machine
KR20160115825A (en) * 2015-03-27 2016-10-06 스미도모쥬기가이고교 가부시키가이샤 Injection molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110925A (en) * 1987-10-24 1989-04-27 Nissei Plastics Ind Co Temperature detecting method of injection molding machine
JPH055651B2 (en) * 1987-10-24 1993-01-22 Nissei Plastics Ind Co
JP2008290464A (en) * 2008-09-08 2008-12-04 Sumitomo Heavy Ind Ltd Injection molding machine and its temperature monitoring method
JP4638533B2 (en) * 2008-09-08 2011-02-23 住友重機械工業株式会社 Injection molding machine and temperature monitoring method thereof
KR20160115826A (en) * 2015-03-27 2016-10-06 스미도모쥬기가이고교 가부시키가이샤 Injection molding machine
KR20160115825A (en) * 2015-03-27 2016-10-06 스미도모쥬기가이고교 가부시키가이샤 Injection molding machine

Also Published As

Publication number Publication date
JPS646932B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
KR100912240B1 (en) Cooling thermal characteristic measurement apparatus for accellated cooling process of thick plate
JPS60168622A (en) Temperature pattern measuring device of resin of injection molding machine
CN109071297B (en) Method for manufacturing optical element
JP2530684B2 (en) Simulation system with multi-zone temperature control system
Zink et al. Pressure‐dependent heat transfer coefficient measurement for thermoplastic melts
JP4055588B2 (en) Temperature measuring apparatus and temperature measuring method
Le Goff et al. On-line temperature measurements for polymer thermal conductivity estimation under injection molding conditions
De Lucas et al. Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry
JP2001274109A5 (en)
JPS6216665Y2 (en)
JPS606426A (en) Non-interacting controlling apparatus of injection molder heating cylinder
CN105043573B (en) A kind of wall pastes temp measuring method
JPS58185237A (en) Detection of temperature pattern of injection molder, etc.
JP4767192B2 (en) Injection molding apparatus and injection molding method
JP2010116297A (en) Apparatus for manufacturing optical element, and method for manufacturing the same
US20160320248A1 (en) Thermal protection systems material degradation monitoring system
WO2021235362A1 (en) Injection molding machine control device and program
CN107748017A (en) The measuring method of blast furnace cooling stave cooler-water temperature is accurately measured based on platinum resistance thermometer sensor,
JP4209285B2 (en) Temperature detection method and temperature detector
CN113670978B (en) Temperature calibration method and device for thermal conductivity tester
WO2021246526A1 (en) Controlling device for injection molding machine and program
KR101221966B1 (en) Gauge for measuring 2-dimensional heat flux
KR100507606B1 (en) A Calibration Device Of A Contact Type Surface Temperature Indicator
JP6688942B2 (en) Method and device for identifying temperature distribution in a template for a metal manufacturing process
JPH0491919A (en) Measuring device for mold temperature