JPS60167372A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPS60167372A
JPS60167372A JP2252884A JP2252884A JPS60167372A JP S60167372 A JPS60167372 A JP S60167372A JP 2252884 A JP2252884 A JP 2252884A JP 2252884 A JP2252884 A JP 2252884A JP S60167372 A JPS60167372 A JP S60167372A
Authority
JP
Japan
Prior art keywords
insulating film
film
forming
thin film
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2252884A
Other languages
Japanese (ja)
Inventor
Satoshi Takenaka
敏 竹中
Hiroyuki Oshima
弘之 大島
Mutsumi Matsuo
睦 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP2252884A priority Critical patent/JPS60167372A/en
Publication of JPS60167372A publication Critical patent/JPS60167372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To manufacture a non-self aligning type thin-film transistor having high performance, in which the surface-state density of the interface is reduced, on a transparent insulating substrate having a low heat-resistant temperature by forming a drain electrode and a source electrode through a lift-off method in order to keep the interface between a semiconductor thin-film and a gate insulating film clean. CONSTITUTION:A semiconductor thin-film 8 is deposited on a transparent insulating substrate 7, and an insulating film 9 is deposited through a normal pressure CVD method, a decompression CVD method, a plasma CVD method or a sputtering method. The insulating film 9 is patterned, and the semiconductor thin-film 8 is patterned, thus forming the approximate shape of a thin-film transistor. Resists 10 having patterns for a drain electrode and a source electrode are shaped, and the insulating film 9 is etched first while using said resists 10 as masks. A constitutional material 11 for the drain electrode and the source electrode is deposited. The resists 10 are peeled, and the drain electrode 12 and the source electrode 13 are formed through a lift-off method. A gate insulating film 14 is deposited, and a gate electrode 15 is shaped on the insulating film 14.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、ガラス等板Hに作製される薄膜トランジスタ
に関するものであり、時に界面における表面準位密呵の
小さい非自己整合型簿膜トランジスタの製造方法に関す
る。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a thin film transistor manufactured on a glass plate H, and sometimes relates to a method for manufacturing a non-self-aligned thin film transistor with small surface state density at an interface. .

〔従来技術〕[Prior art]

薄膜トランジスタは、安(N’iな絶縁基板を用いるこ
とができること、大面積化が容易なことから、アクティ
ブマトリクヌ基板あるいはイメーノセンサなどに使用す
る目的で、近年−各所で活発に研究が進めらhている。
Thin film transistors have been actively researched in various places in recent years for the purpose of using them in active matrix substrates or image sensors because they can use low-cost (N'i) insulating substrates and can easily be made into large areas. ing.

一般的に、薄膜トランジスタの構造としては、イオン打
込み法?用いて自己整合的にソース及びドレイン部を形
成する自己整合型薄!漠トランジスタと、アモル)了ス
シリコン薄師トランジスタなどのようにイオン打込み法
を用いずに作製される非自己整合型91.Fj 14 
トランジスタの2種t(+に大別される。前者のll 
ウl−を寄生容量を小さくできるので動作速度を速くす
ることができるなどの効果が期待できる。しかし、この
構造はイオン打込み工程が必要なこと、及び少なくても
ホト4工程が必侠なことなどから、コスト的には不利と
なる。そこで低コスト化、工程の簡単化などの目的を満
たす為には後者の非自己整合型薄膜トランジスタのほう
が有和である。以下では非自己整合7III薄lIαト
ランジスタについて述べる。
In general, the ion implantation method is used to construct thin film transistors. A self-aligned thin film that forms source and drain parts in a self-aligned manner! Non-self-aligned transistors manufactured without using ion implantation, such as thin silicon transistors and amorphous silicon thin film transistors. Fj 14
There are two types of transistors, t(+).
Since the parasitic capacitance can be reduced, the operating speed can be increased, and other effects can be expected. However, this structure is disadvantageous in terms of cost because it requires an ion implantation process and at least four photolithographic processes. Therefore, in order to meet the objectives of cost reduction and process simplification, the latter non-self-aligned thin film transistor is more advantageous. In the following, a non-self-aligned 7III thin lIα transistor will be described.

従来の非自己整合型薄膜トランジスタの構造を第1図に
示す。1け透明絶縁基板、2は半導体薄膜である。3の
ドレイン電極と4のソース電極を形成した後、ゲート絶
縁膜5を堆積させ、最後にゲート′M極61r形成する
。薄膜トランジスタにおいて、その特性に大きな影響を
およぼすのけ半導体薄膜とゲート絶縁11σとの界面状
態である。つまり界面における表面準位密度を小さくで
きれば界面にトラップされる電子あるいは正孔が低減さ
れ、従ってトランジスタ特性を向上させることができる
。ところがM1図に示したような従来の製造方法による
と、半導体薄膜2とゲート絶縁膜5との界面には、ドレ
イン電極及びソース電極の構成材料が一叶堆積させられ
、その後、前記ドレイン電極3及びソース電極4をパタ
ー、ニングする時に除去される。このように界面の表面
準位密度を小さくおさえることは従来の製造方法ではむ
ずかしい、〔目的〕 本発明け、界面の衣面準位密ぼを低減させた高性節な非
自己整合型薄膜トランジスタを、耐熱温度の低い透明絶
縁基根上忙作製する半金可能にすることが目的である、 〔概要〕 半導体薄膜とゲート絶縁膜との界面を清浄に個つために
、リフトオフ法によりドレイン電極及びソース電極を形
成するのが、本発明の概要である。
The structure of a conventional non-self-aligned thin film transistor is shown in FIG. 1 is a transparent insulating substrate, and 2 is a semiconductor thin film. After forming the drain electrode No. 3 and the source electrode No. 4, a gate insulating film 5 is deposited, and finally a gate 'M pole 61r is formed. In a thin film transistor, the state of the interface between the semiconductor thin film and the gate insulator 11σ has a great influence on its characteristics. In other words, if the surface state density at the interface can be reduced, the number of electrons or holes trapped at the interface can be reduced, and the transistor characteristics can therefore be improved. However, according to the conventional manufacturing method as shown in FIG. and is removed when patterning the source electrode 4. In this way, it is difficult to suppress the surface state density at the interface using conventional manufacturing methods. [Summary] In order to maintain a clean interface between the semiconductor thin film and the gate insulating film, the drain and source electrodes are separated by a lift-off method. The outline of the present invention is to form an electrode.

〔実施例1〕 第2図に実施例1を示す。まず透明絶縁フル板7のとに
半導体薄膜81r堆積させ、続いて、常圧CVD法ある
いは減圧CVD法あるいけプラズマCVD法あるいはス
パッタ法により、絶縁III 9を堆積させる。次(絶
縁膜9をバターニングし続いて半導体薄@8をバターニ
ングして同図(bIに示すように薄膜トランジスタの概
形を形成する。次にドレイン電極およびソース電極のパ
ターンのレジスト10を形成し、前記レジスト10(+
−72りとしてまず絶縁膜9をエツチングする。その後
ドレイン電極とソース電極の構成材料11を堆積させて
同図(c)に示す形とする。ここでレジスト10を剥離
してリフトオフ法によって、ドレイン電極12、乃びソ
ース電極13を形成し第2図(ぬIC示すような形とす
る。次にゲート絶縁膜14をJ+)積置せ、その上にゲ
ート常、極15を形成する。同図1e) K示す形で薄
膜)・ランジヌタが完成する。
[Example 1] Example 1 is shown in FIG. First, a semiconductor thin film 81r is deposited on the transparent insulating full plate 7, and then an insulating film III 9 is deposited by normal pressure CVD, low pressure CVD, plasma CVD, or sputtering. Next, the insulating film 9 is patterned, and then the semiconductor thin film @8 is patterned to form the general shape of the thin film transistor as shown in the same figure (bI). Next, a resist 10 with the pattern of the drain electrode and source electrode is formed. Then, the resist 10 (+
-72, the insulating film 9 is first etched. Thereafter, the material 11 constituting the drain electrode and source electrode is deposited to form the shape shown in FIG. 3(c). Here, the resist 10 is peeled off and a drain electrode 12 and a source electrode 13 are formed by a lift-off method to form a shape as shown in FIG. A gate pole 15 is formed thereon. Figure 1e) The thin film) and lunge nut are completed in the shape shown by K.

r実施例2〕 実施例1で述べた方法ではゲート絶縁膜は二l−構造と
なる。そこでゲート絶縁膜を一層のみ忙することも考え
られるので実施例2として第31ヌ1に示す。ドレイン
電極及びソース電極の形成は実施例1で述べたのと同様
に、リフトオフ法により形成するので、第3図(a)か
ら(C)までに示す工程は、第2図(ハ))から(c)
までに示す工程と同一である6第2図(d)に示す形と
した後、絶縁膜9も除去し、第5図回のような形に干る
。次に)r’ −)絶縁1:尊16を[積させ、そり上
にゲート1j極17を形成する。
rExample 2] In the method described in Example 1, the gate insulating film has a 2l- structure. Therefore, it is conceivable to increase the thickness of the gate insulating film by only one layer, so a second embodiment is shown in No. 31 No. 1. The drain electrode and source electrode are formed by the lift-off method in the same way as described in Example 1, so the steps shown in FIGS. (c)
6 After forming the shape shown in FIG. 2(d), which is the same as the process shown above, the insulating film 9 is also removed and dried into the shape shown in FIG. Next,)r'-)insulation 1:layer 16 is laminated to form a gate 1j pole 17 on the warp.

同図(e)で示す形で薄膜トランジスタが完成中る。A thin film transistor in the form shown in FIG. 4(e) is currently being completed.

〔効果〕〔effect〕

本発明により、非自己整合型薄膜トラン/フタをホト6
エ程により、特性の劣イヒを起こすことなく作製するこ
とが可能となる。しかも、コーニング7059ガラスの
ように、耐熱温度が低くて安価なガラス基板を用いると
とができるので、大幅なコヌトダウンが期待できるもの
である、実施例1で述べたように界面には異物質が付着
したり、あるいは工・ソチンダ液にさらされたりする工
程が含まれないので、界面の嵌面準位密ずを低くおさえ
ることができる。従って、トランジスタ特性のヌレノシ
ュホルド電圧を小さく仙jつことかできる、ヌレンシュ
ホルド電圧が小さけねば、低いゲート電圧でトランジス
タを駆動できるので消費電力の低減が可能となる。界面
が汚染されな(/−まため、信頼性も向上する。さらに
、ホト3工程であり作製が簡単なために、歩留りが向と
される、また低コスト化のためにもその意味は大きい。
According to the present invention, a non-self-aligned thin film transformer/lid can be fabricated by photo6.
The process allows production without deterioration of properties. Moreover, since it is possible to use an inexpensive glass substrate with a low heat resistance temperature, such as Corning 7059 glass, a significant reduction can be expected.As mentioned in Example 1, there are no foreign substances at the interface. Since there is no step of adhesion or exposure to the solution, the level density of the fitting surface at the interface can be kept low. Therefore, the null hold voltage of the transistor characteristics can be reduced. If the null hold voltage is small, the transistor can be driven with a low gate voltage, and power consumption can be reduced. Since the interface is not contaminated (/-), reliability is also improved.Furthermore, since the manufacturing process is simple due to the 3-step process of photophotography, yields are improved, and this also has great significance in terms of cost reduction. .

ゲート絶縁膜は各aCVD法やスパッタ法なで低温形成
方法を採用してカリ、全工程を低温で行なうことができ
る。従って安価なガラス基板を用いることができ、この
点からも低コスト化に寄与している。また実施例2に示
した方法を用いれば、ゲート絶R膜は一層のみの構造に
することもできる。
The gate insulating film can be formed using a low-temperature forming method such as the aCVD method or the sputtering method, so that the entire process can be performed at a low temperature. Therefore, an inexpensive glass substrate can be used, which also contributes to cost reduction. Further, by using the method shown in Example 2, the gate isolation film can be made to have a structure of only one layer.

この場合も、界面に異物質が付着干る工程はけいってい
ないので、界面は清浄に伏つことができる。
In this case as well, there is no drying process in which foreign substances adhere to the interface, so the interface can remain clean.

半導体薄膜の材料としては、多結晶シリコンあるいけ非
晶質シリコンなどが考えられる。例えば、多結晶シリコ
ンを用いて本発明に応用すれば、ガラス基板上に多結晶
シリコン薄膜トランジスタを作製することができる。信
頼性に関して日、多結晶シリコンのほうが非晶質シリコ
ンよりも良い。
Possible materials for the semiconductor thin film include polycrystalline silicon, amorphous silicon, and the like. For example, if the present invention is applied to polycrystalline silicon, a polycrystalline silicon thin film transistor can be manufactured on a glass substrate. In terms of reliability, polycrystalline silicon is better than amorphous silicon.

従って、たとえば多結晶シリコンを用いて本発明をアク
ティブマトリクス基板の作製に応用すれば高信頼度のア
クティブマトリクスを安価な、ガラス基板上に形成する
ことが回部となり、液晶表示パネルの低コスト化、高信
頼化を実現できる。
Therefore, if the present invention is applied to the production of an active matrix substrate using, for example, polycrystalline silicon, it will be possible to form a highly reliable active matrix on an inexpensive glass substrate, thereby reducing the cost of the liquid crystal display panel. , high reliability can be achieved.

以上述べたように、本発明にょれ1f非自己整合型薄膜
トランジスタを、界面f*浄に保も、しかもガラス基板
上傾作製する事が可絆となり、トランジスタ特性劣化防
止、および歩留りの向上と低コスト化、さらには、信頼
性の向上など、すぐれた効果を得ることができるもので
ある。
As described above, it is possible to manufacture a 1f non-self-aligned thin film transistor according to the present invention by keeping the interface f* clean and tilting the glass substrate upward, thereby preventing deterioration of transistor characteristics and improving yield. It is possible to obtain excellent effects such as cost reduction and improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の非自己整合型薄膜トランジスタについ
て説明するための図である。第2図れ)〜(g) Id
、本発明の実施例1を説明するための図であり、第3図
(a)〜(e)け、同じ〈実施例2を説明するための図
である。 以 ト 出願人 株式会社 諏訪精工舎 第1図 第2図
FIG. 1 is a diagram for explaining a conventional non-self-aligned thin film transistor. Figure 2) ~ (g) Id
FIG. 3 is a diagram for explaining the first embodiment of the present invention, and FIGS. 3(a) to 3(e) are diagrams for explaining the same embodiment 2. FIG. Applicant: Suwa Seikosha Co., Ltd. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) 半導体薄膜を形成する工程と、絶縁l陣を形成
中る工程と、前記半導体薄膜及び檜縁・li&をパター
ニングする工程と、リフトオフ法によりソーヌ電極及び
ドレイン電極を形成する工程と、ゲート電極を形成する
工程から成ること?特徴とする薄膜トランジスタの製造
方法。
(1) A step of forming a semiconductor thin film, a step of forming an insulating layer, a step of patterning the semiconductor thin film and the edge/li&, a step of forming a Saone electrode and a drain electrode by a lift-off method, and a step of forming an insulating layer. Consists of the process of forming electrodes? Characteristic method for manufacturing thin film transistors.
(2) 前記絶縁嘆及びゲート絶[寞を形成する方法と
して、低温形成法(常圧D V D法、あるいけ減圧C
VD法、あるいはプラズマCVI)法、あるいはスパッ
タ法など)を用いることを特徴とする特許請求の範囲N
K1項記載のitな膜トランジスタの製造方法。
(2) As a method for forming the insulation layer and gate layer, a low-temperature forming method (normal pressure D V D method, low pressure C
Claim N characterized in that a VD method, a plasma CVI method, a sputter method, etc.) is used.
A method for manufacturing an IT film transistor according to Section K1.
JP2252884A 1984-02-09 1984-02-09 Manufacture of thin-film transistor Pending JPS60167372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252884A JPS60167372A (en) 1984-02-09 1984-02-09 Manufacture of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252884A JPS60167372A (en) 1984-02-09 1984-02-09 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPS60167372A true JPS60167372A (en) 1985-08-30

Family

ID=12085290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252884A Pending JPS60167372A (en) 1984-02-09 1984-02-09 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPS60167372A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422438B1 (en) * 1996-12-13 2004-05-17 페어차일드코리아반도체 주식회사 Power mos transistor
GB2492442A (en) * 2011-06-27 2013-01-02 Pragmatic Printing Ltd Method of manufacturing a thin film transistor
GB2492532A (en) * 2011-06-27 2013-01-09 Pragmatic Printing Ltd Method of manufacturing a thin film transistor
EP3549157A4 (en) * 2016-11-30 2020-06-24 Boe Technology Group Co. Ltd. Method of fabricating thin film transistor, thin film transistor, and display apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422438B1 (en) * 1996-12-13 2004-05-17 페어차일드코리아반도체 주식회사 Power mos transistor
GB2492442A (en) * 2011-06-27 2013-01-02 Pragmatic Printing Ltd Method of manufacturing a thin film transistor
GB2492532A (en) * 2011-06-27 2013-01-09 Pragmatic Printing Ltd Method of manufacturing a thin film transistor
GB2492532B (en) * 2011-06-27 2015-06-03 Pragmatic Printing Ltd Transistor and its method of manufacture
GB2522565A (en) * 2011-06-27 2015-07-29 Pragmatic Printing Ltd Transistor and its method of manufacture
GB2492442B (en) * 2011-06-27 2015-11-04 Pragmatic Printing Ltd Transistor and its method of manufacture
GB2522565B (en) * 2011-06-27 2016-02-03 Pragmatic Printing Ltd Transistor and its method of manufacture
US9425193B2 (en) 2011-06-27 2016-08-23 Pragmatic Printing Ltd Methods of manufacturing transistors including forming a depression in a surface of a covering of resist material
US10672765B2 (en) 2011-06-27 2020-06-02 National Centre For Printable Electronics Methods of manufacturing transistors including forming a depression in a surface of a covering of resist material
EP3549157A4 (en) * 2016-11-30 2020-06-24 Boe Technology Group Co. Ltd. Method of fabricating thin film transistor, thin film transistor, and display apparatus

Similar Documents

Publication Publication Date Title
JP2776083B2 (en) Liquid crystal display device and manufacturing method thereof
JPS62124775A (en) Manufacture of thin film transistor by inclined etching and the thin film transistor
JPH06267978A (en) Thin film transistor and manufacture thereof
JPH0936380A (en) Polycrystal silicon thin film transistor and its manufacture
JPS58182270A (en) Manufacture of transistor
JPS60167372A (en) Manufacture of thin-film transistor
JPH0638429B2 (en) Thin film field effect transistor and manufacturing method thereof
JPH0611729A (en) Liquid crystal display device and its production
US5049952A (en) Thin film transistor for use in a flat plate display
JPS6178166A (en) Thin-film transistor array and manufacture thereof
JPS628570A (en) Manufacture of thin film transistor
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JPH0562996A (en) Manufacture of thin film transistor
JPH07218929A (en) Array structure of thin-film transistor
JPH01255829A (en) Multilayered wiring of aluminum and ito
JPS60251668A (en) Manufacture of thin-film transistor
JPS61164267A (en) Manufacture of thin film transistor
JPH071623Y2 (en) TFT panel
JPS61181164A (en) Manufacture of thin-film field-effect transistor
JPH0464181B2 (en)
KR100270363B1 (en) Method of manufacturing thin-film transistor
JPS59104173A (en) Manufacture of thin film semiconductor device
JPH01293318A (en) Electrode substrate for liquid crystal display panel
JPS62140467A (en) Manufacture of thin-film transistor
JPS6065573A (en) Thin film transistor