JPS60165718A - Constitution of ion optical system in maskless ion implantation - Google Patents

Constitution of ion optical system in maskless ion implantation

Info

Publication number
JPS60165718A
JPS60165718A JP2007584A JP2007584A JPS60165718A JP S60165718 A JPS60165718 A JP S60165718A JP 2007584 A JP2007584 A JP 2007584A JP 2007584 A JP2007584 A JP 2007584A JP S60165718 A JPS60165718 A JP S60165718A
Authority
JP
Japan
Prior art keywords
ion
limiter
rectangular
lens
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007584A
Other languages
Japanese (ja)
Inventor
Eizo Miyauchi
宮内 栄三
Toshio Hashimoto
橋本 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2007584A priority Critical patent/JPS60165718A/en
Publication of JPS60165718A publication Critical patent/JPS60165718A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To enhance throughput on the occasion of maskless ion implantation by arranging an ion source, a large diameter limiter, a first and a second lenses in this sequence and providing a rectangular limiter between the second lens and substrate. CONSTITUTION:The beam in a considerably large angle (about 1 deg.) among the ion beam 1 having a certain irradiation angle passes a larger diameter 7a of limiter and it is then converted to a semi-focues or parallel light by the lens 4 after passing the lens 3. The light further passes a rectangular slit 8b of rectangular limit mask 8, irradiating a certain area on a semiconductor substrate 5. An ion implanted area having a wider area 6 can be obtained on the substrate 5 with a single operation. The rectangular slits 8b of various sizes can be formed with angled members 8a, 8b. The size of semi-focused beam is determined from relation with the size of implanted rectangular shape. With this constitution, ion can be implanted very effectively and ion can also be implanted to the very fine line region by replacing a limiter with a small diameter limiter.

Description

【発明の詳細な説明】 この発明は、マスクレスイオン注入法におけるイオン光
学系の構造に関するものであり、更に詳しくはマスクレ
スイオン注入装置としてのスルーブツトを高めたイオン
光学系に関するも2− のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an ion optical system in a maskless ion implantation method, and more specifically to an ion optical system with increased throughput as a maskless ion implantation apparatus. .

マスクレスイオン注入法は、第1図に示すように電界放
出型液体金属イオン源(図示せず)の光軸上に小口径の
孔λαを有するリミッタ2、第ルンズ3、第2レンズグ
、半導体基板jを順次配列し、イオン源より放出された
イオンビームlをリミッタλの孔コαを通過させ、第ル
ンズ3で4端クロスオーバさせた後、更に第2レンズグ
でイオンビーム径0.1μm或いはそれ以下に集束し、
このように集束されたイオンビームを加速走査して半導
体基板!の指定領域乙に直接、マスクなしでイオン注入
を行う方法である。
As shown in FIG. 1, the maskless ion implantation method uses a limiter 2 having a small-diameter hole λα on the optical axis of a field emission liquid metal ion source (not shown), a second lens 3, a semiconductor The substrates j are arranged in sequence, and the ion beam l emitted from the ion source passes through the aperture α of the limiter λ, crosses over at the 4 ends at the 4th lens 3, and then further increases the ion beam diameter to 0.1 μm at the 2nd lens. Or focus on less than that,
The ion beam focused in this way is accelerated and scanned to scan the semiconductor substrate! This is a method in which ions are implanted directly into a designated area B without a mask.

このマスクレスイオン注入法は、従来のマスクを用いた
イオン注入法に比べてマスク作成のためのリソグラフィ
一工程が不必要で、プロセスが非常に簡単になり、更に
質量分離器を使用することにより、異なる不純動程(p
、n型)の異なる加速エネルギー及びドーズ量の注入領
域を同一ウェーハ上に簡単に形成することができる等の
優れた特徴を有している。
Compared to conventional mask-based ion implantation, this maskless ion implantation method eliminates the need for one lithography step to create a mask, making the process extremely simple. , different impurity ranges (p
, n-type) can be easily formed on the same wafer with implantation regions having different acceleration energies and doses.

しかし、この方法においては第1図にも示されるように
イオンビーム放射角(数度〜士数度)のうち中心軸近傍
の角度のイオンビームをリミツタコの孔λα内に通過さ
せてサブミクロンで高電流密度のイオンビームを形成し
、この微細なイオンビームを走査しながら指定の領域へ
不純物注入を行うため、スルーブツトがそれ程高くなら
ず、半導体基板j上に設けられた矩形状の大面積部分乙
にイオン注入を行う場合には微細なイオンビームで大面
積部分≦を塗り潰さなければならず、極めて能率が悪い
However, in this method, as shown in Fig. 1, the ion beam at an angle near the central axis of the ion beam radiation angle (several degrees to several degrees) is passed through the hole λα of the limit octopus to produce a submicron beam. Since an ion beam with high current density is formed and impurity implantation is performed in a specified area while scanning this fine ion beam, the throughput is not so high, and it is possible to implant impurities into a large rectangular area provided on a semiconductor substrate. When ion implantation is performed in B, a large area ≦ must be covered with a fine ion beam, which is extremely inefficient.

この発明は、上記実情に鑑みマスクレスイオン注入法に
おいてスルーブツトを高めるようなイオン光学系の構造
を提案することを目的とし、。
In view of the above circumstances, an object of the present invention is to propose a structure of an ion optical system that increases throughput in maskless ion implantation.

その特徴はイオン源、大口径の孔を有するリミッタ、第
ルンズ、第2レンズを順次配列し、更に第2レンズと基
板との間にはイオンビームが平行もしくは生葉束状態で
通過するように矩形リミッタマスクを配置したことにあ
る。
Its features include an ion source, a limiter with a large diameter hole, a second lens, and a second lens arranged in sequence, and a rectangular shape between the second lens and the substrate so that the ion beam passes in parallel or in a bundle. This is due to the placement of the limiter mask.

可成り大きな角度(例えば、51度)までのイオンビー
ムを上記リミッタの大口径に通過させ、更に第2レンズ
と基板との間には矩形リミッタマスクを設け、第2レン
ズから出たイオンビームを平行もしくは生葉束状態で通
過させて基板上に矩形状に照射されるため、上述のよう
な大面積部分についても一度成るいは数度の操作でイオ
ン注入を行うことができるのである。
The ion beam at a considerably large angle (for example, 51 degrees) is passed through the large aperture of the limiter, and a rectangular limiter mask is provided between the second lens and the substrate, and the ion beam emitted from the second lens is passed through the large diameter of the limiter. Since the ions are passed in parallel or in the form of a bundle of leaves and irradiated onto the substrate in a rectangular shape, ions can be implanted in a single operation or several times even over a large area as described above.

更に、上記矩形リミッタマスクとしてその寸法を変える
ことができるものを使用すれば、イオン注入領域が四角
、矩形を間はず何れの寸法のものについても適用するこ
とができる。
Further, by using a rectangular limiter mask whose dimensions can be changed, the present invention can be applied to cases where the ion implantation region has either a square or a rectangular shape.

以下、図示の実施例に基いてこの発明を説明すると、第
2図はこの発明の一実施例を示すマスクレスイオン注入
法におけるイオン光学系の概略図であって、第1図と同
様3は第ルンズ、グは第2レンズ、jは半導体基板で、
これ等は第1図に示すような従来のマスクレスイオン注
入法のイオン光学系の構造と同様に配列されて1− いるが、この発明では第1図と異なりイオン源と第ルン
ズ3の間には大口径の孔7αを有するリミッタ7を設け
、また第2レンズグと半導体基板よとの間には二枚の鍵
型部材tα、lrαを対向状に配列して内部に矩形状ス
リン) Ibを形成した矩形リミットマスクtを、第2
レンズlから出たイオンビームが平行もしくは生葉束状
態で該矩形状スリットrbを通過するように配置する。
Hereinafter, the present invention will be explained based on the illustrated embodiment. FIG. 2 is a schematic diagram of an ion optical system in a maskless ion implantation method showing an embodiment of the present invention. The second lens, g is the second lens, j is the semiconductor substrate,
These are arranged in the same way as the structure of the ion optical system of the conventional maskless ion implantation method as shown in FIG. 1, but in this invention, unlike in FIG. is provided with a limiter 7 having a large diameter hole 7α, and two key-shaped members tα and lrα are arranged oppositely between the second lens and the semiconductor substrate, and a rectangular ring is formed inside. The rectangular limit mask t formed with
The ion beam emitted from the lens l is arranged so as to pass through the rectangular slit rb in parallel or in a bundle state.

以上のような構成において、イオン源から放出されたイ
オンビーム/はその放射角のうち可成り大きな角度(z
 1度)までのイオンビームがリミッタ7の大口径孔7
αを通過する。このイオンビームは第ルンズ3でクロス
オーバさせられた後、第2レンズグで生葉束または平行
光とされ、矩形リミットマスクtの矩形状スリン) 1
bを通過して、半導体基板j上にスポット状ではなく成
る面積をもって照射される。
In the above configuration, the ion beam / emitted from the ion source has a fairly large radiation angle (z
The ion beam (up to 1 degree) is
Pass through α. After this ion beam is crossed over in the third lens, it is made into a bundle of leaves or parallel light in the second lens, and is converted into a straight beam or parallel light in the second lens, and is then converted into a rectangular beam with a rectangular limit mask (t).
b, and is irradiated onto the semiconductor substrate j with an area that is no longer spot-like.

したがって、この発明ではイオン源から放出ルれるイオ
ンビームlの放射角のうち可成りのきな角度までのイオ
ンビームを平行もしくは 6− 生葉束状態で矩形状スリットざbに通過させて半導体基
板S上に照射されるため、半導体基板!上には大面積部
分乙のイオン注入領域が一度の操作で形成することにな
る。
Therefore, in this invention, the ion beam emitted from the ion source up to a considerably large radiation angle is passed through the rectangular slit b in parallel or in a bundle state to the semiconductor substrate S. Because it is irradiated onto the semiconductor substrate! On the top, a large-area ion implantation region B is formed in one operation.

なお、この実施例では二つの鍵型部材tα、rαを摺動
させることにより色々な寸法の矩形状スリットrbを形
成することができるので、一つの矩形リミットマスクt
を用いて各種寸法の四角形成るいは矩形状イオン注入部
を半導体基板j上に形成することができる。
In addition, in this embodiment, rectangular slits rb of various dimensions can be formed by sliding the two key-shaped members tα and rα, so one rectangular limit mask t
Square or rectangular ion implantation portions of various sizes can be formed on the semiconductor substrate j using the method.

なお、寸法の異なる矩形スリットを多数連設したリミッ
トマスク7を用いれば上述のような寸法可変の矩形リミ
ットを用いなくても各種寸法の矩形状イオン注入部を半
導体基板j上に形成することができる。
Note that by using the limit mask 7 in which a large number of rectangular slits with different dimensions are arranged in series, rectangular ion implantation portions with various dimensions can be formed on the semiconductor substrate j without using the variable-dimensional rectangular limit as described above. can.

更に、この発明では第2レンズがら出たイオンビームを
平行もしくは生葉束状態で、矩形リミットマスクtのス
リットtbを通過させるものであるが、ここで生葉束の
大きさは注入矩形寸法(マスクの大きさ)との関係で決
められる。
Further, in this invention, the ion beam emitted from the second lens is passed through the slit tb of the rectangular limit mask t in parallel or in the form of a bundle of ions, but the size of the bundle of ions is determined by the size of the implantation rectangle (the size of the mask). size).

−7− 次に、この発明の効果を具体的な実施例に基いて示す。-7- Next, the effects of this invention will be shown based on specific examples.

(1) イオン注入描画モデル 描画面積100 ma X 100 tgmの4吋ウェ
ハー上に縦横0.5μmの間隔を置いて100μmX1
00μmの正方形を描画モデルとする。
(1) Ion implantation drawing model A drawing area of 100 μm x 1 is placed on a 4-inch wafer with a drawing area of 100 ma x 100 tgm with an interval of 0.5 μm vertically and horizontally.
A square of 00 μm is used as a drawing model.

(2)使用するイオンビーム 電流密度(0: 0.5ヤ侃、ドース量I X 10”
、雇のイオンビームを使用する。
(2) Ion beam current density used (0: 0.5 Y, dose amount I x 10"
, using a hired ion beam.

(3) スループット 上記比較例は、イオンビームを最小スポット径0.1μ
m まで集束して描画した場合のスループットであり、
実施例1〜4はこの発明の方法に1J開叩60−1ti
b71B(、S)より描画した場合のスルーブツトであ
る。上記の表より明らかなように100μmxiooμ
mのように大面積のイオン注入においてこの発明による
方法では従来法に比べて極めて効率的にイオン注入を行
うことができ、微細な線状領域にイオン注入するときは
小孔径を有するリミッタに交換することにより、容易に
イオン注入を行うことができる。
(3) Throughput The above comparative example uses an ion beam with a minimum spot diameter of 0.1μ.
The throughput when drawing is focused up to m,
Examples 1 to 4 apply to the method of this invention using 1J open drum 60-1ti.
This is the throughput when drawn from b71B(,S). As is clear from the table above, 100 μmxiooμ
The method according to the present invention can perform ion implantation in a large area such as m, much more efficiently than the conventional method, and when implanting ions into a fine linear region, it is necessary to replace the limiter with a limiter having a small hole diameter. By doing so, ion implantation can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマスクレスイオン注入法におけるイオン
光学系の構造を示す概略図、第2図はこの発明によるイ
オン光学系構造の概略図である。 図中、7は大口径の孔を有するリミッタ、lは矩形リミ
ッタマスク。 第1図 第2図
FIG. 1 is a schematic diagram showing the structure of an ion optical system in a conventional maskless ion implantation method, and FIG. 2 is a schematic diagram showing the structure of an ion optical system according to the present invention. In the figure, 7 is a limiter with a large diameter hole, and l is a rectangular limiter mask. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) イオン源、大口径孔を有するリミッタ、第ルン
ズ、第2レンズを順次配列し、更に第2レンズと半導体
基板との間にはイオンビームが平行もしくは生葉束状態
で通過するように矩形リミッタマスクを配置したことを
特徴とするマスクレスイオン注入法におけるイオン光学
系の構造。
(1) An ion source, a limiter with a large diameter hole, a second lens, and a second lens are arranged in sequence, and a rectangular shape is arranged between the second lens and the semiconductor substrate so that the ion beam passes in parallel or in a bundle. The structure of an ion optical system in a maskless ion implantation method characterized by the arrangement of a limiter mask.
(2)寸法可変な矩形リミッタマスクを使用する特許請
求の範囲第1項記載の構造。
(2) The structure according to claim 1, which uses a rectangular limiter mask with variable dimensions.
JP2007584A 1984-02-08 1984-02-08 Constitution of ion optical system in maskless ion implantation Pending JPS60165718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007584A JPS60165718A (en) 1984-02-08 1984-02-08 Constitution of ion optical system in maskless ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007584A JPS60165718A (en) 1984-02-08 1984-02-08 Constitution of ion optical system in maskless ion implantation

Publications (1)

Publication Number Publication Date
JPS60165718A true JPS60165718A (en) 1985-08-28

Family

ID=12016974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007584A Pending JPS60165718A (en) 1984-02-08 1984-02-08 Constitution of ion optical system in maskless ion implantation

Country Status (1)

Country Link
JP (1) JPS60165718A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633820A (en) * 1979-08-29 1981-04-04 Toshiba Corp Device for ion implantation
JPS58106824A (en) * 1981-12-18 1983-06-25 Toshiba Corp Processing method by focus ion beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633820A (en) * 1979-08-29 1981-04-04 Toshiba Corp Device for ion implantation
JPS58106824A (en) * 1981-12-18 1983-06-25 Toshiba Corp Processing method by focus ion beam

Similar Documents

Publication Publication Date Title
US4074139A (en) Apparatus and method for maskless ion implantation
US3434894A (en) Fabricating solid state devices by ion implantation
JP3113820B2 (en) Electron beam lithography system with low brightness
JPS5856332A (en) Correction of defect in mask and device thereof
JPH04230944A (en) Broad beam ion implantation and device
US4641034A (en) Ion implantation apparatus and method for maskless processing
JPH04242060A (en) Reflecting electronic microscope
JPS6051261B2 (en) Charged particle beam lithography equipment
JP2843249B2 (en) Method and apparatus for manufacturing a device
JPS60165718A (en) Constitution of ion optical system in maskless ion implantation
EP0035556A4 (en) Electron beam system.
JPH025343A (en) Ion implantation
JPS5943520A (en) Maskless ion implanting device
EP0066175B1 (en) Ion implanter
JPS58106824A (en) Processing method by focus ion beam
JP3265764B2 (en) Electron beam exposure method and apparatus
JPS60249318A (en) Ion micro beam implantation
JPH0897122A (en) Method and device for applying charged particle beam
JPH08162389A (en) Method and device for charged particle beam projection
JPH08315765A (en) Electrostatic scan type ion implantation method
JPS62241248A (en) Focusing device for ion beam
JPS60208826A (en) Method of applying focusing ion beams
JPS61256553A (en) Ion-beam generator
JPH0629198A (en) Charged particle beam lithography
JPH025353A (en) Ion implanter