JPS5879756A - Amorphous si image sensor - Google Patents

Amorphous si image sensor

Info

Publication number
JPS5879756A
JPS5879756A JP56178054A JP17805481A JPS5879756A JP S5879756 A JPS5879756 A JP S5879756A JP 56178054 A JP56178054 A JP 56178054A JP 17805481 A JP17805481 A JP 17805481A JP S5879756 A JPS5879756 A JP S5879756A
Authority
JP
Japan
Prior art keywords
amorphous silicon
image sensor
layer
transparent
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56178054A
Other languages
Japanese (ja)
Other versions
JPS6211792B2 (en
Inventor
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56178054A priority Critical patent/JPS5879756A/en
Publication of JPS5879756A publication Critical patent/JPS5879756A/en
Publication of JPS6211792B2 publication Critical patent/JPS6211792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To alleviate incompleteness in a blocking effect and thereby to improve electric charge holding characteristics by a method wherein difference in stage height is decreased among electrodes and the effective length is reduced in such difference. CONSTITUTION:On a transparent substrate 21 made of glass or the like, a light- shielding film 22 (1,000Angstrom , for example) made of a metal electrode of Cr or the like with a rectilinear window and a transparent, electro-conductive film 23 (500Angstrom thick, for example) made of a Zn oxide or the like are provided, to form a sensor substrate. On this sensor substrate, a transparent, dielectric Si3N4 film 24, serving as a blocking layer, a high-resistance amorphous Si layer 25 with its resistivity not less than 10<10>OMEGA/cm and a P type amorphous Si layer 26, with its resistivity not less than 10<6>OMEGA/cm and not more than 1011/cm are successively laminated one upon another. On the lamination, a plurality of metal electrodes 27 made of Al or the like are built, which results in the making of an image sensor with its blocking effect improved.

Description

【発明の詳細な説明】 本発明は非晶質シリコンを用いたイメージセンサ−に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image sensor using amorphous silicon.

ファクシミリを家庭内に普及するために装置の小型化が
望まれている。このような装置の小型化にあたって最も
障害となっているのが光電変換系の大きさである。
In order to popularize facsimiles in homes, it is desired that devices be made smaller. The biggest obstacle to miniaturizing such devices is the size of the photoelectric conversion system.

従来の7アクシ電りの光電変換デバイス(以下イメージ
センサ−と略す)はMOS形あるいはCCD形等の半導
体ICが用いられてきた。しかしこの半導体イメージセ
ンサ−はチップの大きさが数■角と小さく1例えば20
s+幅のム4版原稿を電気信号に変換するには原稿像を
数1幅に縮少するための光学系が必要であり、そのため
の光路長(14版幅で50〜60 cm )の確保が装
置小型化のネックとされてきた。
Conventional 7-axis photoelectric conversion devices (hereinafter abbreviated as image sensors) have used semiconductor ICs such as MOS type or CCD type. However, the chip size of this semiconductor image sensor is small, only a few square meters, for example 20 mm.
In order to convert a 4-print manuscript with a width of s+ into an electrical signal, an optical system is required to reduce the original image to a width of several digits, and the optical path length for this purpose (50 to 60 cm for a 14-print width) must be ensured. has been regarded as a bottleneck in device miniaturization.

この問題解決法として密着型イメージセンナ−とよばれ
るイメージセンサ−が注目されている。
An image sensor called a contact image sensor is attracting attention as a solution to this problem.

これは原稿幅と同じ寸法の光電変換領域をもった人溜の
イメージセンサ−で原稿に密着させて用いるので、原稿
像を縮少するためのレンズ光学系を使用しなくても良い
ため装置の大、幅な小型化が達成される。このような密
着型イメージセンナ−に使用される充電変換材料として
はすぐれた光電変換特性を有し、かつ大面積に一様に形
成できることが必要である。このような材料として、砒
素−セレンーテルル系アモルファス牛導体や硫化カド之
つム、セレン化カド之つム等を使用したものが現在研究
開発中であるがこれらの材料は砒素、カド之つム、七し
ンのような公害物質が含まれていたり、熱的安定性が悪
いなどの問題点があった。
This is an image sensor with a photoelectric conversion area that is the same size as the width of the document, and is used in close contact with the document, so there is no need to use a lens optical system to reduce the document image. Significant miniaturization is achieved. The charge conversion material used in such a contact image sensor must have excellent photoelectric conversion properties and be able to be uniformly formed over a large area. As such materials, materials using arsenic-selenium-tellurium amorphous conductors, sulfide cadmium, selenide cadmium, etc. are currently under research and development; It had problems such as containing pollutants such as shichishin and poor thermal stability.

一方、低価格太陽電池用材料として最近注目されている
非晶質シリコンはすぐれた光導電材料であり、すでに太
陽電池の他、電子写真や撮像用ビディコンへの応用研究
が開始されている。この非晶質シリコンは通常モノシラ
ンのグロー放電分解またはシリコンの反応性スパッター
で形成され、大面積で均一な薄膜が容易に得られること
、また構成惣質は無公害なシリコンと水責であることな
どの特長を有する。非晶質シリコンを密着型イメージセ
ンサ−に応用する場合には非晶質シリコンの暗時の抵抗
率が109〜10119−aと比較的大きいことを利用
し、かつ光導電率が硫化カドミウム等に比べて小さいこ
とから蓄積型で動作させるようKする。この蓄積型の動
作は走査時間内に光によって発生した電荷によってセン
サー表面に保持されていた電荷を消去する方法がとられ
ている。
On the other hand, amorphous silicon, which has recently attracted attention as a material for low-cost solar cells, is an excellent photoconductive material, and research has already begun on its application to not only solar cells but also vidicons for electrophotography and imaging. This amorphous silicon is usually formed by glow discharge decomposition of monosilane or reactive sputtering of silicon, and it is easy to obtain a uniform thin film over a large area, and its constituent materials are non-polluting silicon and water resistant. It has the following features. When amorphous silicon is applied to a contact image sensor, the dark resistivity of amorphous silicon is relatively high at 109 to 10119-a, and the photoconductivity is compared to cadmium sulfide, etc. Since it is relatively small, it is decided to operate it as a storage type. This accumulation type operation uses a method in which charges held on the sensor surface are erased by charges generated by light during the scanning time.

このため暗時に紘走査時間中にセンサー表面に与えられ
た電荷を保持する必要がある。したがって10”〜10
12Ω−dの抵抗率をもつ非晶質シリコンをイメージセ
ンサ−として使うには更に見かけ上の抵抗率を大きくす
るために電極からの電荷の注入を阻止したブロッキング
構造にすることが望ましい。この電極からの電荷の注入
を阻止するために電子に対するブロッキング層としてP
型非晶質シリコン、正孔に対するブロッキング層として
8i、N4. Sin、等の透明誘電膜を用いる。とこ
ろがこの透明誘電膜の膜厚は光によって生成したキャリ
アを電極に輸送する必要があることから約200AQ度
と非常に薄くしなければならない。
For this reason, it is necessary to retain the charge applied to the sensor surface during the dark scanning period. Therefore 10”~10
In order to use amorphous silicon having a resistivity of 12 Ω-d as an image sensor, it is desirable to have a blocking structure that prevents charge injection from the electrodes in order to further increase the apparent resistivity. In order to prevent charge injection from this electrode, P is used as a blocking layer for electrons.
type amorphous silicon, 8i, N4.8i as a blocking layer for holes. A transparent dielectric film such as Sin is used. However, the thickness of this transparent dielectric film must be made very thin, about 200 AQ degrees, because it is necessary to transport carriers generated by light to the electrodes.

このため複数個(A4版の原稿用のイメージセンサ−で
1700個)の島状透明導電膜を含む電極が付イi基f
E (fA述の砒素−セレンーテルル系アモリファス牛
導体密着型イメージセンサ−で実際に泪いられている)
の上に約20OAの透明誘電膜プリ、キング層のある非
晶質シリコンセンサーを形成すると電極の段差(透明導
電膜の厚さと取出し電極の厚さを加えた段着で150O
A以上)のためにブロッキング効果が不完全になり暗時
の電荷保持特性が悪くなることがあった。
For this reason, a plurality of electrodes (1,700 for an image sensor for A4 size originals) containing island-shaped transparent conductive films are required.
E (Actually used in the arsenic-selenium-tellurium amorphous conductor contact image sensor described by fA)
When an amorphous silicon sensor with a transparent dielectric film pre- and king layer of about 20 OA is formed on top of the sensor, the height difference between the electrodes (the thickness of the transparent conductive film plus the thickness of the lead-out electrode) is 150 OA.
A or higher), the blocking effect may be incomplete and the charge retention characteristics in the dark may deteriorate.

本発明性非晶質シリコン密着型イメージセンサ−のこの
ようなブロッキング効果の不完全性を軽減し、暗時の電
荷保持特性を改善するものである。
The present invention is intended to reduce the imperfection of the blocking effect of the amorphous silicon-contact image sensor of the present invention and improve the charge retention characteristics in the dark.

本発明によれば電極の段差を小さくシ、なおかつ段差部
分の有効長を短かくすることによって電極段差の影響を
小さくしたイメージセンサ−が得られる。センサーの構
造は下部透明誘電膜と1010Ω−α以上の高抵抗非晶
質シリコン層、10@Ω−α以上10°Ω−α以下のP
型非晶質シリコンおよび複数個の分離された金属電極群
が、細長く島状(A4版用のセンサーのときは約22閏
)に形成された透明導電膜上のストライブ状に窓を開け
て形成された金属電極の付いた基板上に、順次形成され
ていることを特徴とする。この時ブロッキング層の下の
電極の段差は透明導電膜の段差部分と遮光のための金属
電極の段差部分が直接型なりあうことがないためにそれ
ぞれの厚さの約5ooXと約1000Xとなり前述の1
50OAよりも小さくなる。しかも、この透明導電膜を
含む電極は複数個に分離していないために、従来のよう
に狡い個別電極間に薄いブロッキング層を形成しなくて
も良く、比較的平坦な電極上にブロッキング層を形成す
れば良い。またこの段差の実質長さも減少しブロッキン
グ効果が改善でき、暗時の電荷保持特性が良くなる。
According to the present invention, an image sensor can be obtained in which the influence of the electrode step is reduced by reducing the step difference in the electrode and shortening the effective length of the step portion. The structure of the sensor is a lower transparent dielectric film, a high resistance amorphous silicon layer of 1010Ω-α or more, and a P layer of 10@Ω-α or more and 10°Ω-α or less.
Amorphous silicon and a plurality of separated metal electrodes are formed by opening windows in the form of stripes on a transparent conductive film formed into a long, thin island shape (approximately 22 leaps in the case of an A4 size sensor). They are characterized in that they are sequentially formed on a substrate with formed metal electrodes. At this time, the level difference of the electrode under the blocking layer is about 5ooX and about 1000X of the respective thicknesses because the level difference part of the transparent conductive film and the level difference part of the metal electrode for light shielding do not directly overlap each other. 1
It becomes smaller than 50OA. Moreover, since the electrode containing this transparent conductive film is not separated into multiple pieces, there is no need to form a thin blocking layer between individual electrodes as in the conventional method, and a blocking layer can be formed on a relatively flat electrode. Just form it. Furthermore, the actual length of this step is reduced, the blocking effect can be improved, and the charge retention characteristics in the dark can be improved.

次に本発明を実施例により説明する。第1図は従来型基
板上に非晶質シリコンイメージセンサ−を形成した時の
概略図であり、第2vJは本発明による密着型イメージ
センサ−の概略図である。第1図において、透明基板1
1上に透明導電膜12として酸化スズ又は酸化インヂウ
ムスズをMn500X、庶光層および取出し電極13と
してクロムを1oooX、コンタクトバッド14として
金を1μm彫成計重島状の電極群をエツチング加工して
センサー基鈑を形成する。この島状電極の寸法はセンサ
ーの解像度によって決定づけられるが通常8ドツ)7m
のセンサーでは100μm輻の寸法をもち島状電極間隙
は25μmである。このような島状電極群の付いた基板
上に正孔のプaツキング層15としてSt、N、  を
zooi、+r賢ンを20 pprnppmドープ抵抗
非晶質シリコン16を2.54m、ボロンを250 p
pmドープしたP型非晶質シリコン層17を0.3μm
形成する。この非晶質シリコンおよび81□N4 はシ
ランあるいはシランと窒素、アンモニア等の気体を0.
05〜5’rorrの真空度に保った装置内でグロー放
電分解法で形成するが、シリコンの反応性スパッタ法で
も形成可能である。また高抵抗非晶質シリコン層には酸
素又は酸素とボロンをドープした非晶質シリコン層を用
いてもセンサーとしての機能をそなえていることが確認
されている。このようにして最後に共通電極18として
フル1ニウムを長さ20e11g厚さ0.5μm形成し
て密着型イメージセンサ−を形成する。このときブロッ
キング効果を低減させる電極部段差は主に膜厚のうすい
81.N。
Next, the present invention will be explained by examples. FIG. 1 is a schematic diagram of an amorphous silicon image sensor formed on a conventional substrate, and FIG. 2 is a schematic diagram of a contact type image sensor according to the present invention. In FIG. 1, a transparent substrate 1
1, tin oxide or indium tin oxide is Mn500X as the transparent conductive film 12, chromium is 100X as the common optical layer and extraction electrode 13, and gold is etched to 1 μm as the contact pad 14. A group of electrodes in the shape of a heavy island is etched to form a sensor. Form the basic board. The size of this island-like electrode is determined by the resolution of the sensor, but it is usually 8 dots) 7 m.
The sensor has a radius of 100 μm and an island electrode gap of 25 μm. On the substrate with such an island-shaped electrode group, a hole-pucking layer 15 is made of St, N, zooi, +r 20 mm, 2.54 m of amorphous silicon 16 doped with ppm, and 2.54 m of boron. p
PM-doped P-type amorphous silicon layer 17 with a thickness of 0.3 μm
Form. This amorphous silicon and 81□N4 contain silane or silane and a gas such as nitrogen or ammonia at 0.0%.
Although it is formed by a glow discharge decomposition method in an apparatus maintained at a vacuum level of 0.05 to 5' rorr, it can also be formed by a silicon reactive sputtering method. Furthermore, it has been confirmed that the high-resistance amorphous silicon layer can function as a sensor even when an amorphous silicon layer doped with oxygen or oxygen and boron is used. In this way, finally, a common electrode 18 is formed of full nium with a length of 20e11g and a thickness of 0.5 .mu.m to form a contact type image sensor. At this time, the electrode part step difference that reduces the blocking effect is mainly due to the thin film thickness 81. N.

層15のところに存在し、その厚さは図からあきらかな
ように透明導電膜12と度光!113の膜厚の和で1s
ooiである。またこの段差は各個別電極**に生じて
おり、この電極間は25μmと非常に挾<=81aNa
 を形成するときのグルー放電が電極のシールド効果に
より侵入しに<<5laN4が段差に付着しにくい。
It exists in the layer 15, and its thickness is the same as that of the transparent conductive film 12, as is clear from the figure. The sum of 113 film thicknesses is 1 s.
It is ooi. In addition, this step occurs in each individual electrode**, and the distance between these electrodes is 25μm, which is very narrow <=81aNa
When forming the electrode, the glue discharge invades due to the shielding effect of the electrode, making it difficult for <<5laN4 to adhere to the step.

ところが本発明による112図の実施例ではガラス基板
上21に輻100μmo窓をあけた幅3■長さ201厚
さ100OXのりpムの度光膜22と輻2■長さ205
+厚さ5ooXo透明導電膜(例えば酸化スズ)23を
付けてセンサー基板とする。
However, in the embodiment shown in FIG. 112 according to the present invention, a window with a diameter of 100 μmo is opened on a glass substrate 21, and a photometric film 22 with a width of 3 mm, a length of 201 mm, a thickness of 100 OX, and a thickness of 205 μm is formed.
+ A transparent conductive film (for example, tin oxide) 23 with a thickness of 5ooXo is attached to form a sensor substrate.

この基板上に正孔のブロクキング層24として81、N
4  を約20OA、高抵抗非晶質シリコン層25をλ
5μm、Pfi非晶質シリコン層26を00−3j1順
次形成し、Ik後に個別電極27としてアルミニウムを
0.5μm蒸着し、100μm幅にエツチング加工して
イメージセンサ−を形成する。
81, N as a hole blocking layer 24 on this substrate.
4 to about 20OA, high resistance amorphous silicon layer 25 to λ
A Pfi amorphous silicon layer 26 having a thickness of 5 μm is formed in the order of 00-3j1, and after Ik, aluminum is deposited to a thickness of 0.5 μm as an individual electrode 27 and etched to a width of 100 μm to form an image sensor.

このように形成されたイメージ七ンす−においては、膜
厚のうすいS i s N4  ブロクキング層24に
生ずる段差はそれぞれ500XとtoooXになり第1
11の150OAよりも軽減される。しかも第1図のよ
うな各個別電極間の段差溝がないため、ブロクキング層
24が段差壁につきやすくなるという利点を持ち、第1
図と比べると、段差の実質長さも短かくなり、ブロッキ
ング効果が改善できる。
In the image sevens formed in this way, the step difference that occurs in the thin Si S N4 blocking layer 24 is 500X and tooX, respectively, and the first
It is lighter than the 150OA of 11. Moreover, since there is no stepped groove between each individual electrode as shown in FIG.
Compared to the figure, the actual length of the step is also shorter, and the blocking effect can be improved.

実際にブロッキング効果の評価として、センサーの暗時
における信号出力を測定したところ蓄積時間を2o m
i@cとした時の第1図の1#造のセンサーの暗時にお
ける出力が50 rnVに対し本発明による第2図のw
童のセンサーは8 mVと小さくなり光照射時の信号と
のS/N比は6.25倍改善された。
To actually evaluate the blocking effect, we measured the signal output of the sensor in the dark, and found that the accumulation time was 20 m
When i@c, the output in the dark of the 1# sensor in Fig. 1 is 50 rnV, whereas the w in Fig. 2 according to the present invention is 50 rnV.
The child's sensor is now as small as 8 mV, and the S/N ratio with respect to the signal during light irradiation has been improved by 6.25 times.

以上のように本発明は、非晶質シリコンを用いた密着皇
イメージセンサ−の実用化にとって非常に有用であるこ
とは明らかである。
As described above, it is clear that the present invention is very useful for the practical application of a close-contact image sensor using amorphous silicon.

【図面の簡単な説明】[Brief explanation of drawings]

l11図は従来型基板上に形成した非晶質シリコンイメ
ージセンサ−の概略図であり、図中11は透明ガラス基
板、12は酸化スズ導電膜、13は度光および取出電極
、14は金のコンタクトパッド、15は8 i 、N、
ブロッキング層、16は高抵抗非晶質シリコン層、17
はP型押晶質シリコン層、18は共通アルミニウム電極
、19は入射光をそれぞれ示す。 第2図線本発明による非晶質シリコンイメージセンサ−
の概略図であり、図中21は透明ガラス基板%22はク
ロムの度光膜、23は酸化スズ透明導電膜、24は8i
、N4 ブロッキング層、25は高抵抗非晶質シリコン
層、26はP型非晶實シリコン層、27けアルミニウム
個別電極をそれぞれ示す。
Figure l11 is a schematic diagram of an amorphous silicon image sensor formed on a conventional substrate. In the figure, 11 is a transparent glass substrate, 12 is a tin oxide conductive film, 13 is a light source and extraction electrode, and 14 is a gold plate. Contact pad, 15 is 8 i, N,
Blocking layer, 16, high resistance amorphous silicon layer, 17
18 indicates a P-type extruded crystalline silicon layer, 18 indicates a common aluminum electrode, and 19 indicates incident light. Figure 2: Amorphous silicon image sensor according to the present invention
21 is a transparent glass substrate, 22 is a chromium luminescent film, 23 is a tin oxide transparent conductive film, and 24 is an 8i
, N4 blocking layer, 25 a high-resistance amorphous silicon layer, 26 a P-type amorphous silicon layer, and 27 aluminum individual electrodes, respectively.

Claims (1)

【特許請求の範囲】[Claims] 直線状に窓が開けられた金属電極と透明導電膜が付着さ
れた透明基板上に、透明誘電膜、10菖・ρ−個以上の
高抵抗非晶質シリコン、10’、G −es以上101
1Ω−1以下のP型非晶質シリコン、および分離された
複数個の金属電極群が順次積層して形成されたことを特
徴とする非晶質シリコンイメージセンサ−0
On a transparent substrate on which a metal electrode with a linear window and a transparent conductive film are attached, a transparent dielectric film, a high-resistance amorphous silicon of 10 irises ρ- or more, 10', G-es or more 101
Amorphous silicon image sensor-0 characterized in that it is formed by sequentially stacking P-type amorphous silicon of 1Ω-1 or less and a plurality of separated metal electrode groups.
JP56178054A 1981-11-06 1981-11-06 Amorphous si image sensor Granted JPS5879756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56178054A JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56178054A JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Publications (2)

Publication Number Publication Date
JPS5879756A true JPS5879756A (en) 1983-05-13
JPS6211792B2 JPS6211792B2 (en) 1987-03-14

Family

ID=16041789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56178054A Granted JPS5879756A (en) 1981-11-06 1981-11-06 Amorphous si image sensor

Country Status (1)

Country Link
JP (1) JPS5879756A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887862A (en) * 1981-11-20 1983-05-25 Fuji Xerox Co Ltd Long-sized one-dimensional thin film sensor
DE3503048A1 (en) * 1984-02-01 1985-08-01 Sharp K.K., Osaka TWO DIMENSIONAL IMAGE READER
JPS6130071A (en) * 1984-07-23 1986-02-12 Nec Corp Photoelectric conversion element array
JPS6331164A (en) * 1986-07-24 1988-02-09 Nec Corp Photoelectric conversion element array
CN108811476A (en) * 2017-04-26 2018-11-13 Tdk株式会社 Laminated electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887862A (en) * 1981-11-20 1983-05-25 Fuji Xerox Co Ltd Long-sized one-dimensional thin film sensor
JPS6314872B2 (en) * 1981-11-20 1988-04-01 Fuji Xerox Co Ltd
DE3503048A1 (en) * 1984-02-01 1985-08-01 Sharp K.K., Osaka TWO DIMENSIONAL IMAGE READER
JPS6130071A (en) * 1984-07-23 1986-02-12 Nec Corp Photoelectric conversion element array
JPS6331164A (en) * 1986-07-24 1988-02-09 Nec Corp Photoelectric conversion element array
CN108811476A (en) * 2017-04-26 2018-11-13 Tdk株式会社 Laminated electronic component
CN108811476B (en) * 2017-04-26 2021-01-01 Tdk株式会社 Laminated electronic component

Also Published As

Publication number Publication date
JPS6211792B2 (en) 1987-03-14

Similar Documents

Publication Publication Date Title
US4412900A (en) Method of manufacturing photosensors
US4354104A (en) Solid-state image pickup device
CA1125894A (en) Photosensor
GB2188482A (en) Optical sensor
US7554092B2 (en) X-ray detector
US4405915A (en) Photoelectric transducing element
EP0029679B1 (en) Photoelectric device
Hamano et al. An amorphous Si high speed linear image sensor
JPS5879756A (en) Amorphous si image sensor
JPH0217992B2 (en)
JPS5897862A (en) Close adhesion type image sensor
US5942788A (en) Solid state image sensing device
JPS5861662A (en) Image sensor
KR900001981B1 (en) Manufacturing method of semiconductor film
JPH08204165A (en) Multilayered solid-state image sensing device
Shimizu et al. Vidicon target of ap‐i‐n structure using a‐Si: H
JPS58201356A (en) Amorphous silicon image sensor
JPS6322465B2 (en)
JPS59143379A (en) Photoconductor and manufacture thereof
JPH0563171A (en) Manufacture of optoelectric transducer
JPH0523072B2 (en)
JPS5884457A (en) Long thin film reading device
KR820002330B1 (en) Photosensor
KR900001220Y1 (en) Image storage device
JPS586165A (en) Solid-state image pickup device