JPS60156047A - Driving method of optical modulating element - Google Patents

Driving method of optical modulating element

Info

Publication number
JPS60156047A
JPS60156047A JP1050484A JP1050484A JPS60156047A JP S60156047 A JPS60156047 A JP S60156047A JP 1050484 A JP1050484 A JP 1050484A JP 1050484 A JP1050484 A JP 1050484A JP S60156047 A JPS60156047 A JP S60156047A
Authority
JP
Japan
Prior art keywords
signal
liquid crystal
optical modulation
scanning
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1050484A
Other languages
Japanese (ja)
Other versions
JPS6249605B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuharu Katagiri
片桐 一春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1050484A priority Critical patent/JPS60156047A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE19853501982 priority patent/DE3501982A1/en
Priority to FR8500846A priority patent/FR2558606B1/en
Priority to GB8501718A priority patent/GB2156131B/en
Publication of JPS60156047A publication Critical patent/JPS60156047A/en
Publication of JPS6249605B2 publication Critical patent/JPS6249605B2/ja
Priority to GB8726218A priority patent/GB2204172B/en
Priority to CA000582351A priority patent/CA1278890C/en
Priority to US07/390,922 priority patent/US5092665A/en
Priority to SG56091A priority patent/SG56091G/en
Priority to SG559/91A priority patent/SG55991G/en
Priority to HK711/91A priority patent/HK71191A/en
Priority to HK712/91A priority patent/HK71291A/en
Priority to US08/079,215 priority patent/US5296953A/en
Priority to US08/206,211 priority patent/US5559616A/en
Priority to US08/450,016 priority patent/US5877739A/en
Priority to US08/450,017 priority patent/US5774102A/en
Priority to US08/649,469 priority patent/US5757350A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform display with high contrast and less crosstalk by using a bistable liquid crystal in a liquid crystal display device using matrix electrodes and driving them in time division after a voltage which arranges the whole of the liquid crystal in one state is applied. CONSTITUTION:In case that an optical modulating element using the liquid crystal having bistability to electric field is driven in the liquid crystal display device of matrix type, signal pulses are applied to all scanning electrodes or signal electrodes to arrange the whole of the liquid crystal in the first state. Next, signal pulses are synchronized with individual signal electrodes while selecting scanning electrodes successively. In this case, signal pulses having phases T1 and T2 are applied to selected scanning electrodes (a), non-selected scanning electrodes (b), selected signal electrodes (c), and non-selected signal electrodes (d) to prevent inversion of the liquid crystal due to long duration of the same voltage application state. Thus, the quantity of display is kept even if the number of matrixes is increased.

Description

【発明の詳細な説明】 本発明は、光学変調素子の駆動方法に係シ、詳しくは表
示素子や光シヤツターアレイ等の光学変調素子の時分割
駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an optical modulation element, and more particularly to a method for time-divisional driving of an optical modulation element such as a display element or an optical shutter array.

従来よシ、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填し、多数の画素を
形成して画像或いは情報の表示を行う液晶表示素子はよ
く知られている。
Conventionally, liquid crystal display elements are well known in which a scanning electrode group and a signal electrode group are configured in a matrix, and a liquid crystal compound is filled between the electrodes to form a large number of pixels to display images or information. There is.

この表示菓子の駆動法としては、走査電極群に順次周期
的にアドレス信号を選択印加し、信号電極群には所定の
情報信号をアドレス信号と同期させて並列的に選択印加
する時分割駆動が採用されているが、この表示素子及び
その駆動法には以下に述べる如き致命的とも言える大き
な欠点を有していた。
The driving method for this display confectionery is time-division driving, in which an address signal is selectively and periodically applied to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、画素密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、しかも消費電力が小さいことから、・表示素子とし
て実用に供されているのは殆んどが、例えばM、 5c
hadtとW、He/frich著“Appl!ied
 Physics L’etters ” Vo 18
.A4(197112+15)、P127〜128の“
Vo et、age −DependentOptLc
ae Activity of a Twisted 
NamaticLiquid CrystaI!”に示
されたT N (twistednematic )型
の液晶を用いたものであシ、この型の液晶は無電界状態
で正の誘電異方性をもつネマチック液晶の分子が液晶層
厚方向で捩れ°た構造(ヘリカル構造)を形成し、両電
極面でこの液晶の分子が並行に配列した構造を形成して
いる。一方、電界印加状態では、正の誘電異方性をもつ
ネマチック液晶が電界方向に配列し、 )この結果光調
変調を起こすことができる。この型の液晶を用いてマト
リクス電極構造によって表示素子を構成した場合、走査
電極と信号電極が共に選択される領域(選択点)には、
液晶分子を電極面に垂直に配列させるに要する閾値以上
の電圧が印加され、走査電極と信号電極が共に選択され
ない領域(非選択点)には電圧は印加されず、したがっ
て液晶分子は電極面に対して並行な安定配列を保ってい
る0このような液晶セルの上下に互いにクロスニコル関
係にある直線偏光子を配置することにより、選択点では
光が透過せず、非選択点では光が透過するため画像素子
とすることが可能となる0然し乍ら、マトリクス電極構
造を構成した場合には、走査電極が選択され、信号電極
が選択されない領域或いは走査電極が選択されず、信号
電極が選択される領域(所謂“半選択点″)にも有限の
電界がかかつてしまう。選択点にかかる電圧と、半選択
点にかかる電圧の差が充分に大きく、液晶分子を電界に
垂直に配列させるに要する電圧閾値がこの中間の電圧値
に設定されるならば、表示素子は正常に動作するわけで
あるが、走査線数(へ)を増やして行った場合・、画面
全体(1フレーム)を走査する間に一つの選択点に有効
な電界がかかつている時間(dutY比)が青の割合で
減少してしまう。このために、くシ返し走査を行った場
合の選択点と非選択点にかかる実効値としての電圧差は
走査線数が増えれば増える程小さくなシ、結果的には画
像コントラストの低下やクロストークが避は難い欠点と
なっている。このような現象は、仄安定性を有さない液
晶(電極面に対し、液晶分子が水平に配向しているのが
安定状態でア夛、電界が有効に印加されている間あみ垂
直に配向する)を時間的蓄積効果を利用して駆動する(
即ち、繰り返し走査)ときに生ずる本質的には避は難い
問題点である。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are practically used as display elements, for example, M, 5C, because of their relatively high response speed and low power consumption.
“Appl!ied” by hadt and W. He/frich
Physics L'etters” Vo 18
.. A4 (197112+15), P127-128 “
Vo et, age -DependentOptLc
ae Activity of a Twisted
Namatic Liquid Crystal! This type of liquid crystal uses a T N (twisted nematic) type liquid crystal shown in ``Twisted Nematic Liquid Crystal'', in which the molecules of nematic liquid crystal with positive dielectric anisotropy are twisted in the thickness direction of the liquid crystal layer in the absence of an electric field. On the other hand, when an electric field is applied, the nematic liquid crystal with positive dielectric anisotropy moves in the direction of the electric field. ) As a result, light modulation can occur.When a display element is constructed using this type of liquid crystal with a matrix electrode structure, both the scanning electrode and the signal electrode are arranged in the selected area (selection point). teeth,
A voltage higher than the threshold required to align the liquid crystal molecules perpendicular to the electrode surface is applied, and no voltage is applied to areas where both the scanning electrode and the signal electrode are not selected (non-selected points), so the liquid crystal molecules are aligned perpendicularly to the electrode surface. By arranging linear polarizers in a cross Nicol relationship above and below such a liquid crystal cell, no light is transmitted at selected points, but light is transmitted at non-selected points. However, if a matrix electrode structure is configured, the scanning electrode is selected and the signal electrode is not selected, or the scanning electrode is not selected and the signal electrode is selected. A finite electric field is also present in the region (so-called "half-selected point"). If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to a voltage value in between, the display element will function normally. However, when increasing the number of scanning lines, the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (dutY ratio) will decrease at the rate of blue. For this reason, the effective voltage difference between selected points and non-selected points when repeating scanning is performed becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and Talk is an unavoidable drawback. This phenomenon is caused by liquid crystals that do not have sufficient stability (liquid crystal molecules are oriented horizontally with respect to the electrode surface in a stable state, and while an electric field is effectively applied, they are oriented vertically). drive) using the temporal accumulation effect (
In other words, this is an essentially unavoidable problem that occurs during repeated scanning.

この点を改良するために、電圧平均化法、2周波駆動法
や多重マトリクス法等が既に提案されているが、いずれ
の方法でも不充分であシ、表示素子の大画面化や高密度
化は、走査線数が充分に増やせないことによって頭打ち
になっているのが現状である。
In order to improve this point, voltage averaging methods, dual-frequency driving methods, multiple matrix methods, etc. have already been proposed, but all of these methods are insufficient, and the need for larger screens and higher density display elements Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

一方、プリンタ分野を眺めて見るに、電気信号を入力と
してハードコピーを得る手段として、画素密度の点から
もスピードの点からも電気画像信号を光の形で電子写真
感光体に与えるレーザービームプリンタ(LBP)が現
在最も優れている。ところがLBPには、 1、 プリンタとしての装置が大型になる。
On the other hand, looking at the field of printers, laser beam printers provide electrical image signals in the form of light to electrophotographic photoreceptors in terms of both pixel density and speed, as a means of obtaining hard copies using electrical signals as input. (LBP) is currently the best. However, LBP has the following problems: 1. The device used as a printer becomes large.

2、 ポリゴンスキャナの様な高速の駆動部分がちや騒
音が発生し、また厳しい機械的精度が要求される; などの欠点がおる。この様な欠点を解消すべく電気信号
を光信号に変換する素子として、液晶シャッターアレイ
が提案されている。ところが液晶シャッターアレイを用
いて画素信号を与える場合、たとえば200薫の長さの
中に画素信号を10dat/mの割合で書き込むために
は2000個の信号発生部を有していなければならず、
それぞれに独立した信号を与えるためには、元来それぞ
れの信号発生部会てに信号を送るリード線を配線しなけ
ればならず、製作上困難であった0 そのため、ILINE(ライン)分の画素信号を数行に
分割された信号発生部によシ行ごとに時分割して与える
試みがなされている。
2. High-speed driving parts such as polygon scanners generate vibrations and noise, and strict mechanical precision is required. In order to overcome these drawbacks, a liquid crystal shutter array has been proposed as an element that converts electrical signals into optical signals. However, when providing pixel signals using a liquid crystal shutter array, for example, in order to write pixel signals at a rate of 10 dat/m within a length of 200 frames, it is necessary to have 2000 signal generating units.
In order to give independent signals to each, it was originally necessary to wire lead wires to send signals to each signal generation section, which was difficult to manufacture. Attempts have been made to time-divide and provide the signal to a signal generator divided into several rows.

この様にすることによシ、信号を与える電極の複数の信
号発生部に対して共通にすることができ、実質配線数を
大幅に軽減することができるからである。ところが、こ
の場合通常行われているように双安定性を有さない液晶
を用いて行数Nを増やして行くと、信号ONの時間が実
質的にKとなシ、感光体上で得られる光量が減少してし
まった)クロストークの問題が生ずるという難点がある
By doing so, it is possible to make the signal-supplying electrode common to a plurality of signal generating parts, and the actual number of wiring lines can be significantly reduced. However, in this case, if the number of lines N is increased using a liquid crystal that does not have bistability, as is usually done, the signal ON time becomes substantially K, which can be obtained on the photoreceptor. However, there is a problem of crosstalk (the amount of light is reduced).

本発明の目的は、前述したような従来の液晶表示素子或
いは液晶光シャッターにおける問題点を悉く解決した新
規な液晶素子駆動法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel method for driving a liquid crystal element that solves all of the problems in conventional liquid crystal display elements or liquid crystal optical shutters as described above.

本発明の別の目的は、高速応答性を有する液晶素子の駆
動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal element having high-speed response.

本発明の他の目的は、高密度の画素を有する液晶素子の
駆動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal device having high density pixels.

さらに、本発明の他の目的は、クロストークを発生しな
い液晶素子の駆動法を提供することにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element that does not generate crosstalk.

さらに、本発明の他の目的は、電界に対し双安定性を有
する液晶、%に強誘電性を有するカイラルスメクテイツ
クC相又はH相の液晶を用いた液晶粟子の新規な駆動法
を提供することにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal azure using a liquid crystal that is bistable to an electric field and a chiral smect C phase or H phase liquid crystal that has ferroelectricity. It's about doing.

さらに、本発明の他の目的は、高密度の画−素と大面積
の画面を有する液晶素子に適した新規な駆動法を提供す
ることにある。
Furthermore, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large screen area.

すなわち、本発明のかかる目的は、走査電極群と信号電
極群を有し、該走査電極群と信号電極群の間に電界に対
して双安定性を有する液晶を配置した構造を有する液晶
素子の駆動法において、前記双安定性を有する光学変調
物質をあらかじめ第1の安定状態に揃える電圧信号を前
記走査電極群と前記信号電極群の間に印加した後に、前
記走査電極群には走査信号を順次選択印加し、前記信号
電極群には前記選択された走査電極と情報に応じて選択
された信号電極の間で前記光学変調物質を第2の安定状
態に配向させる情報信号を前記走査信号と同期させて印
加する光学変調素子の駆動法によって達成される。
That is, an object of the present invention is to provide a liquid crystal element having a structure in which a scanning electrode group and a signal electrode group are arranged, and a liquid crystal having bistability against an electric field is arranged between the scanning electrode group and the signal electrode group. In the driving method, after applying a voltage signal between the scanning electrode group and the signal electrode group to align the bistable optical modulation material to a first stable state in advance, a scanning signal is applied to the scanning electrode group. An information signal is sequentially selectively applied to the signal electrode group to orient the optical modulation material in a second stable state between the selected scanning electrode and the signal electrode selected according to the information. This is achieved by a method of driving an optical modulation element in which voltages are applied synchronously.

本発明の駆動法で用いる光学変調物質は、電界に対して
第1の光学的安定状態と第2の光学的安定状態からなる
双安定状態を有しておシ、特に電界に対して前述の如き
双安定性を有する液晶が用いられる。
The optical modulating substance used in the driving method of the present invention has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field, and in particular has a bistable state with respect to an electric field. A liquid crystal having bistability such as the following is used.

本発明の駆動法で用いることができる双安定性を有する
液晶としては、強誘電性を有するカイラルスメクテイツ
クC相(SmC*)又はH相(8mH*)の液晶が適し
ている。この強誘電性液晶については、” LE JO
TMNAL DE PHYSIQUELETTER8”
36 (L −6,9) 1975 、 rFerro
e/ectricLiquid CryatajsJ 
;“App/fed Physics Letters
″36 (11) 19801”8ubmicro 5
econd B15tab/eEl!eetroopt
ia Switching in Liquid Cr
7staesJ +。
As a liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectic C phase (SmC*) or H phase (8 mH*) liquid crystal having ferroelectricity is suitable. Regarding this ferroelectric liquid crystal, please refer to "LE JO
TMNAL DE PHYSIQUELETTER8”
36 (L-6,9) 1975, rFerro
e/etricLiquid CryatajsJ
; “App/fed Physics Letters
″36 (11) 19801″8ubmicro 5
econd B15tab/eEl! eetroopt
ia Switching in Liquid Cr
7staesJ+.

“固体物理” 16(141)1981 j液晶」等に
記載されておシ、本発明ではこれらに開示された強誘電
性液晶を用いることができる。
"Solid State Physics" 16 (141) 1981 J Liquid Crystals, etc., and the ferroelectric liquid crystals disclosed therein can be used in the present invention.

第1図は、強誘電性液晶セルの例を模式的に描いたもの
である。11と11′は、In、On 、 S’n02
やITO(Indium −Tin 0xide )等
の透明電極がコートされた基板(ガラス板)であシ、そ
の間に層12がガラス面に垂直になるよう配向したSm
C*相又はSmH*相の液晶が封入されている。
FIG. 1 schematically depicts an example of a ferroelectric liquid crystal cell. 11 and 11' are In, On, S'n02
A substrate (glass plate) coated with a transparent electrode such as ITO (Indium-Tin Oxide), etc., between which a layer 12 of Sm oriented perpendicularly to the glass surface is used.
C* phase or SmH* phase liquid crystal is sealed.

太線で示した線13が液晶分子を表わしており、この液
晶分子13はその分子に直交した方向に双極子モーメン
) 14 (PJL)を有している。基板11と1f上
の電極間に一定の閾値以上の電圧を印加すると、液晶分
子13のらせん構造がほどけ1、双極子モーメント14
はすべて電界方向に向くよう、液晶分子13は配向方向
を変えることができる。液晶分子13は細長い形状を有
しておシ、その長軸方向と短軸方向で屈折率異方性を示
し、従って例えば、ガラス面の上下に互いにクロスニコ
ルの偏光子を置けば、電圧印加極性によって光学特性が
変わる液晶変調素子となることは、容易に理解される。
A thick line 13 represents a liquid crystal molecule, and this liquid crystal molecule 13 has a dipole moment) 14 (PJL) in a direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrate 11 and 1f, the helical structure of the liquid crystal molecules 13 is unraveled, and the dipole moment 14 is
The alignment direction of the liquid crystal molecules 13 can be changed so that all of the liquid crystal molecules are oriented in the direction of the electric field. The liquid crystal molecules 13 have an elongated shape and exhibit refractive index anisotropy in the long and short axis directions. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, voltage can be applied. It is easily understood that the liquid crystal modulation element has optical characteristics that change depending on polarity.

さらに液晶セルの厚さを充分に薄くした場合(例えば1
μ)には、第2図に示すように電界を印加していない状
態でも液晶分子のらせん構造はほどけ(非らせん構造)
、その双極子モーメン)P又はビは上向き(24)又は
下向き(24’)のどちらかの状態をとる。このような
セルに第2図に示す如く一定の閾値以上の極性の異る電
界E又はE′を与えてやると、双極子モーメントは電界
E又はE′の電界ベクトルに対応して上向き24又は下
向き24′と向きを変え、それに応じて液晶分子は第1
の安定状態23かあるいは第2の安定状態23′の何れ
か一方に配向する。このような強誘電性液晶を光変調素
子として用いるととの利点は2つある。第1に応答速度
が極めて速いこと、第2に液晶分子の配向が双安定性を
有することである。第2の点を例えば第2図によって説
明すると、電界Eを印加すると液晶分 1子は第1の安
定状態23に配向するが、この状態は電界を切っても安
定である。又、逆向きの電界E′を印加すると、液晶分
子は第2の安定状態23′に配向してその分子の向きを
変えるが、やはシミ界を切ってもこの状態に留っている
Furthermore, if the thickness of the liquid crystal cell is made sufficiently thin (for example, 1
μ), as shown in Figure 2, the helical structure of liquid crystal molecules is unraveled (non-helical structure) even when no electric field is applied.
, its dipole moments) P or Bi take either an upward (24) or downward (24') state. When such a cell is given an electric field E or E' with a different polarity above a certain threshold value as shown in FIG. 2, the dipole moment will move upward 24 or The liquid crystal molecules change direction downward 24', and accordingly the liquid crystal molecules
or the second stable state 23'. There are two advantages to using such a ferroelectric liquid crystal as a light modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. To explain the second point with reference to FIG. 2, for example, when an electric field E is applied, the liquid crystal molecules are oriented in a first stable state 23, and this state remains stable even when the electric field is turned off. When an electric field E' in the opposite direction is applied, the liquid crystal molecules are oriented to a second stable state 23' and change their orientation, but they remain in this state even after the spot field is turned off.

又、与える電界Eが一定の閾値を越えない限択それぞれ
の配向状態にやはシ維持されている。
Further, each orientation state is maintained as long as the applied electric field E does not exceed a certain threshold value.

このような、応答速度の速さと双安定性が有効に実現さ
れるにはセルとしては出来るだけ薄い方が好しく、一般
的には0.5μ〜20μ、特に1μ〜5μが適している
。この種の強誘電性液晶を用いたマトリクス電極構造を
有する液晶−気光学装置は、例えばクラークとラガバル
にょシ米国特許第4367924号公報で提案されてい
る。
In order to effectively realize such high response speed and bistability, it is preferable that the cell be as thin as possible, and generally 0.5 μ to 20 μ, particularly 1 μ to 5 μ is suitable. A liquid crystal-pneumatic device having a matrix electrode structure using a ferroelectric liquid crystal of this kind is proposed, for example, in Clark and Ragabarnyoshi U.S. Pat. No. 4,367,924.

本発明の駆動法の好ましい具体例を第3図に示す。A preferred example of the driving method of the present invention is shown in FIG.

第3図(5)は、走査電極群と信号電極群の間に双安定
性光学変調物質が挾まれたマトリクス画素構造を有する
セル31の模式図である。32は、走査電極群であシ、
33は信号電極群である。今、説明を簡略化するために
白黒の二値信号を表示する場合を例にとって示す。第3
図(5)に於いて斜線で示される画素が「黒」に、その
他の画素が「白」に対応するものとする。最初に、画面
を「白」に揃えるために双安定性光学変調物質を第1の
安定状態に揃える。このためには、全走査電極群に所定
の電圧パルス(例えば電圧3 Vo 、時間幅Δt)の
信号を印加すればよい。或いは全信号電極群に同様の電
気信号を印加することも可能であるし、又必要に応じて
所要ブロックの走査電極群又は信号電極群に所要ブロッ
クの双安定性光学変調物質が第1の安定状態に揃うよう
な電気信号を印加してもよい。
FIG. 3(5) is a schematic diagram of a cell 31 having a matrix pixel structure in which a bistable optical modulation material is sandwiched between a scanning electrode group and a signal electrode group. 32 is a scanning electrode group;
33 is a signal electrode group. Now, to simplify the explanation, an example will be shown in which a black and white binary signal is displayed. Third
In FIG. 5, it is assumed that the pixels indicated by diagonal lines correspond to "black" and the other pixels correspond to "white". First, the bistable optical modulating material is aligned to a first stable state in order to align the screen to "white". For this purpose, a signal of a predetermined voltage pulse (eg, voltage 3Vo, time width Δt) may be applied to all the scanning electrode groups. Alternatively, it is possible to apply the same electric signal to all the signal electrode groups, and if necessary, the bistable optical modulation material of the required block can be applied to the scanning electrode group or the signal electrode group of the required block as the first stable An electrical signal may be applied to align the states.

具体的な方法として、全電極同時に電気信号を印加して
もよいし、又、順次走査を行ってもよい。いずれにして
も、=担画面を「白」に揃えA後に、情報信号に応じた
情報の書き込みを行う。
As a specific method, electric signals may be applied to all electrodes simultaneously, or sequential scanning may be performed. In any case, after aligning the carrier screen to "white" A, information is written in accordance with the information signal.

第3図CB) −Talと(B) −(blはそれぞれ
選択された走査電極に与えられる電気信号とそれ以外の
走査電極(選択されない走査電極)に与えられる電気信
号を示し、第3図(B) −1cIと(B) −1al
はそれぞれ選択された(これを黒とする)信号゛電極に
与えられる電気信号と選択されない(これを白とする)
信号電極に与えられる電気信号を表わす。第3図(B)
 −181〜ldlそれぞれ横軸が時間を、縦軸が電圧
を表わす。T、とT、はそれぞれ情報信号(及び走査信
号)が印加される位相及び補助信号が印加される位相を
あられす。本例では、T、 = T、 =Δtの例が示
されている。
FIG. 3 CB) -Tal and (B) -(bl respectively indicate the electric signal given to the selected scan electrode and the electric signal given to the other scan electrodes (unselected scan electrodes). B) -1cI and (B) -1al
are the selected (black) signal, the electric signal applied to the electrode, and the unselected (white) signal.
Represents the electrical signal applied to the signal electrode. Figure 3 (B)
-181 to ldl, the horizontal axis represents time and the vertical axis represents voltage. T and T represent the phase at which the information signal (and scanning signal) is applied and the phase at which the auxiliary signal is applied, respectively. In this example, an example of T, = T, = Δt is shown.

走査電極群32は逐次選択される。今、双安定性を有す
る液晶セルの第1の安定状態(白)を与えるための印加
時間Δtでの閾値電圧を−vth、とし、第2の安定状
態(黒)を与えるための印加時間Δtでの閾値電圧をv
th、とすると選択された走査電極に与えられる電気信
号は第3図(B) −1mlに示される如く位相(時間
) TIでは一2V。
The scanning electrode groups 32 are sequentially selected. Now, the threshold voltage at the application time Δt to give the first stable state (white) of the liquid crystal cell having bistability is −vth, and the application time Δt to give the second stable state (black) The threshold voltage at v
th, the electric signal applied to the selected scanning electrode has a phase (time) as shown in FIG. 3(B)-1ml.

を、位相(時間) T、では0となるような電圧である
。又、それ以外の走査電極は、第1図tB) −fbl
に示す如くアース状態となっておシミ気信号0である。
is a voltage that becomes 0 at phase (time) T. In addition, the other scanning electrodes are as shown in Fig. 1 (tB) -fbl
As shown in the figure, the ground state is established and the stain signal is 0.

一方、選択された信号電極に与えられる電気信号は第1
図(B) −10Iに示される如く位相t、において■
。で、位相t2において−v0であシ、又選択されない
信号電極に与えられる電気信号は第3図(B) −(d
lに示される如く位相T、において−■。で、位相T2
において+v0である。以上において、電圧値■。は■
。<vthl< a v。と−V。〉−vth、> −
av。を満足する所菫の値に設定されるO このような電気信号が与えられたときの、各画素に印加
される電圧波形を第3図(Qに示す。
On the other hand, the electric signal given to the selected signal electrode is
As shown in Figure (B)-10I, at phase t, ■
. In phase t2, the electric signal is −v0, and the electric signal given to the unselected signal electrode is −(d) in FIG. 3(B).
In phase T, as shown in l -■. So, the phase T2
+v0 at . In the above, the voltage value ■. is■
. <vthl< a v. and-V. 〉-vth, >-
av. The voltage waveform applied to each pixel when such an electric signal is applied is shown in FIG. 3 (Q).

第3図(C)に於て、(尋とfb)はそれぞれ選択され
た走査線上にあって、「黒」及び「白」を表示されるべ
き画素に、又(C1と(diはそれぞれ選択されていな
い走査線上の画素に印加される電圧波形である。
In FIG. 3(C), (C1 and (di) are on the selected scanning lines, respectively, and "black" and "white" are to be displayed on the pixels to be displayed, and (C1 and (di are respectively selected). This is the voltage waveform applied to the pixels on the scan line that is not scanned.

走査線上にあって、「黒」と表示すべき画素では第1の
位相T、で、閾値電圧vth1を越える1電圧3■。が
印加されるために第2の光学的安定 1状態「黒」に転
移する。又、同一走査線上に存在し、「白」と表示すべ
き画素では第1の位相T、に於ける印加電圧は閾値電圧
vth、を越えない電圧v0であるために、第1の光学
的安定状態に留ったまま即ち白である。
For a pixel on the scanning line that is to be displayed as "black", one voltage 3■ exceeds the threshold voltage vth1 at the first phase T. transitions to the second optically stable state ``black'' due to the application of . Furthermore, for pixels that are on the same scanning line and are to be displayed as "white", the applied voltage in the first phase T is a voltage v0 that does not exceed the threshold voltage vth, so that the first optical stability It remains in that state, that is, it remains white.

一方、選択されない走査線上では、すべての画素に印加
される電圧は±V又はOであって、いずれも閾値電圧を
越えない。従って、液晶分子は、配向状態を変えること
なく走査されたときの信号状態に対応した配向をそのま
ま保持している。即ち、−担一方の光学的安定状態「白
」に揃えられた状態において、走査電極が選択されたと
きに第1の位相T、において一ライン分の1ご号の書き
込みが行われ、−フレームが終了した後でも、その信号
状態を保持し得るわけである。以上述べた駆動信号を時
系列的に示したのが第4図である。81〜S5は走査電
極に印加される電気信号11と工、は、信号電極に印加
される電気信号で、AとCはそれぞれ第3回国に示した
画素人とCに印加される電圧波形である0さて、双安定
性を有する状態での強誘電液晶の電界によるスイッチン
グのメカニズムは微視的には必ずしも明らかではないが
、一般に所定の安定状態に所定時間の強い電界でスイッ
チングした後、全く電界が印加されない状態に放置する
場合には、はぼ半永久的にその状態を保つことは可能で
あるが、所定時間ではスイッチングしないような弱い電
界(先に説明した例で言えば、vth以下の電圧に対応
)であっても、逆極性の電界が長時間に渉って印加され
る場合には、逆の安定状態へ再び配向状態が反転してし
まい、その結果正しい情報の表示や変調が達成できない
現象が生じ得る。轟発明者等は、このような弱電界の長
時間印加による、配向状態の転移反転現象(一種のクロ
ストーク)の生じ易さが基板表面の材質、粗さや液晶材
料等によって影響を受けることは認識したが、定量的に
は未だ把みきっていない。ただ、ラビングやSiO等の
斜方蒸着等液晶分子の配向のための一軸性基板処理を行
うと、上記反転現象の生じ易さが増す傾向にあることは
確認した。特に、高い温匿の時に低い温度の場合に較べ
て、その傾向が強く現われることも確認した。
On the other hand, on unselected scanning lines, the voltages applied to all pixels are ±V or O, neither of which exceeds the threshold voltage. Therefore, the liquid crystal molecules maintain the orientation corresponding to the signal state when scanned without changing the orientation state. That is, when the scanning electrode is selected in a state aligned with the optically stable state "white" of one side, one line of one number is written in the first phase T; This means that the signal state can be maintained even after the end of the signal. FIG. 4 shows the drive signals described above in chronological order. 81 to S5 are the electric signals 11 applied to the scanning electrodes, and A and C are the electric signals applied to the signal electrodes, respectively, and A and C are the voltage waveforms applied to the pixel and C shown at the 3rd National Conference. 0 Now, the mechanism of switching by an electric field in a ferroelectric liquid crystal in a bistable state is not necessarily clear from a microscopic perspective, but in general, after switching to a predetermined stable state with a strong electric field for a predetermined time, no If the electric field is left in a state where no electric field is applied, it is possible to maintain that state almost semi-permanently; voltage), if an electric field of opposite polarity is applied for a long time, the orientation state will be reversed again to the opposite stable state, resulting in incorrect information display and modulation. Unachievable phenomena may occur. Todoroki and his colleagues believe that the ease with which the orientation state transition reversal phenomenon (a type of crosstalk) occurs due to the long-term application of such a weak electric field is influenced by the substrate surface material, roughness, liquid crystal material, etc. I have recognized this, but I have not yet understood it quantitatively. However, it has been confirmed that when a uniaxial substrate treatment for aligning liquid crystal molecules is performed, such as rubbing or oblique evaporation of SiO, etc., the tendency for the above-mentioned inversion phenomenon to occur tends to increase. In particular, it was confirmed that this tendency appears more strongly when the temperature is high than when the temperature is low.

込ずれにしても、正しい情報の表示や変調を達成するた
めに一定方向の電界が長時間に渉って印加されることは
、避けるのが好ましい。
In any case, it is preferable to avoid applying an electric field in a fixed direction for a long time in order to achieve correct information display or modulation.

従って本発明の駆動法に於ける第2の位相T。Therefore, the second phase T in the driving method of the present invention.

は一定方向の弱電界が印加され続けることを防止するた
めの位相であって、その好ましい具体例とじ7て第、3
図fB)−(C1及び(diに示すごとく、信号電極群
に位相T1に於て印加した情報信号(1C)は黒、ld
lは白に対応)と極性の異る信号を位相T、に於て印加
するもの′cある。たとえば第3回置に示したパターン
を表示しようとする場合、位相T。
is a phase for preventing the continued application of a weak electric field in a certain direction, and the preferred specific example is 7th and 3rd.
As shown in Figure fB)-(C1 and (di), the information signal (1C) applied to the signal electrode group at phase T1 is black, ld
1 corresponds to white) and a signal 'c' which applies a signal with a different polarity at a phase T. For example, when trying to display the pattern shown in the third position, the phase T.

を持たない駆動方法を行うと、走査電極S1を走査した
とき、画素人は黒となるが、S2以降では、信号電極上
、に印加される電気信号は、−voが連続し、その電圧
は、そのまま画素人に印加されるため画素人が、やがて
白に反転してしまう可能性が大きい。
If a driving method is used that does not have a pixel, the pixel becomes black when the scan electrode S1 is scanned, but after S2, the electric signal applied to the signal electrode is -vo continuously, and the voltage is , since it is applied to the pixel as it is, there is a high possibility that the pixel will eventually be reversed to white.

あらかじめ画面は一担すべて「白」とし、第1の位相T
1に於て、情報に応じて対応する画素を「黒」と書き込
むわけであるが、本実施例では第1の位相T、でr黒」
に書き込むための電圧は3■。であり、印加時間はΔt
である。父、走査時以外に於て各画素に加わる電圧は最
大1±■o1であり、これが連続して印加される最も長
い時間は、第4図で示す40の個所で2Δtであシ、又
、情報信号が、白→白→黒と続く場合で1.2査目の「
白」が、走査時に相当するときが最も厳しい条件である
が、これでも4Δt(41)であって、印加時間として
は短く、クロストークは全く起こらず、全画面の走査が
一度終了すると、表示された情報は、半永久的に保持さ
れるための双安定性を有さない通常のTN液晶を用いた
表示素子における如き、リフレッシユニ程は全く必要な
い。
In advance, set the entire screen to "white" and set the first phase T.
1, the corresponding pixel is written as "black" according to the information, but in this embodiment, it is written as "black" at the first phase T.
The voltage to write to is 3■. , and the application time is Δt
It is. The maximum voltage applied to each pixel except during scanning is 1±■o1, and the longest time this voltage is continuously applied is 2Δt at 40 locations shown in Figure 4. When the information signal continues from white to white to black,
The most severe condition is when "white" corresponds to scanning, but even this is 4Δt (41), the application time is short, no crosstalk occurs, and once the entire screen has been scanned, the display The displayed information does not need to be refreshed at all as in a display element using a normal TN liquid crystal which does not have bistability so as to be retained semi-permanently.

さて、第2の位相T、の最適時間間隔としては、この位
相に於て、信号電極に印加される電圧の大きさにも依存
し、第1の位相T1に於て情報値 1号として付加され
る電圧と逆極性の電圧を印加する場合、一般的には電圧
が大きい場合には、時間間隔は短く、電圧が小さい場合
には時間間隔は長くするのが好ましいが、時間間隔が長
い° と、一画面全体を走査するに長い時間を要するこ
とになる。このため、好ましくはT2≦T1と設定する
のがよい。
Now, the optimal time interval for the second phase T depends on the magnitude of the voltage applied to the signal electrode in this phase, and is added as information value No. 1 in the first phase T1. When applying a voltage with the opposite polarity to the voltage being applied, it is generally preferable to use a short time interval when the voltage is large, and a long time interval when the voltage is small. Therefore, it takes a long time to scan the entire screen. Therefore, it is preferable to set T2≦T1.

実施例1 透明導電膜(ITO)が互いに500X500のマトリ
クスを構成するようパターニングサレタ1組のガラス板
のうちの1枚に、スピンコードにより約300λのポリ
イミド膜を形成した。そ゛ の基板を表面にテレン布が
巻きつけられたロー2によってラビング処理を施し、ポ
リイミド膜が塗布してない他方の基板と貼シあわせてセ
ルを形成した。このときのセル間隔は約1.6μである
。このセルに、強誘電液晶であるデシロキシベンジリデ
ン−P′−アミノ−2〜メチルプテルシンナメー) (
DOBAMBC)を注入し、加熱溶融状態より除冷する
ことによシ、SmC状態で均一なモノドメイン状態を得
た0 セル温度を70℃にコントロールし、第3図に示
した駆動方法に基づき、vO== 10 V 9 ’r
l= ’r、 = Δt ” 80/J Seeと設定
して、線順次走査を行ったところ、極めて良好な画像が
得られた。
Example 1 A polyimide film having a thickness of about 300λ was formed on one of the glass plates of a pair of patterning sales plates using a spin cord so that transparent conductive films (ITO) formed a matrix of 500×500. This substrate was subjected to a rubbing treatment using Row 2, the surface of which was wrapped with a terrane cloth, and then bonded to the other substrate not coated with the polyimide film to form a cell. The cell spacing at this time is approximately 1.6μ. In this cell, a ferroelectric liquid crystal, desyloxybenzylidene-P'-amino-2~methylptercinname) (
By injecting DOBAMBC) and gradually cooling it from the heated molten state, a uniform monodomain state was obtained in the SmC state.The cell temperature was controlled at 70°C, and based on the driving method shown in Figure 3, vO== 10 V 9 'r
When line sequential scanning was performed by setting l='r,=Δt''80/J See, an extremely good image was obtained.

第5図乃至第6図には、本発明に基づく別の駆動形態例
が示されている。第5回置に於て、神)とlblはそれ
ぞれ選択された走査電極と選択されない走査電極に印加
される電気信号で、(C)とldlはそれぞれ選択され
た(黒)情報信号と補助信号と選択されない(白)ff
報倍信号補助信号を示す。本実施例忙於ては、補助信号
印加位相T、に於て、選択された走査電極にも■。の電
圧を印加する。
FIGS. 5 and 6 show another example of a drive configuration according to the invention. In the fifth section, (C) and lbl are the electrical signals applied to the selected scanning electrode and the unselected scanning electrode, respectively, and (C) and ldl are the selected (black) information signal and auxiliary signal, respectively. and not selected (white)ff
Indicates a multiplier signal auxiliary signal. During the present embodiment, during the auxiliary signal application phase T, the selected scanning electrode also receives . Apply a voltage of

又、第5図CB)に於て、(a)とfblはそれぞれ選
択された走査電極上にあって、情報「黒」及び「白」に
対応する画素に印加される電圧で、(C)とldlはそ
れぞれ選択されない走査電極上にあって、信号電極上に
「黒」及び「白」の情報信号が付加された画素に印加さ
れる電圧を示す。又、第6図は、これらの電気信号を時
系列的に書いたものである。
In FIG. 5 CB), (a) and fbl are the voltages applied to the pixels corresponding to the information "black" and "white" on the selected scanning electrodes, respectively, and (C) and ldl represent voltages applied to pixels on unselected scanning electrodes and to which "black" and "white" information signals are added to signal electrodes, respectively. Moreover, FIG. 6 shows these electrical signals drawn in chronological order.

強銹電性液晶化合物の例としては、前述の実施例1で用
いたDOBAMBCの他に、ヘキシルオキシベンジリデ
ン−P′−アミノ−2−クロロプロピルシンナメート(
HOBACPC)、4−O−(2−メチル)−フチルー
レゾルシリテン−4′−オクチルアニリン(MBRA8
)などを用いることができる。
In addition to DOBAMBC used in Example 1, examples of strongly galvanic liquid crystal compounds include hexyloxybenzylidene-P'-amino-2-chloropropyl cinnamate (
HOBACPC), 4-O-(2-methyl)-phthylresolsiliten-4'-octylaniline (MBRA8
) etc. can be used.

これらの材料を用いて、素子を構成する場合液晶化合物
がSmC相又は8mH!相となるよう* な温度状態に保持する為、必要に応じて素子をヒーター
が埋め込まれた銅ブロック等によシ支持することができ
る。
When constructing an element using these materials, the liquid crystal compound is in the SmC phase or 8mH! If necessary, the element can be supported by a copper block or the like in which a heater is embedded, in order to maintain the temperature state such that it is in phase.

本発明の方法は、液晶−光シャッタや液晶テレビなどの
光学シャッタあるいはディスプレイ分野に広く応用する
ことができる。
The method of the present invention can be widely applied to the field of optical shutters and displays such as liquid crystal-optical shutters and liquid crystal televisions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の駆動法で用いる液晶素
子の斜視図である。第3−(5)は、本発明の駆動法で
用いる電極構造の平面図である。 第3図IB) tel〜ldlは、電極に印加する電気
信号の波形を表わす説明図である。第3図1c) 18
1〜ldlは、画素に印加される電圧波形を表わす説明
図である。第4図は、時系列で電圧を印加した時の電圧
波形を表わす説明図である。第5図(A) fat〜l
dlは、電極に印加する電気信号の波形の別の実施態様
を表わす説明図である。第5図(B) tar〜ldl
は、画素に印加される電圧波形の別の実施態様を表わす
説明図である。第6図は、時系列で電圧を印加した時の
電圧波形の別の実施態様を表わす説明図である。 第3図(B) 第3図(C) 葡4図 第5図(A) 弔5図(E3) 手続補正書(自発) 昭和60年 1月 8日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第10504号 2、発明の名称 光学変調素子の駆動法 3、?11j正をする者 事件との関係 特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)キャノン株式会社 代表者 賀 来 龍 三 部 4、代理人 居所 〒146東京都大田区下丸子3−30−25、補
正の対象 図 面 6、補正の内容 (1)図面の第3図(A)を別紙添付の図面のとおり訂
正する。
1 and 2 are perspective views of a liquid crystal element used in the driving method of the present invention. 3-(5) is a plan view of the electrode structure used in the driving method of the present invention. FIG. 3 (IB) tel to ldl are explanatory diagrams showing the waveforms of electrical signals applied to the electrodes. Figure 3 1c) 18
1 to ldl are explanatory diagrams representing voltage waveforms applied to pixels. FIG. 4 is an explanatory diagram showing voltage waveforms when voltages are applied in time series. Figure 5 (A) fat~l
dl is an explanatory diagram showing another embodiment of the waveform of the electric signal applied to the electrode. Figure 5 (B) tar~ldl
FIG. 2 is an explanatory diagram showing another embodiment of a voltage waveform applied to a pixel. FIG. 6 is an explanatory diagram showing another embodiment of the voltage waveform when voltage is applied in time series. Figure 3 (B) Figure 3 (C) Figure 4 Figure 5 (A) Figure 5 (E3) Procedural amendment (voluntary) January 8, 1985 Manabu Shiga, Commissioner of the Patent Office 1, Case Indication of 1982 Patent Application No. 10504 2, Name of invention Driving method for optical modulation element 3, ? 11j Relationship with the case of those who make corrections Patent applicant address 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (100
) Canon Co., Ltd. Representative Ryu Kaku 3 Department 4, Agent address: 3-30-25 Shimomaruko, Ota-ku, Tokyo 146, Drawing subject to amendment 6, Contents of amendment (1) Figure 3 (A) of the drawing shall be corrected as shown in the attached drawing.

Claims (8)

【特許請求の範囲】[Claims] (1) 走査電極群と信号電極群を有し、該走査電極群
と信号電極群の間に電界に対して双安定性を有する光学
変調物質を配置した構造を有する光学変調素子の駆動法
に於て、 前記双安定性を有する光学変調物質をあらかじめ第1の
安定状態に揃える電圧信号を前、記走査電極群と前記信
号電極群の間に印加した後に、前記走査電極群には走査
信号を順次選択印加し、前記信号電極群には前記選択さ
れた走査電極と情報に応じて選択された信号電極の間で
前記光学変調物質を第2の安定状態に配向させる情報信
号を前記走査信号と同期させて印加することを特徴とす
る光学変調素子の駆動法。
(1) A method for driving an optical modulation element having a structure including a scanning electrode group and a signal electrode group, and an optical modulation material having bistable property against an electric field arranged between the scanning electrode group and the signal electrode group. A voltage signal is applied between the scanning electrode group and the signal electrode group to prepare the bistable optical modulation material to a first stable state, and then a scanning signal is applied to the scanning electrode group. are sequentially selectively applied to the signal electrode group, and an information signal is applied to the signal electrode group to orient the optical modulation material in a second stable state between the selected scanning electrode and the signal electrode selected according to the information. A method for driving an optical modulation element, characterized in that the voltage is applied in synchronization with the voltage.
(2) 前記信号′f!を極群には走査信号が印加され
た走査電極と情報に応じて選択された信号電極の間で前
記光学変調物質を第2の安定状態に配向させる情報信号
と補助信号を前記走査信号と同期させて印加する特許請
求の範囲第1項記載の光学変調素子の駆動法。
(2) The signal 'f! The pole group includes an information signal and an auxiliary signal synchronized with the scanning signal to orient the optical modulation material to a second stable state between the scanning electrode to which the scanning signal is applied and the signal electrode selected according to the information. 2. A method for driving an optical modulation element according to claim 1, wherein the optical modulation element is applied with the same voltage.
(3) 前記情報信号が選択された信号電極と選択され
ない信号電極の間で互いに異なる電圧極性を有している
特許請求の範囲第1項又は第2項記7載の光学変調素子
の駆動法。
(3) The method for driving an optical modulation element according to claim 1 or 2, wherein the information signal has different voltage polarities between selected signal electrodes and unselected signal electrodes. .
(4) 前記補助信号が該信号印加直前又は直後の情報
信号と異なる電圧極性を有する特許請求の範囲第2項記
載の光学変調素子の駆動法。
(4) The method for driving an optical modulation element according to claim 2, wherein the auxiliary signal has a voltage polarity different from that of the information signal immediately before or after the application of the auxiliary signal.
(5) 前記情報信号のパルス幅をTい前記補助信°号
のパルス幅をT2とした時、T、とT2の間でTI≧T
2の関係を有している特許請求の範囲第2項、第3項又
は第4項記載の光学変調素子の駆動法。
(5) When the pulse width of the information signal is T and the pulse width of the auxiliary signal is T2, TI≧T between T and T2.
2. A method for driving an optical modulation element according to claim 2, 3, or 4, which has the following relationship.
(6) 前記双安定性を有する光学変調物質が強誘電性
液晶である特許請求の範囲第1項記載の光学変調素子の
駆動法。
(6) The method for driving an optical modulation element according to claim 1, wherein the optical modulation substance having bistability is a ferroelectric liquid crystal.
(7) 前記強誘電性液晶がカイラルスメクテイツりC
相又はH相を有する液晶である特許請求の範囲第6項記
載の光学変調素子の駆動法。
(7) The ferroelectric liquid crystal has chiral smectite C.
7. The method of driving an optical modulation element according to claim 6, wherein the optical modulation element is a liquid crystal having a phase or an H phase.
(8) 前記カイラルスメクテイツクC相又はH相を有
する液晶がらせん構造を形成していない液晶相である特
許請求の範囲第7項記載の光学変調素子の駆動法。
(8) The method for driving an optical modulation element according to claim 7, wherein the liquid crystal having the chiral smect C phase or H phase is a liquid crystal phase that does not form a helical structure.
JP1050484A 1984-01-23 1984-01-23 Driving method of optical modulating element Granted JPS60156047A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP1050484A JPS60156047A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element
DE19853501982 DE3501982A1 (en) 1984-01-23 1985-01-22 METHOD FOR DRIVING A LIGHT MODULATION DEVICE
FR8500846A FR2558606B1 (en) 1984-01-23 1985-01-22 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE AND OPTICAL MODULATION DEVICE FOR IMPLEMENTING IT
GB8501718A GB2156131B (en) 1984-01-23 1985-01-23 Optical modulation device and driving method therefor
GB8726218A GB2204172B (en) 1984-01-23 1987-11-09 Optical modulation device and driving method therefor
CA000582351A CA1278890C (en) 1984-01-23 1988-11-04 Driving method for optical modulation device
US07/390,922 US5092665A (en) 1984-01-23 1989-08-08 Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
SG56091A SG56091G (en) 1984-01-23 1991-07-16 Optical modulation device and driving method therefor
SG559/91A SG55991G (en) 1984-01-23 1991-07-16 Optical modulation device and driving method therefor
HK711/91A HK71191A (en) 1984-01-23 1991-09-05 Optical modulation device and driving method therefor
HK712/91A HK71291A (en) 1984-01-23 1991-09-05 Optical modulation device and driving method therefor
US08/079,215 US5296953A (en) 1984-01-23 1993-06-21 Driving method for ferro-electric liquid crystal optical modulation device
US08/206,211 US5559616A (en) 1984-01-23 1994-03-03 Driving method for ferroelectric liquid crystal device with partial erasure and partial writing
US08/450,016 US5877739A (en) 1984-01-23 1995-05-25 Driving method for optical modulation device
US08/450,017 US5774102A (en) 1984-01-23 1995-05-25 Driving method for optical modulation device
US08/649,469 US5757350A (en) 1984-01-23 1996-05-17 Driving method for optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050484A JPS60156047A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element

Publications (2)

Publication Number Publication Date
JPS60156047A true JPS60156047A (en) 1985-08-16
JPS6249605B2 JPS6249605B2 (en) 1987-10-20

Family

ID=11752032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050484A Granted JPS60156047A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS60156047A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629324A (en) * 1985-07-08 1987-01-17 Seiko Epson Corp Driving method for liquid crystal element
JPS6256937A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix display panel
JPS62159128A (en) * 1986-01-07 1987-07-15 Canon Inc Driving method for optical modulating element
JPS62161129A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Liquid matrix driving method
JPS62204233A (en) * 1986-03-05 1987-09-08 Hitachi Ltd Liquid crystal matrix driving device
JPS62211620A (en) * 1986-03-13 1987-09-17 Canon Inc Driving method for optical modulation element
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element
JPS6361233A (en) * 1986-09-01 1988-03-17 Canon Inc Driving method for optical modulating element
JPS6391634A (en) * 1986-10-06 1988-04-22 Canon Inc Driving method for optical modulating element
WO1990007725A1 (en) * 1985-07-31 1990-07-12 Minoru Yazaki Method of driving liquid crystal element
US5011269A (en) * 1985-09-06 1991-04-30 Matsushita Electric Industrial Co., Ltd. Method of driving a ferroelectric liquid crystal matrix panel
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
US5951085A (en) * 1995-09-27 1999-09-14 Nissan Motor Co., Ltd. Equipment in luggage compartment for automotive vehicle
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123825A (en) * 1983-12-09 1985-07-02 Seiko Instr & Electronics Ltd Liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123825A (en) * 1983-12-09 1985-07-02 Seiko Instr & Electronics Ltd Liquid crystal display element

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629324A (en) * 1985-07-08 1987-01-17 Seiko Epson Corp Driving method for liquid crystal element
WO1990007725A1 (en) * 1985-07-31 1990-07-12 Minoru Yazaki Method of driving liquid crystal element
JPS6256937A (en) * 1985-09-06 1987-03-12 Matsushita Electric Ind Co Ltd Driving method for liquid crystal matrix display panel
US5011269A (en) * 1985-09-06 1991-04-30 Matsushita Electric Industrial Co., Ltd. Method of driving a ferroelectric liquid crystal matrix panel
JPS62159128A (en) * 1986-01-07 1987-07-15 Canon Inc Driving method for optical modulating element
JPS62161129A (en) * 1986-01-10 1987-07-17 Hitachi Ltd Liquid matrix driving method
JPS62204233A (en) * 1986-03-05 1987-09-08 Hitachi Ltd Liquid crystal matrix driving device
JPS62211620A (en) * 1986-03-13 1987-09-17 Canon Inc Driving method for optical modulation element
JPH0535847B2 (en) * 1986-03-13 1993-05-27 Canon Kk
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element
JPH0564773B2 (en) * 1986-06-25 1993-09-16 Nippon Electric Co
JPS6361233A (en) * 1986-09-01 1988-03-17 Canon Inc Driving method for optical modulating element
JPS6391634A (en) * 1986-10-06 1988-04-22 Canon Inc Driving method for optical modulating element
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
US5657141A (en) * 1992-12-25 1997-08-12 Canon Kabushiki Kaisha Liquid crystal device
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5951085A (en) * 1995-09-27 1999-09-14 Nissan Motor Co., Ltd. Equipment in luggage compartment for automotive vehicle
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5932136A (en) * 1995-10-20 1999-08-03 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US6122031A (en) * 1996-02-09 2000-09-19 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus including same
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces

Also Published As

Publication number Publication date
JPS6249605B2 (en) 1987-10-20

Similar Documents

Publication Publication Date Title
JPS60156047A (en) Driving method of optical modulating element
US5633652A (en) Method for driving optical modulation device
US7161573B1 (en) Liquid crystal display unit and method for driving the same
US5092665A (en) Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
JPS60156046A (en) Driving method of optical modulating element
JPS59193426A (en) Driving method of optical modulating element
JPS59193427A (en) Driving method of optical modulating element
JPS6261931B2 (en)
US5296953A (en) Driving method for ferro-electric liquid crystal optical modulation device
JPH0346808B2 (en)
JPS6031120A (en) Driving method of optical modulating element
US5381254A (en) Method for driving optical modulation device
JPS60172029A (en) Driving method of optical modulation element
JPS6167836A (en) Driving method of liquid crystal element
JPS61149933A (en) Driving method of optical modulating element
JPS6170532A (en) Driving method of liquid crystal element
JP2515519B2 (en) Liquid crystal device manufacturing method
JPS61140924A (en) Driving method of optical modulation element
US5757350A (en) Driving method for optical modulation device
JPH0523405B2 (en)
JPS6183522A (en) Control method of quantity of light
JPS63306424A (en) Driving device
JPS6170530A (en) Driving method of liquid crystal element
JPS6345572B2 (en)
JPS6170531A (en) Driving method of liquid crystal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees