JPS6015723B2 - Manufacturing method of high modulus aromatic polyamide synthetic fiber - Google Patents

Manufacturing method of high modulus aromatic polyamide synthetic fiber

Info

Publication number
JPS6015723B2
JPS6015723B2 JP928277A JP928277A JPS6015723B2 JP S6015723 B2 JPS6015723 B2 JP S6015723B2 JP 928277 A JP928277 A JP 928277A JP 928277 A JP928277 A JP 928277A JP S6015723 B2 JPS6015723 B2 JP S6015723B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
aromatic polyamide
wet
high modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP928277A
Other languages
Japanese (ja)
Other versions
JPS5398415A (en
Inventor
健二 竹尾
洋司 鈴木
雄三 緑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP928277A priority Critical patent/JPS6015723B2/en
Publication of JPS5398415A publication Critical patent/JPS5398415A/en
Publication of JPS6015723B2 publication Critical patent/JPS6015723B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、高モジュラス芳香族ポリアミド系合成繊維を
製造する方法に関するものであり、特に熱劣化を伴なう
ことなく効率よく該繊維を製造するための改良された方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high modulus aromatic polyamide synthetic fibers, and in particular, an improved method for producing the fibers efficiently without thermal deterioration. Regarding.

従来、パラ配向芳香族ポリアミド系重合体と硫酸系溶媒
で、限られた固有粘度および限られたポリマー濃度の織
糸溶液を用いて空中吐出湿式織糸することにより、鮫糸
したま)で、すなわち、延伸または熱処理を行わないま
)で、異例に高い引張強度およびモジュラスを有する繊
維が得られることが、たとえば、椿関昭47−394斑
号公報により知られている。
Conventionally, weaving using a para-oriented aromatic polyamide-based polymer and a sulfuric acid-based solvent, using a weaving solution with a limited intrinsic viscosity and a limited polymer concentration, by air-discharge wet weaving. It is known, for example, from Tsubaki Seki Publication No. 47-394 that fibers having exceptionally high tensile strength and modulus can be obtained without drawing or heat treatment.

このように芳香族ポリアミド系繊維は、その分子構造の
剛直さや分子間引力等により、期待されるように高い引
張強度、モジュラス、優れた耐熱性により特徴づけられ
る。また、特関昭47一43419には、約400デニ
ールまたはそれ以下のャーンに対しては約250〜60
0qo(さらに好適には450〜斑oqo)加熱、70
0〜1500またはそれ以上のデニールのャーンに対し
ては上述の好適な温度より50〜100℃高い温度でモ
ジュラスを向上させる方法、さらには多数処理を行なっ
てモジュラスを向上させる方法が教示されている。しか
しながら、限られた高いポリマー濃度の紙糸溶液を用い
て空中吐出湿式線糸で得られた繊維を、さらにモジュラ
ス向上のため、比較的高温で一段熱処理および二段熱処
理を施すことは、モジュラスは増加するもの)、元の繊
維の引張強度および固有粘度の減少を著しく引き起すと
言う重大な欠点があった。
As described above, aromatic polyamide fibers are characterized by high tensile strength, modulus, and excellent heat resistance, as expected, due to the rigidity of their molecular structure and intermolecular attraction. In addition, in Tokukan Sho 47-43419, for yarns of about 400 deniers or less, about 250 to 60
0qo (more preferably 450 to spotty oqo) heating, 70
For yarns with a denier of 0 to 1,500 or more, it is taught how to improve the modulus at a temperature 50 to 100°C higher than the above-mentioned preferred temperature, and how to improve the modulus by performing multiple treatments. . However, the modulus of fibers obtained by air-discharged wet wire yarn using a paper yarn solution with a limited high polymer concentration is subjected to one-step heat treatment and two-step heat treatment at a relatively high temperature in order to further improve the modulus. This had the serious drawback of causing a significant decrease in the tensile strength and intrinsic viscosity of the original fiber.

本発明者らは、鋭意検討の結果、比較的低温で紡出糸を
湿潤状態で直接熱処理しつ)一定条件で延伸すれば、上
記問題点がなく、高モジュラスの繊維が得られることが
判明した。
As a result of extensive studies, the present inventors have found that if the spun yarn is directly heat-treated in a wet state at a relatively low temperature and then stretched under certain conditions, the above problems can be avoided and high modulus fibers can be obtained. did.

本発明は、か)る知見に基くもので、熱劣化のない高モ
ジュラス芳香族ポリアミド繊維を効率よく製造する方法
を提供することを目的としている。
The present invention is based on the above knowledge and aims to provide a method for efficiently producing high modulus aromatic polyamide fibers that do not undergo thermal deterioration.

すなわち、上記目的を達成した本発明の高モジュラス芳
香族ポリアミド繊維の製造法は、パラ配向芳香族ボリア
ミド重合体を9箱重量%以上の濃硫酸に14重量%以上
溶解して成る光学異方性ドープを、一旦空気中に吐出し
て空気中を走行せしめた後、水または4の重量%以下の
稀硫酸より成る凝固液中に導くことにより紙糸し、洗浄
された糸条を、湿潤状態で20000以下の不活性ガス
加熱雰囲気中に導入し、繊維の残存水分率が1〜1の重
量%の範囲内になるような時間加熱すると共に、その温
度における最大延伸倍率より計算して、1十(最大延伸
倍率−1)×0.2倍〜1十(鼓大延伸倍率一1)×0
.針音の範囲の延伸倍率で同時に延伸することを特徴と
している。
That is, the method for producing a high modulus aromatic polyamide fiber of the present invention that achieves the above object is to obtain an optically anisotropic fiber by dissolving 14% by weight or more of a para-oriented aromatic polyamide polymer in 9% by weight or more of concentrated sulfuric acid. Once the dope is discharged into the air and allowed to run in the air, it is introduced into a coagulating liquid consisting of water or dilute sulfuric acid of 4% by weight or less to form paper threads, and the washed threads are made into paper threads in a wet state. Introduced into an inert gas heating atmosphere of 20,000 or less, heated for a time such that the residual moisture content of the fiber is within the range of 1 to 1% by weight, and calculated from the maximum stretching ratio at that temperature. 10 (maximum stretch ratio - 1) x 0.2 times to 10 (Tsumi-dai stretch ratio - 1) x 0
.. It is characterized by simultaneous stretching at a stretching ratio within the needle sound range.

本発明の特徴とする方法によれば、出発繊維を200q
o以下好ましくは150℃以下100℃以上の比較的低
温で延伸しつ)、直接熱処理することにより、出発繊維
の引張強度および固有粘度を低下させることなく、モジ
ュラスを大中に向上するという極めて飛躍的に改良され
、しかも、高温処理特有の熱劣化、変色および毛羽等の
ない高品位の繊維が容易に得られる。
According to the method characterized by the present invention, the starting fiber is 200q
By drawing at a relatively low temperature (preferably less than 150°C or more than 100°C) and directly heat-treating, the modulus of the starting fiber can be greatly improved without reducing its tensile strength and intrinsic viscosity. It is possible to easily obtain high-quality fibers that are improved in terms of quality and are free from thermal deterioration, discoloration, fluff, etc. that are characteristic of high-temperature processing.

本発明でいうパラ配向芳香族ポリアミド系重合体とは、
次の単位−NH−Ar,一NH−1、一CO−AJ2−
CO−Dおよび/または一CO−Ar3一NH一皿〔式
中、単位1および0‘まこれがポリマー中には実質的に
等モル量で存在し、Ar,,Ar2および〜3は各々2
価の芳香族基を表わす。
The para-oriented aromatic polyamide polymer referred to in the present invention is
The following units -NH-Ar, -NH-1, -CO-AJ2-
CO-D and/or CO-Ar3-NH [wherein the units 1 and 0' are present in substantially equimolar amounts in the polymer, Ar,, Ar2 and ~3 are each 2
represents a valent aromatic group.

また、ポリマー中の基〜,,〜2およびAr3の全体の
少くとも90モル%は、パラ配向であり、アミド基によ
り結合されて全体として直線的に連鎖がつながるもので
ある。〕より実質的に構成されるものである。本発明を
実施する上で、これらのポリマーは溶解され、ドープと
することが必要であるが、本発明の効果を得るには、濃
厚な溶液を用いることが必要で、適当な溶媒としては、
硫酸、クロル硫酸、フルオル硫酸等の強酸が挙げられる
が、工業的に実施する上では、98%重量%の濃硫酸を
選ぶべきである。硫酸はS03を過剰に含む、すなわち
、発煙硫酸であってもよいが、過剰のS03が存在する
と、ドープ保存中にポリマーの固有粘度の減少をもたら
すので、発煙硫酸を使用する時は必要最少限の保持、溶
解温度で、かつ短時間のうちに紡糸することが望ましい
。また、この溶媒には、たとえば、弗化水素酸、ハロゲ
ン化アルキルスルホン酸、ハ、oゲン化芳香族スルホン
酸等の添加剤が混入していてもよい。また、ドープ中に
酸化防止剤、紫外線吸収剤、染料、雛燃剤等が加えられ
ていてもよい。さらに本発明の特徴とする高モジュラス
、高強度を有する繊維製造のためには、ドープ中のポリ
マー濃度は、好適には少くとも14重量%、より好まし
くは1り重量%じ久上あることが必要である。
Furthermore, at least 90 mol% of all the groups ~,, ~2 and Ar3 in the polymer are para-oriented and are bonded by amide groups to form a linear chain as a whole. ]. In carrying out the present invention, these polymers need to be dissolved and doped; however, in order to obtain the effects of the present invention, it is necessary to use a concentrated solution, and suitable solvents include:
Examples include strong acids such as sulfuric acid, chlorosulfuric acid, and fluorosulfuric acid, but for industrial implementation, 98% by weight concentrated sulfuric acid should be selected. The sulfuric acid may contain an excess of S03, that is, it may be oleum, but the presence of excess S03 will lead to a decrease in the intrinsic viscosity of the polymer during dope storage, so when using fuming sulfuric acid, use the minimum amount necessary. It is desirable to maintain the melting temperature and spin the fiber within a short period of time. Further, this solvent may contain additives such as hydrofluoric acid, halogenated alkyl sulfonic acid, halogenated aromatic sulfonic acid, and the like. Further, an antioxidant, an ultraviolet absorber, a dye, a retardant, etc. may be added to the dope. Furthermore, in order to produce fibers with high modulus and high strength, which are the characteristics of the present invention, the polymer concentration in the dope is preferably at least 14% by weight, more preferably at least 1% by weight. is necessary.

具体的には、使用するポリマーの固有粘度、種類、溶媒
の濃度によって決定されるべきである。本発明のパラ配
向芳香族ポリアミドのドープは、常温では固体であり、
熔融温度以上では、ポリマーはネマチツクの液晶状態で
存在し、光学異方性を生じ、ドープを灘断力下で観察す
ると、真珠様光沢が観察される。調整されたドープは引
き続いて、オリフィスを通じて紙糸する。紙糸方法とし
ては、ドープをオリフィスを通じて、一旦空気中に押し
出し、まず短い距離の空気層を走行させた後、次いで凝
固液中に導いて紡糸する、いわゆる空中吐出紡糸法が用
いられるべきであり、その理由は、ドープが常温では固
体となるため、加熱下にノズルから押し出す必要があり
、一方、凝固格温度は、溶剤の濃硫酸が凝固液で稀釈さ
れるときの発熱を吸収し、繊維でのボィド発生を抑える
ために、低い温度が好ましく、それらを独立に設定する
必要があるからである。
Specifically, it should be determined by the intrinsic viscosity of the polymer used, the type, and the concentration of the solvent. The para-oriented aromatic polyamide dope of the present invention is solid at room temperature,
Above the melting temperature, the polymer exists in a nematic liquid crystalline state, giving rise to optical anisotropy, and when the dope is observed under nada shear, a pearlescent luster is observed. The prepared dope is then threaded through the orifice. As for the paper yarn method, the so-called air jet spinning method should be used, in which the dope is once extruded into the air through an orifice, first travels a short distance in the air layer, and then introduced into a coagulating liquid and spun. The reason for this is that the dope is solid at room temperature, so it needs to be extruded from the nozzle while being heated.On the other hand, the coagulation temperature absorbs the heat generated when the solvent concentrated sulfuric acid is diluted with the coagulation liquid, and the fiber This is because a low temperature is preferable in order to suppress the generation of voids, and it is necessary to set these temperatures independently.

空気層の厚さは0.5〜5肌程度が適当であるが、これ
に限定されるものではなく、具体的にはオリフィスより
のドープ吐出速度、織糸のドラフト、フィラメントの融
合機会を少くする等により決定される。凝固格の形態は
整形または横形でもよく、整形の例としては、炉斗を使
用することもできる。
The appropriate thickness of the air layer is about 0.5 to 5 cm, but it is not limited to this. Specifically, the dope discharge speed from the orifice, the draft of the weaving yarn, and the chance of filament fusion are reduced. It is determined by The form of the coagulation case may be shaped or horizontal, and a furnace can also be used as an example of shaping.

裕中では凝固液は流動させられてよく、特に繊維と同方
向に流されることは、繊維の不必要な乱れがなくて好ま
しいが、ある角度をもって位置されていてもよい。凝固
液としては、凝固速度や、工業的に実施する上の便宜か
ら、水または4の重量%以下の稀硫酸が用いられるべき
である。
In the bath, the coagulating liquid may be allowed to flow, particularly in the same direction as the fibers, which is preferred to avoid unnecessary disturbance of the fibers, but it may also be positioned at an angle. As the coagulating liquid, water or dilute sulfuric acid of 4% by weight or less should be used from the viewpoint of coagulation rate and industrial convenience.

凝固液温度は一般には3ぴ0以下、好ましくは1500
以下に保持されることがよい。オリフィより吐出された
ドープは、一旦空気層を走行した後、凝固浴中へ導びか
れた後、通常の場合、一旦ロールや糠等によって変向さ
れた後、凝固格より引き出され洗浄されるが、洗浄は一
旦ボビンに捲き取った後、ボビンを水に浸潰して、ボビ
ン上で、または凝固俗から引き出した後、連続的にトィ
上、ロール上、ベルト上、ネット上等で洗浄されること
が好適であり、繊維中の残浴媒量を減らすために、アル
カリによる中和が併用されてもよい。
The temperature of the coagulating liquid is generally 300°C or less, preferably 1500°C or less.
It is best to keep it below. The dope discharged from the orifice travels through an air layer and is led into a coagulation bath. In normal cases, the dope is deflected by rolls, bran, etc., and then pulled out of the coagulation bath and washed. However, cleaning is done by first winding the bobbin onto the bobbin, then immersing the bobbin in water, or after pulling it out from the coagulation tube, washing it continuously on a toe, roll, belt, net, etc. Neutralization with an alkali may also be used in combination to reduce the amount of residual bath medium in the fibers.

このような級出糸を処理するに当り、本発明においては
、不活性ガス加熱処理に供される原料繊維は、硫酸根と
して、1重量%以下、さらに好ましくは0.5重量%以
下にまで、洗浄または、中和および洗浄されていること
が好ましい。
In processing such graded yarn, in the present invention, the raw material fiber subjected to inert gas heating treatment has a content of sulfuric acid radicals of 1% by weight or less, more preferably 0.5% by weight or less. , washed or neutralized and washed.

なお、加熱処理に供される湿潤繊維とは、少くとも繊維
の乾燥重量に対して、3の重量%以上の水分を繊維内部
の膨潤水として、およびャーンを穣成する各単繊離間に
保持されて、随伴する状態を言い、具体的には、紡糸に
次いで、溶媒を1%以下まで水洗されたま)の未乾燥の
湿潤繊維や、一旦乾燥された後、再度水中に浸潰する等
の方法で水を付与された再湿潤繊維が含まれる。
In addition, the wet fibers subjected to heat treatment are those in which at least 3% by weight of water is retained as swelling water inside the fibers and between each single fiber that forms the yarn. Specifically, it refers to undried wet fibers that have been washed with water to reduce the solvent to 1% or less after spinning, and fibers that have been dried and then immersed in water again. Includes rewetted fibers that have been watered by a process.

この加熱は、空気、窒素、アルゴン、ヘリウムの如き不
活性ガズ雰囲気(好ましくは窒素)で処理されるが、加
熱方式は、これらの不活性ガスが加熱されて循環してい
るガスオーブン中を貫通走行される方法の他、これらの
不活性ガス雰囲気中に、熱板、熱ピン等や、赤外線ラン
プ、遠赤外線ヒーター等の熱線により加熱する方法、ま
たは高周波加熱等の諸手段が任意に用いられてよい。
This heating is performed in an inert gas atmosphere (preferably nitrogen) such as air, nitrogen, argon, or helium, and the heating method is to pass through a gas oven in which these inert gases are heated and circulated. In addition to the method of running, various methods such as heating with a hot plate, heat pin, etc., infrared lamp, far-infrared heater, etc., or high frequency heating in an inert gas atmosphere can be used as desired. It's fine.

加熱は200℃以下、好ましくは150〜100℃の温
度で、処理後の繊維の残存水分率が1〜10%の範囲に
なるような加熱時間が必須条件である。また加熱処理中
に、炉の出口速度/炉の入口速度の比で、その温度にお
ける1十(最大延伸倍率一1)×0.2〜1十(最大延
伸倍率−1)×0.9未満の延伸倍率で延伸されること
も必須条件である。このようにして好適範囲で処理した
繊維は、均一性に優れ、ャーンとして測定したとき、出
発繊維の少くとも2倍以上の初期モジュラスを有し、か
つ強度保持率99%以上、および固有粘度の低下率は通
常1%以下である。
It is essential that the heating be carried out at a temperature of 200° C. or less, preferably 150 to 100° C., and for a heating time such that the residual moisture content of the fibers after treatment is in the range of 1 to 10%. Also, during heat treatment, the ratio of furnace exit speed/furnace inlet speed is less than 10 (maximum stretching ratio - 1) x 0.2 to 10 (maximum drawing ratio - 1) x 0.9 at that temperature. It is also an essential condition that the film be stretched at a stretching ratio of . The fibers treated in a suitable range in this way have excellent uniformity, have an initial modulus at least twice that of the starting fiber when measured as yarn, have a strength retention of 99% or more, and have an intrinsic viscosity of 99% or more. The rate of decline is usually less than 1%.

処理温度が高すぎると、モジュラスは増加するもの)、
繊維の熱劣化、固有粘度の低下および引張強度の低下、
さらには毛羽の発生もみられ好ましくない。また逆に処
理温度が低すぎると、繊維の熱劣化、固有粘度および引
張強度等の低下がなく、さらには毛羽もなく好ましいが
、モジュラスについては、本発明の目的とする高い値が
得られないため好ましくない。すなわち、繊維の熱劣化
を伴なうことなく、固有粘度および引張強度を保持しつ
)、モジュラスを大中に増加させ、しかも、毛羽のない
繊維を得るためには200〜10000、特に150〜
100qoでの処理温度が最も効果が大きい。また、延
伸倍率が1十(最大延伸倍率一1)×0.9を超えると
、過度の延伸が起りすぎるためか、この時点でモジュラ
スは若干増加するもの)、すでに強度の低下が著しく、
毛羽の発生が大きい。
If the processing temperature is too high, the modulus increases),
Thermal deterioration of fibers, decrease in intrinsic viscosity and decrease in tensile strength,
Furthermore, the occurrence of fuzz is also observed, which is not desirable. On the other hand, if the treatment temperature is too low, there will be no thermal deterioration of the fibers, no reduction in intrinsic viscosity, tensile strength, etc., and there will be no fluff, which is preferable, but the high value of modulus that is the objective of the present invention will not be obtained. Therefore, it is undesirable. That is, in order to maintain the intrinsic viscosity and tensile strength without thermal deterioration of the fiber, increase the modulus to a large extent, and obtain a fiber without fluff, the
A treatment temperature of 100 qo has the greatest effect. In addition, when the stretching ratio exceeds 10 (maximum stretching ratio - 1) x 0.9, the modulus slightly increases at this point, probably because excessive stretching occurs), and the strength already decreases significantly.
A large amount of fuzz occurs.

逆に1十(最大延伸倍率一1)×0.2夫満の延伸倍率
では、加熱処理での緊張度合、または温度、加熱下での
繊維の滞在時間を調節することにより、ある程度のモジ
ュラスの増加は可能であるが、その効果は充分ではなく
好ましくない。なお、最大延伸倍率とは、1対のローラ
ーで延伸側のローラーの速度を徐々に増加していき、繊
維の単糸切れが最初に観察された時の延伸倍率である。
繊維の固有粘度、引張強度を保持し、高モジュラスを得
るためには、処理後の繊維の残存水分率が1〜10%と
なるような時間が必要である。
On the other hand, at a draw ratio of 10 (maximum draw ratio - 1) x 0.2, the modulus can be improved to a certain extent by adjusting the tension in the heat treatment, the temperature, and the residence time of the fiber under heating. Although an increase is possible, the effect is not sufficient and is not desirable. The maximum draw ratio is the draw ratio at which single fiber breakage is first observed when the speed of the roller on the drawing side is gradually increased using a pair of rollers.
In order to maintain the intrinsic viscosity and tensile strength of the fibers and obtain a high modulus, a period of time is required such that the residual moisture content of the fibers after treatment becomes 1 to 10%.

このような時間は、出発繊維の含有水分率、延伸倍率、
処理速度、処理形式などの相互関係で一義的ではないが
、大体の目安としては、たとえば、200『0加熱で1
0%水分率を得るためには2〜30秒程度、100℃加
熱で10%水分率を得るためには10〜20の砂である
。本発明は、湿潤繊維を比較的低温で処理するのが特徴
の一つであって、繊維内部の水による分子間力の緩和、
緊張応力の分散化、脱水時の繊維構造の繊密化などが好
適に作用して、本発明の効果がひき出されるものと考え
られる。
Such time depends on the moisture content of the starting fiber, the stretching ratio,
Although it is not unambiguous due to the interrelationship of processing speed, processing format, etc., as a rough guide, for example, 200
It takes about 2 to 30 seconds to obtain 0% moisture content, and 10 to 20 seconds to obtain 10% moisture content by heating at 100°C. One of the characteristics of the present invention is that wet fibers are treated at a relatively low temperature, and the intermolecular force is relaxed by the water inside the fibers.
It is thought that the effects of the present invention are brought out by the dispersion of tension stress and the densification of the fiber structure during dehydration.

したがって、加熱処理雰囲気中、常に水分が残存してい
ることが重要であるが、残存水分率が高すぎると効果は
小さい。本発明者らの検討結果によれば、最終残存水分
率1〜10%の時に最も効果が大であることが判明した
。残存水分率が1%禾満では、モジュラスは若干増加す
るもの)、固有粘度、引張強度の低下がある。
Therefore, it is important that moisture always remains in the heat treatment atmosphere, but if the residual moisture content is too high, the effect will be small. According to the study results of the present inventors, it has been found that the effect is greatest when the final residual moisture content is 1 to 10%. When the residual moisture content is less than 1%, the modulus increases slightly), and the intrinsic viscosity and tensile strength decrease.

さらに、加熱処理を続けると、固有粘度、引張強度の著
しい低下を始め、毛羽も発生してくる。また、残存水分
率が10%を超えると、固有粘度、引張強度は保持され
るが、モジュラスの大中な増加は得られなし、という欠
点がある。次に本発明の実施態様の一例を図面に塞いて
説明する。ドープはストックタンク1よりポンプ2を経
て、フィルター3を通じ、好ましくは凝固液面にはゞ平
行に位置された繊糸口金4に移送され、オリフイスより
吐出される。ストックタンク1、ポンプ2、フィルター
3、級糸口金4、およびその間の配管は、ドープが液体
を保つ温度に保持されている。紙糸口金4のオリフィス
より吐出されたドープは、短い間の空気中を通って、次
いで凝固バス5の中の凝固液7の中へ導入される。
Furthermore, if the heat treatment is continued, the intrinsic viscosity and tensile strength will start to decrease significantly, and fluff will also occur. Further, when the residual moisture content exceeds 10%, the intrinsic viscosity and tensile strength are maintained, but there is a drawback that the modulus cannot be significantly increased. Next, an example of an embodiment of the present invention will be described with reference to the drawings. The dope is transferred from the stock tank 1, through the pump 2, through the filter 3, to the fiber spinneret 4, which is preferably positioned parallel to the surface of the coagulating liquid, and is discharged from the orifice. The stock tank 1, pump 2, filter 3, grade cap 4, and the piping therebetween are maintained at a temperature that keeps the dope liquid. The dope discharged from the orifice of the paper thread cap 4 passes through the air for a short time, and then is introduced into the coagulating liquid 7 in the coagulating bath 5.

凝固バス5の中には、紡糸口金4の真下に変向ガイド6
が設置されており、凝固したドープは変向ガイド6の下
部を経て、さらにガイドロール8の下部を通り、ネルソ
ンロール9に導糸される。またガイドロール8およびネ
ルソンロール9で、残溶媒が該総総乾燥重量に対して1
%以下になるように、散水器10により水洗される。こ
の湿潤繊維は加熱機1 1に供聯合する。
Inside the coagulation bath 5, there is a direction change guide 6 directly below the spinneret 4.
is installed, and the solidified dope passes through the lower part of the deflection guide 6, then the lower part of the guide roll 8, and is guided to the Nelson roll 9. In addition, the guide roll 8 and the Nelson roll 9 ensure that the residual solvent is 1% of the total dry weight.
% or less using a water sprinkler 10. This wet fiber is connected to a heating machine 11.

供繋台された湿潤繊維は、ネルソンロール9とネルソン
ロール12で延伸されながら加熱され、ガイドロール1
3を経てワインダ−14に捲き上げられる。以下実施例
により本発暁の効果を具体的に例証する(実施例1〜4
を表1にまとめた)。なお、実施例中、ポリマーおよび
繊維の固有粘度(り,nhと略す)は、蛾.5%の硫酸
を用いて重合体濃度0.3夕/硫酸loo肌‘の稀薄溶
液について、25℃にて求めた相対粘度から常法により
求めたものである。
The fed wet fibers are heated while being stretched by Nelson rolls 9 and 12, and then passed through guide rolls 1.
3 and is wound up into the winder 14. The effects of this development will be specifically illustrated by examples below (Examples 1 to 4).
are summarized in Table 1). In addition, in the examples, the intrinsic viscosity (abbreviated as ri, nh) of the polymer and fiber is 100%. The relative viscosity was determined by a conventional method from the relative viscosity determined at 25° C. using 5% sulfuric acid and a dilute solution with a polymer concentration of 0.3%/sulfuric acid loo skin.

また、繊維の引張モジュラス(Miと略す)、引張強度
(DSと略す)および引張伸度(DEと略す)は、定速
伸長型引張試験機にて23℃土1℃、65%RH±1%
での荷重−伸長曲線を描かせ、それにより求めた。毛羽
の測定は、繊維1の当りの毛羽個数(N=10の平均)
で表示した。実施例 1テレフタル酸ジクロライドおよ
びバラフェニレンジアミンを塩化カルシウムを含有する
ジメチルアセトアミド中で重合して、りinh3.5の
ボリーパラフェニレンテレフタルアミドを得た。
In addition, the tensile modulus (abbreviated as Mi), tensile strength (abbreviated as DS), and tensile elongation (abbreviated as DE) of the fiber were measured using a constant-speed extension type tensile tester at 23°C, 1°C, and 65%RH ± 1. %
It was determined by drawing a load-elongation curve at . The fluff is measured by the number of fluff per fiber (average of N = 10)
It was displayed in Example 1 Terephthalic acid dichloride and para-phenylene diamine were polymerized in dimethylacetamide containing calcium chloride to obtain poly-para-phenylene terephthalamide with an inh of 3.5.

重合体はジャケット付の混合機中でジャケットの水温を
75℃に保持して、このポリマーを99.5%濃硫酸に
溶解して、ポリマーを18.1%含むドープを得た。こ
のドープは蝿梓時に真珠様光沢が観察された。次いでド
ープを減圧下で脱気した後、ギアポンプを通じて送り、
300メッシュステンレス製金網8重および50メッシ
ュステンレス製金網を2重捲した。キャンドルフィルタ
ーにて炉過を行い、オリフィス(0.07側め)より5
帆の空気中を通じ、濃度30%、温度2℃の硫酸凝固液
中に押し出した。さらに凝固繊維を変向ガイドを通じ、
ネルソンロール上に捲き、繊維中の硫酸根が500の磯
こなるように水洗した。水洗した繊維、すなわち、湿潤
状態の繊維は、水分率130%、りinh3.2、DS
18.30夕/d、Mi240夕/dであった。次いで
湿潤繊維は予め最大延伸倍率1.1戊音であることを確
認した後、140℃の窒素ガス加熱雰囲気中に導き、1
.03音の延伸倍率で延伸しつ)30秒間加熱処理を行
なった。処理後の繊維は、残存水分率2.2%であった
。そのように処理された繊維は、小nh3.19、保持
率99.7%、DS18.26夕/d、保持率99.8
%、Mi780夕/d、増加率3.25倍に有していた
。なお、小nhの保持率、DSの保持率およびMiの増
加率の値は、水洗後の湿潤繊維の各物性値と対比させ計
算したものである(以下各実施例にも適用する)。
The polymer was dissolved in 99.5% concentrated sulfuric acid in a jacketed mixer while maintaining the jacket water temperature at 75°C to obtain a dope containing 18.1% of the polymer. A pearl-like luster was observed in this dope when it was dried. The dope is then degassed under reduced pressure and then sent through a gear pump,
Eight layers of 300-mesh stainless wire mesh and two layers of 50-mesh stainless steel wire mesh were wound. Pass through the furnace using a candle filter, and from the orifice (0.07 side)
It was extruded through the air through the sail into a sulfuric acid coagulation solution with a concentration of 30% and a temperature of 2°C. Furthermore, the coagulated fibers are passed through a direction changing guide.
The fibers were rolled up on a Nelson roll and washed with water so that the sulfate groups in the fibers became 500 ml. The fibers washed with water, that is, the fibers in a wet state, have a moisture content of 130%, a resin of 3.2%, and a DS
It was 18.30 t/d, Mi 240 t/d. Next, after confirming in advance that the wet fiber has a maximum draw ratio of 1.1, it is introduced into a nitrogen gas heating atmosphere at 140°C, and
.. The film was stretched at a stretching ratio of 0.03 and heat treated for 30 seconds. The treated fiber had a residual moisture content of 2.2%. The fibers so treated have a small nH of 3.19, a retention rate of 99.7%, a DS of 18.26 m/d, a retention rate of 99.8
%, Mi780/d, increase rate was 3.25 times. Note that the values of the small nh retention rate, the DS retention rate, and the increase rate of Mi are calculated by comparing with each physical property value of the wet fiber after washing with water (applied to each example below).

さらに上記と全く同じ湿潤繊維をボビンに軽く捲き取り
、80ooで1時間電気乾燥器で乾燥した後、再度水中
に2時間浸潰して湿潤状態とした繊維は、水分率122
%であった。
Furthermore, the same wet fiber as above was lightly wound onto a bobbin, dried in an electric dryer at 80 oo for 1 hour, and then immersed in water for 2 hours again to make it wet.The fiber had a moisture content of 122.
%Met.

この湿潤繊維を上記と全く同じ方法の延伸倍率、処理温
度および加熱時間で処理した。処理後の繊維の残存水分
率は2.0%であった。このように処理された繊維は、
りinh3.1&保持率99.4%、DS18.24夕
/d、保持率99.7%、Mi774夕/d、増加率3
.22倍であった。なお、先の実施例のテスト中、加熱
板の側面に処理中の繊維が接触するミスがあった。
This wet fiber was treated at the same draw ratio, treatment temperature, and heating time as described above. The residual moisture content of the fiber after treatment was 2.0%. Fibers treated in this way are
Ri inh 3.1 & retention rate 99.4%, DS 18.24 evening/d, retention rate 99.7%, Mi 774 evening/d, increase rate 3
.. It was 22 times more. Note that during the testing of the previous example, there was an error in which the fibers being processed came into contact with the side surface of the heating plate.

この繊維は、全体的に単糸切れが生じた。実施例 2 紡糸ドープのポリマー濃度を20%とした以外は、実施
例1と同様の方法で紡糸した繊維を、硫酸根が100瓜
肌こなるまで水洗した繊維は、水分率134%、り,n
h3.18、DSI9.6夕/d、Mi310タノdで
あった。
Single yarn breakage occurred throughout this fiber. Example 2 Fibers were spun in the same manner as in Example 1 except that the polymer concentration of the spinning dope was 20%, and the fibers were washed with water until the sulfuric acid radicals were 100% thick.The fibers had a moisture content of 134%. n
h3.18, DSI 9.6 t/d, Mi310 Tano d.

この湿潤繊維を120oo窒素ガス加熱雰囲気中に導き
、最高延伸倍率1.15を得た。次いで延伸ロールを調
整後、1.04倍の延伸倍率で50秒間処理し、残存水
分率3.5%とした繊維は、りinh3.17、保持率
99.7%、DSI9.51夕/d、保持率99.5%
、Mi弘0夕/d、増加率303倍を有していた。比較
として、前述の湿潤繊維を1.005倍の延伸倍率で、
上記同様の加熱処理を行なって得た繊維は、残存水分率
3.60%、りinh3.17、保持率99.7%、D
SI9.54%タノd、保持率99.7%、Mi372
夕/d、増加率1.2倍であった。
This wet fiber was introduced into a 120 oo nitrogen gas heating atmosphere to obtain a maximum draw ratio of 1.15. Next, after adjusting the stretching roll, the fiber was treated for 50 seconds at a stretching ratio of 1.04 times, and the residual moisture content was 3.5%. , retention rate 99.5%
, Mi Hiro 0 Yu/d, had an increase rate of 303 times. For comparison, the above-mentioned wet fiber was stretched at a draw ratio of 1.005 times.
The fiber obtained by the same heat treatment as above had a residual moisture content of 3.60%, an inh of 3.17, a retention rate of 99.7%, and a D
SI9.54% Tano d, retention rate 99.7%, Mi372
On evening/d, the increase rate was 1.2 times.

さらに比較として、同じ湿潤繊維を1.14倍の延伸倍
率で、上記同様の加熱処理を行なって得た繊維は、水分
率33%、りlnh316、保持率99.3%、DS1
3.9タノd、保持率71%、Mi496タノd、増加
率1.母昔であり、Miは若干増加するもの)、強度の
低下が著しい。
Furthermore, for comparison, the same wet fiber was heated at a draw ratio of 1.14 times, and the fiber obtained had a moisture content of 33%, a lnh of 316, a retention rate of 99.3%, and a DS1.
3.9 Tano d, retention rate 71%, Mi496 Tano d, increase rate 1. (Mi increases slightly), and the strength decreases significantly.

また毛羽も発生した。実施例 3 テレフタル酸ジクロラィド45モル%、バラフェニレン
ジアミン45モル%およびパラアミノ安息香酸クロラィ
ド塩10モル%を重合し、小nh4.3のコポリアミド
を得た。
Also, fuzz was generated. Example 3 45 mol% of terephthalic acid dichloride, 45 mol% of paraphenylenediamine and 10 mol% of para-aminobenzoic acid chloride salt were polymerized to obtain a copolyamide with a small nh of 4.3.

この重合体は、ジャケットに6ぴ○の温水を流した溶解
機中で99.8%の濃硫酸に溶解して、ポリマー濃度1
9%のドープを調整した。このドープを実施例1と同様
な方法で僻○の水浴中に押し出し、凝固浴より引き出し
た繊維をネルソンロール上で水洗して、硫酸根を80地
の繊維を得た。この湿潤繊維は、水分率141%、小n
h3.9DS189夕/d、Mi268夕/dであった
。次いで、この湿潤繊維を130午○窒素ガス加熱覆囲
気中に導き、最高延伸倍率1.18を確認した後、直ち
に1.1叶苦の延伸倍率に調整して4幻砂間加熱処理を
行い、処理後の残存水分率1.4%を得た。この繊維は
、小nh3.87、保持率99.3%、DS18.7夕
/d、保持率99.2%、Mj810夕/d、増加率3
.02倍を有していた。比較として、130つCで12
の砂間加熱を延長した残存水分率0.0%の繊維は、り
inh2.8保持率72%、OSI4.7夕/d、保持
率78%、Mi760夕/d、増加率2.8倍であった
This polymer was dissolved in 99.8% concentrated sulfuric acid in a dissolving machine with 6 pi○ hot water flowing through the jacket, and the polymer concentration was 1.
A 9% dope was adjusted. This dope was extruded into a water bath in a remote area in the same manner as in Example 1, and the fibers pulled out from the coagulation bath were washed with water on a Nelson roll to obtain fibers with a sulfate base of 80. This wet fiber has a moisture content of 141% and a small n
h3.9DS189 evening/d, Mi268 evening/d. Next, this wet fiber was introduced into an atmosphere heated with nitrogen gas for 130 pm, and after confirming the maximum draw ratio of 1.18, the draw ratio was immediately adjusted to 1.1 and subjected to a heat treatment between 4 times. , the residual moisture content after treatment was 1.4%. This fiber has a small nh of 3.87, a retention rate of 99.3%, a DS of 18.7 m/d, a retention rate of 99.2%, an Mj of 810 m/d, an increase rate of 3
.. 02 times. For comparison, 130 C is 12
Fibers with a residual moisture content of 0.0% after extended sand heating have a Ri inh2.8 retention rate of 72%, an OSI of 4.7 m/d, a retention rate of 78%, an Mi of 760 m/d, and an increase rate of 2.8 times. Met.

なお、この処理後の繊維は多くの毛羽が発生した。さら
に比較として、加熱時間を縮少して残存水分率15%と
した繊維は、り他3.88、保持率99.5%、DS1
8.9夕/d、保持率100%、Mi509夕/d、増
加率1.針音であった。
It should be noted that the fibers after this treatment had a lot of fluff. Furthermore, as a comparison, fibers with a residual moisture content of 15% by shortening the heating time had a resin content of 3.88, a retention rate of 99.5%, and a DS of 15%.
8.9 evenings/d, retention rate 100%, Mi509 evenings/d, increase rate 1. It was the sound of needles.

実施例 4 実施例3と同一の湿潤繊維を18000の窒素ガス加熱
雰囲気中に導き、最高延伸倍率1.17倍を確認した後
、1.035倍の延伸倍率で1M秒間加熱処理して、処
理後の残存水分率が5.1%の繊維を得た。
Example 4 The same wet fiber as in Example 3 was introduced into a nitrogen gas heating atmosphere at 18,000 °C, and after confirming the maximum draw ratio of 1.17 times, it was heat-treated for 1M seconds at a draw ratio of 1.035 times, and then treated. A fiber with a residual moisture content of 5.1% was obtained.

この繊維は、刀inh3.80保持率99%、DS18
.7夕/d、保持率99.1%、Mi840夕/d、増
加率3.13倍で、りinhおよびDSの保持率がや)
低下気味である。比較として、80ooの窒素ガス加熱
雰囲気中で、上記延伸倍率および処理後の残存水分率が
同じになる加熱時間を定めて処理した繊維は、小nhお
よびDSの低下はないが、Mi増加率が1.07倍で効
果は小であった。
This fiber has a sword inh3.80 retention rate of 99% and a DS18
.. 7 e/d, retention rate 99.1%, Mi840 e/d, increase rate 3.13 times, retention rate of Ri inh and DS is high)
It is on the decline. For comparison, fibers treated in a nitrogen gas heating atmosphere of 80 oo with the above stretching ratio and heating time at which the residual moisture content after treatment is the same, showed no decrease in small nh and DS, but a decrease in the Mi increase rate. The effect was small at 1.07 times.

さらに比較として、280℃の窒素ガス加熱雰囲気中で
、上記と全く同じ延伸倍率で処理後の残存水分率を2.
5%にした繊維のMi‘ま、2.85倍と大中に増加し
たもの)、小nhの保持率67%、DSの保持率72%
の著しい低下、および大量の毛羽が生じた。船 図面の簡単な説明 ある
Furthermore, as a comparison, the residual moisture content after treatment in a nitrogen gas heating atmosphere at 280°C at the same stretching ratio as above was 2.
(Mi'ma of the fibers increased to 5% was increased by 2.85 times to large and medium), the retention rate of small nh was 67%, and the retention rate of DS was 72%.
There was a significant decrease in color and a large amount of fuzz. There is a simple explanation of ship drawings.

Claims (1)

【特許請求の範囲】 1 パラ配向芳香族ポリアミド系重合体を98重量%以
上の濃硫酸に14重量%以上溶解して成る光学異方性ド
ープを、一旦空気中に吐出して空気中を走行せしめた後
、水または40重量%以下の稀硫酸より成る凝固液中に
導くことにより紡糸し、洗浄された糸条を、湿潤状態で
100℃以上200℃以下の不活性ガス加熱雰囲気中に
導入し、繊維の残存水分率が1〜10重量%の範囲内に
なるような時間加熱すると共に、次式の範囲内の延伸倍
率で同時に延伸することを特徴とする高モジユラス芳香
族ポリアミド繊維の製造方法。 1+(最大延伸倍率−1)×0.2倍〜1+(最大延
伸倍率−1)×0.9倍(たゞし、最大延伸倍率は不活
性ガス雰囲気温度における最大延伸倍率を言う)2 パ
ラ配向芳香族ポリアミド系重合体が次の単位 −NH−
Ar_1−NH−I、−CO−Ar_2−CO−IIおよ
び/または−CO−Ar_3−NH−III〔式中、単位
IおよびIIはポリマー中に実質的に等モル等で存在し、
Ar_1,Ar_2およびAr_3は各々2価の芳香族
基を表わす。 また、ポリマー中の基Ar_1,Ar_2および/また
はAr_3の全体の少くとも90モル%はパラ配向であ
る。〕より実質的に構成されている特許請求の範囲第1
項記載の高モジユラス芳香族ポリアミ繊維の製造方法。
3 加熱延伸される湿潤状態の繊維が水洗されたまゝの
未乾燥状態の湿潤糸である特許請求の範囲第1項記載の
高モジユラス芳香族ポリアミド繊維の製造方法。 4 加熱延伸される湿潤状態の繊維が乾燥繊維を再湿潤
した繊維である特許請求の範囲第1項記載の高モジユラ
ス芳香族ポリアミド繊維の製造方法。
[Claims] 1. An optically anisotropic dope prepared by dissolving 14% by weight or more of a para-oriented aromatic polyamide-based polymer in 98% by weight or more concentrated sulfuric acid is once discharged into the air and then travels in the air. After drying, the yarn is spun by introducing it into a coagulating solution consisting of water or dilute sulfuric acid of 40% by weight or less, and the washed yarn is introduced in a wet state into an inert gas heating atmosphere at a temperature of 100°C or more and 200°C or less. Production of a high modulus aromatic polyamide fiber, which is characterized by heating for a time such that the residual moisture content of the fiber is within the range of 1 to 10% by weight, and simultaneously drawing at a drawing ratio within the range of the following formula: Method. 1 + (maximum stretch ratio - 1) × 0.2 times to 1 + (maximum stretch ratio - 1) × 0.9 times (maximum stretch ratio refers to the maximum stretch ratio at inert gas atmosphere temperature) 2 Para The oriented aromatic polyamide polymer has the following unit -NH-
Ar_1-NH-I, -CO-Ar_2-CO-II and/or -CO-Ar_3-NH-III [wherein the unit
I and II are present in the polymer in substantially equimolar amounts,
Ar_1, Ar_2 and Ar_3 each represent a divalent aromatic group. Also, at least 90 mol% of the total groups Ar_1, Ar_2 and/or Ar_3 in the polymer are para-oriented. ] Claim 1 consisting essentially of
A method for producing a high modulus aromatic polyamide fiber as described in .
3. The method for producing a high modulus aromatic polyamide fiber according to claim 1, wherein the wet fiber to be heated and drawn is a wet yarn in an undried state that has been washed with water. 4. The method for producing high modulus aromatic polyamide fibers according to claim 1, wherein the wet fibers to be heated and stretched are fibers obtained by rewetting dry fibers.
JP928277A 1977-02-01 1977-02-01 Manufacturing method of high modulus aromatic polyamide synthetic fiber Expired JPS6015723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP928277A JPS6015723B2 (en) 1977-02-01 1977-02-01 Manufacturing method of high modulus aromatic polyamide synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP928277A JPS6015723B2 (en) 1977-02-01 1977-02-01 Manufacturing method of high modulus aromatic polyamide synthetic fiber

Publications (2)

Publication Number Publication Date
JPS5398415A JPS5398415A (en) 1978-08-28
JPS6015723B2 true JPS6015723B2 (en) 1985-04-22

Family

ID=11716108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP928277A Expired JPS6015723B2 (en) 1977-02-01 1977-02-01 Manufacturing method of high modulus aromatic polyamide synthetic fiber

Country Status (1)

Country Link
JP (1) JPS6015723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182154A1 (en) 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7904496A (en) * 1979-06-08 1980-12-10 Akzo Nv FIBER, WIRE BUNDLE AND ROPE OF POLY-P-PHENYLENE GRADE-LANGUAGE AMIDE.
JPS57121613U (en) * 1981-01-20 1982-07-28
JPS58203116A (en) * 1982-05-18 1983-11-26 Asahi Chem Ind Co Ltd Flame-retardant poly (p-phenylene terephthalamide) fiber
US4726922A (en) * 1985-04-04 1988-02-23 E. I. Du Pont De Nemours And Company Yarn drying process
US4985193A (en) * 1989-02-21 1991-01-15 E. I. Du Pont De Nemours And Company Aramid yarn process
WO2012057344A1 (en) * 2010-10-29 2012-05-03 三菱レイヨン株式会社 Washing apparatus, and process for producing porous membrane
JP5585727B2 (en) 2012-03-12 2014-09-10 三菱レイヨン株式会社 Porous membrane manufacturing method and porous membrane drying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182154A1 (en) 2018-03-22 2019-09-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR20200121873A (en) 2018-03-22 2020-10-26 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS5398415A (en) 1978-08-28

Similar Documents

Publication Publication Date Title
RU2285760C1 (en) Method of manufacturing high heat-resistant threads from copolyamidobenzimidazole with reduced degree of shrinkage
JP2893638B2 (en) Method for producing polyamide fiber having high modulus and high tensile strength
US4016236A (en) Process for manufacturing aromatic polymer fibers
WO2022048664A1 (en) Polymerization, spinning, drafting, and setting integrated molding manufacturing method and apparatus for bio-based polyamide short fiber
US5009830A (en) On-line fiber heat treatment
US5023035A (en) Cyclic tensioning of never-dried yarns
JPS6015723B2 (en) Manufacturing method of high modulus aromatic polyamide synthetic fiber
US5173236A (en) Method for spinning para-aramid fibers of high tenacity and high elongation at break
JPS62231014A (en) High-strength polymetaphenylene isophthalamide yarn and production thereof
US5174046A (en) On-line fiber heat treatment
JP2009001917A (en) Method for producing lyotropic liquid crystal polymer multifilament
JPH0246688B2 (en)
KR20130075196A (en) Aramid fiber and method for manufacturing the same
JPS6017113A (en) Preparation of aromatic polyamide yarn
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
US5624752A (en) Spun yarn of polybenzazole fiber
JPS6088117A (en) Preparation of high-modulus yarn
JPH0874122A (en) Production of meta-aromatic polyamide fiber
KR20110071256A (en) Process for preparing aromatic polyamide filament
JPS5920764B2 (en) Synthetic fiber manufacturing method
KR101307936B1 (en) Aromatic polyamide monofilament having high-strength and process for preparing the same
JPH05230711A (en) Production of p-orientated type aramid fiber
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber
JPH0474456B2 (en)
JP2004308032A (en) Method for producing thermoplastic synthetic polymer multifilament yarn