JPS60156046A - Driving method of optical modulating element - Google Patents

Driving method of optical modulating element

Info

Publication number
JPS60156046A
JPS60156046A JP59010503A JP1050384A JPS60156046A JP S60156046 A JPS60156046 A JP S60156046A JP 59010503 A JP59010503 A JP 59010503A JP 1050384 A JP1050384 A JP 1050384A JP S60156046 A JPS60156046 A JP S60156046A
Authority
JP
Japan
Prior art keywords
phase
voltage
signal
liquid crystal
optical modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59010503A
Other languages
Japanese (ja)
Other versions
JPS6249604B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuharu Katagiri
片桐 一春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP59010503A priority Critical patent/JPS60156046A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to DE19853501982 priority patent/DE3501982A1/en
Priority to FR8500846A priority patent/FR2558606B1/en
Priority to GB8501718A priority patent/GB2156131B/en
Publication of JPS60156046A publication Critical patent/JPS60156046A/en
Publication of JPS6249604B2 publication Critical patent/JPS6249604B2/ja
Priority to GB8726218A priority patent/GB2204172B/en
Priority to CA000582351A priority patent/CA1278890C/en
Priority to US07/390,922 priority patent/US5092665A/en
Priority to SG559/91A priority patent/SG55991G/en
Priority to SG56091A priority patent/SG56091G/en
Priority to HK711/91A priority patent/HK71191A/en
Priority to HK712/91A priority patent/HK71291A/en
Priority to US08/079,215 priority patent/US5296953A/en
Priority to US08/206,211 priority patent/US5559616A/en
Priority to US08/450,016 priority patent/US5877739A/en
Priority to US08/450,017 priority patent/US5774102A/en
Priority to US08/649,469 priority patent/US5757350A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent unexpected inversion from a stable state to another stable state by applying an alternating voltage after write of a picture element when a bistable optical modulating material is driven by voltage application. CONSTITUTION:A bistable material such as a liquid crystal in the Chiral smectic C or H phase which is orientated in the first stable state by application of a voltage -E' lower than a threshold voltage -V1 and is orientated in the second stable state by application of a voltage E higher than a threshold voltage V2 is interposed between a scanning electrode group 32 and a signal electrode group 33 to constitute a cell 31. The voltage E having a waveform A' is applied to picture elements A corresponding to black (the second stable state) so that they are colored black after being colored while temporarily, and a voltage E' having a waveform C' is applied to picture elements C corresponding to white (the first stable state) so that they are colored white. An alternating voltage lower than threshold voltages is applied after and before this voltage application to prevent unexpected inversion (inversion between white and black) of stable states due to long-time application of a weak voltage having a certain sign.

Description

【発明の詳細な説明】 本発明は、光学変調素子の駆動方法に係シ。[Detailed description of the invention] The present invention relates to a method for driving an optical modulation element.

詳しくは表示素子や光シヤツターアレイ等の光学変調素
子の時分割駆動方法に関する。
More specifically, the present invention relates to a time-division driving method for optical modulation elements such as display elements and optical shutter arrays.

従来よシ、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填し、多数の画素を
形成して画像或いは情報の表示を行う液晶表示素子はよ
く知られている。
Conventionally, liquid crystal display elements are well known in which a scanning electrode group and a signal electrode group are configured in a matrix, and a liquid crystal compound is filled between the electrodes to form a large number of pixels to display images or information. There is.

この表示素子の駆動法としては、走査電極群に順次周期
的にアドレス信号を選択印加し、信号電極群には所定の
情報信号をア・ドレス信号と同期させて並列的に選択印
加する時分割駆動が採用されているが、この表示素子及
びその駆動法には以下に述べる如き致命高とも言える大
きな欠点を有していた。
The driving method for this display element is a time-sharing method in which address signals are selectively and periodically applied to the scanning electrode group, and predetermined information signals are selectively applied in parallel to the signal electrode group in synchronization with the address signal. However, this display element and its driving method had major drawbacks, which could be considered fatal, as described below.

即ち、画素密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、シかも消費電力が小さいことから、表示素子として
実用に供されているのは殆んどが、例えばM、 S c
hadtとW、HeJlfrich著“Appjlie
d Physics Letters’″Vo 18 
、 A 4(1971,2,15)、P127−128
の“Vo l t a g e −Dependent
Opticajt Activity of a Tw
isted NematicLi(Iuid Crys
tal″に示されたT N (twistednema
tic) 型の液晶を用いたものであシ、この型の液晶
は無電界状態で正の誘電異方性をもつネマチック液晶の
分子が液晶層厚方向で捩れた構造(ヘリカル構造)を形
成し、両電極面でとの液晶の分子が並行に配列した構造
を形成している。一方、電界印加状態では、正の誘電異
方性をもクネマチツク液晶が電界方向に配タル、 [こ
の結果光調変調を起こすことができる。この壓の液晶を
用いてマトリクス電極構造によって表示素子を構成した
場合、走査電極と信号電極が共に選択される領域(選択
点)には、液晶分子を電極面に垂直に配列させるに要す
る両値以上の電圧が印加され、走査電極と信号電極が共
に選択されない領域(非選択点)には電圧は印加されず
、したがって液晶分子は電極面に対して並行な安定配列
を保っている。このような液晶セルの上下に互いにクロ
スニコル関係にある直線偏光子を配置することによシ、
選択点では光が透過ぜす、非選択点では光が透過するた
め画像素子とすることが可能となる。然し乍ら、マトリ
クス電極構造を構成した場合には、走査電極が選択され
、信号電極が選択されない領域或いは走査電極が選択さ
れず、信号電極が選択される領域(所謂“半選択点゛)
にも有限の電界がかかつてしまう。選択点にかかる電圧
と。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are practically used as display elements because they have relatively high response speed and low power consumption, for example, M, S c
Hadt and W. HeJlfrich, “Appjlie
d Physics Letters'″Vo 18
, A 4 (1971, 2, 15), P127-128
“Voltage-Dependent”
Opticajt Activity of a Tw
isted NematicLi(Iuid Crys
T N (twistednema
In this type of liquid crystal, molecules of nematic liquid crystal with positive dielectric anisotropy form a twisted structure (helical structure) in the thickness direction of the liquid crystal layer in the absence of an electric field. , a structure in which liquid crystal molecules are arranged in parallel on both electrode surfaces is formed. On the other hand, when an electric field is applied, the positive dielectric anisotropy of the nematic liquid crystal is aligned in the direction of the electric field, [as a result of which light modulation can occur]. When a display element is constructed using a matrix electrode structure using this glass of liquid crystal, the region where both the scanning electrode and the signal electrode are selected (selection point) has both values required to align the liquid crystal molecules perpendicular to the electrode surface. When the above voltage is applied, no voltage is applied to the area where neither the scanning electrode nor the signal electrode is selected (non-selected point), and therefore the liquid crystal molecules maintain a stable alignment parallel to the electrode plane. By arranging linear polarizers in a cross Nicol relationship above and below such a liquid crystal cell,
Since light passes through selected points and light passes through non-selected points, it can be used as an image element. However, when a matrix electrode structure is configured, there are areas where scanning electrodes are selected and signal electrodes are not selected, or areas where scanning electrodes are not selected and signal electrodes are selected (so-called "half-selected points").
A finite electric field is also generated. and the voltage applied to the selected point.

半選択点にかかる電圧の差が充分に犬きく、液晶分子を
電界に垂直に配列させるに要する電圧蘭値がこの中間の
電圧値に設定されるならば。
If the difference in voltage applied to the half-selection point is sufficiently large, and the voltage value required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value.

表示素子は正常に動作するわけであるが、走査線数Nを
増やして行った場合、画面全体(1フレーム)を走査す
る間に一つの選択点に有効な電界がかかつている時間(
dut7比)がRの割合で減少してしまう。このために
、<シ返し走査を行った場合の選択点と非選択点にかか
る実効値としての電圧差は走査線数が増えれば増える程
小さくなシ、結果的には画像コントラストの低下やクロ
ストークが避は峻い欠点となっている。このような現象
は、双安定性を有さない液晶(電極面に対し、液晶分子
が水平に配向しているのが安定状態であり、電界が有効
に印加されている間のみ垂直に配向する)を時間的蓄積
効果を利用して駆動する(即ち、繰シ返し走査)ときに
生ずる本質的には避は難い問題点である。
The display element operates normally, but if the number of scanning lines N is increased, the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) is
dut7 ratio) decreases at a rate of R. For this reason, the effective voltage difference between selected points and non-selected points when performing reverse scanning becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and The drawback is that it is difficult to avoid talk. This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (ie, repeated scanning).

この点を改良するために、電圧平均化法、2周波駆動法
や多重マトリクス法等が既に提某されているが、いずれ
の方法でも不充分であシ1表示素子の大画面化や高密度
化は、走査線数が充分に増やせないことによって頭打ち
になっているのが現状である。
In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all methods are insufficient and 1. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

一方、プリンタ分野を眺めて見るに、電気信号を入力と
してノ1−トコピーを得る手段として、画素密度の点か
らもスピードの点からも電気画像信号を光の形で電子写
真感光体に与えるレーザービームプリンタ(LBP)が
現在最も良れている。ところがLBPには、 1、 プリンタとしての装置が大型になる。
On the other hand, looking at the field of printers, lasers are used as a means of obtaining note copies by inputting electrical signals, both in terms of pixel density and speed. Beam printers (LBPs) are currently the best. However, LBP has the following problems: 1. The device used as a printer becomes large.

2、 ポリゴンスキャナの様な高速の駆動部分があり騒
音が発生し、また厳しい機械的精度が要求される; などの欠点がある。この様な欠点を解消すべく電気信号
を光信号に変換する素子として、液晶シャッターアレイ
が提案されている。ところが液晶シャッターアレイを用
いて画素信号を与える場合、たとえば200flの長さ
の中に画素信号を10dot/enの割合で書き込むた
めKは2000個の信号発生部を有していなければなら
ず、それぞれに独立した信号を与えるためには、元来そ
れぞれの信号発生部全てに信号を送るリード線を配線し
なければならず、製作上困難であつた。
2. There are disadvantages such as high-speed driving parts such as polygon scanners, which generate noise and require strict mechanical precision. In order to overcome these drawbacks, a liquid crystal shutter array has been proposed as an element that converts electrical signals into optical signals. However, when providing pixel signals using a liquid crystal shutter array, K must have 2000 signal generating sections, each of which is required to write pixel signals at a rate of 10 dots/en within a length of, for example, 200 fl. In order to provide independent signals to each, it was originally necessary to wire lead wires to send signals to all of the signal generating parts, which was difficult to manufacture.

そのため、ILINE(ライン)分の画素信号を数行に
分割された信号発生部によシ行ごとに時分割して与える
試みがなされている。
For this reason, an attempt has been made to time-divisionally supply pixel signals for ILINE (lines) to signal generating sections divided into several rows for each row.

この様にすることによシ、信号を与える電極を複数の信
号発生部に対して共通にすることができ、実質配線数を
大幅に軽減することができるからである。ところが、こ
の場合通常行われでいるように双安定性を有さない液晶
を用いて行数Nを増やして行くと、信号ONの時間が実
質的に1となシ、感光体上で得られる光量が減少してし
まったシクロストークの問題が生ずるという難点がある
By doing so, it is possible to use a common electrode for applying a signal to a plurality of signal generating sections, and the actual number of wiring lines can be significantly reduced. However, if the number of lines N is increased using a liquid crystal that does not have bistability, as is usually done in this case, the signal ON time is essentially 1, which can be obtained on the photoreceptor. There is a problem in that a cyclotalk problem occurs in which the amount of light is reduced.

本発明の目的は、前述したような従来の液晶表示素子或
いは液晶光シャッターにおける問題、a @ < ′*
 ufc’lRM、fx H““0−1” 1供するこ
とにある。
An object of the present invention is to solve the problems in conventional liquid crystal display elements or liquid crystal optical shutters as described above, a @ < ′*
ufc'lRM, fx H""0-1" 1 is provided.

本発明の別の目的は、高速応答性を有する液晶素子の駆
動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal element having high-speed response.

本発明の他の目的は、高密度の画素を有する液晶素子の
駆動法を提供することKある。
Another object of the present invention is to provide a method for driving a liquid crystal device having a high density of pixels.

さらに、本発明の他の目的は、クロストークを発生しな
い液晶素子の駆動法を提供することにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element that does not generate crosstalk.

さらに、本発明の他の目的は、電界に対し双安定性を有
する液晶、特に強誘電性を有するカイラルスメクテイツ
クC相又はH相の液晶を用いた液晶素子の新規な駆動法
を提供することにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal device using a liquid crystal that is bistable with respect to an electric field, particularly a chiral smect C-phase or H-phase liquid crystal that has ferroelectricity. There is a particular thing.

さらに、本発明の他の目的は、高密度の画素と大面積の
画面を有する液晶素子に適した新規な駆動法を提供する
ことにある。
Furthermore, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large screen area.

すなわち1本発明のかかる目的は、交差した走査電極群
と信号電極群の間に双安定性光学変調物質が配置され、
該走査電極群と信号電極群の交差部を画素としたマトリ
クスii!j素構造を有する光学変調素子の駆動法にお
いて、前記マトリクス画素構造のうち選択された走査電
極上の画素に書込み期間内の第1の位相で前記双安定性
光学変調物質を第1の安定状態に配向させる電圧が印加
され、第2の位相で前記画素のうち選択された画素に前
記双安定性光学変調物質を第2の安定状態に配向させる
電圧が印加されて前記走査電極上の画素が書込まれ、し
かる後に該書込まれた画素の双安定性光学変調物質に変
番する電圧を印加する光学変調素子の駆動法によって達
成される。
That is, one object of the present invention is that a bistable optical modulation material is disposed between crossed scanning electrode groups and signal electrode groups,
Matrix ii! where pixels are the intersections of the scanning electrode group and the signal electrode group! In a method for driving an optical modulation element having a j-element structure, the bistable optical modulation material is brought into a first stable state in a first phase within a writing period in a pixel on a selected scanning electrode of the matrix pixel structure. A voltage is applied to orient the bistable optical modulation material to a second stable state, and a voltage is applied to a selected pixel of the pixels in a second phase to orient the bistable optical modulation material to a second stable state, so that the pixels on the scanning electrode This is accomplished by a method of driving an optical modulation element that is written and then applies varying voltages to the bistable optical modulation material of the written pixel.

本発明の好ましい具体例では、走査信号に基づいて順次
周期的に選択される走査電極群と該走査電極群に対向し
所定の情報信号に基づいて選択される信号電極群と、上
記両電極間に保持され電界に対して双安定性を有する液
晶とを少なくとも有する液晶素子の選択された走査電極
には、信号電極の電気信号の如何に拘らず上記液晶を第
1の安定状態に配向すべき一方向の電界を与える電圧を
有する第1の位相11と、信号電極の電気信号に応じて
上記液晶を第2の安定状態に配向し直すことを補助する
電圧を有する第2の位相後とを有する電気信号を付与し
、゛さらに第3の位相t3に於て、信号電極群に上記第
2の位相t2に所定の情報に基づいて印加された電気信
号とは逆の電圧極性を有する電気信号を付与することに
よって駆動することができる。
In a preferred embodiment of the present invention, a scanning electrode group is sequentially and periodically selected based on a scanning signal, a signal electrode group facing the scanning electrode group and selected based on a predetermined information signal, and a gap between the two electrodes. A selected scanning electrode of a liquid crystal element having at least a liquid crystal that is held at a constant temperature and has bistable properties with respect to an electric field is provided with the liquid crystal that is to be oriented in a first stable state regardless of the electrical signal of the signal electrode. a first phase 11 with a voltage providing a unidirectional electric field and a second phase 11 with a voltage assisting in reorienting the liquid crystal to a second stable state in response to an electrical signal of a signal electrode. ``Furthermore, in a third phase t3, an electric signal having a voltage polarity opposite to that of the electric signal applied to the signal electrode group in the second phase t2 based on predetermined information is applied. It can be driven by giving .

本発明の駆動法で用いる光学変調物質は、電界に対して
第1の光学的安定状態と第2の光学的安定状態からなる
双安定状態を有しておシ、特に電界に対して前述の如き
双安定性を有する液晶が用いられる。
The optical modulating substance used in the driving method of the present invention has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field, and in particular has a bistable state with respect to an electric field. A liquid crystal having bistability such as the following is used.

本発明の駆動法で用いることができる双安定性を有する
液晶としては、強誘電性を有するカイラルスメクテイツ
クC相(SrnC)又はH相(SrrJ()の液晶が適
している。この強誘電性液晶については、”LE JO
URNAL DE PffSIQUELETTER8’
36(L−69)1975 、 rFerroelec
tricLiquid Crystajts J ;5
“ApPJied Physics Letters”
36(11)19801’−8ubmicro 5ec
ond B15tab7!eEjlectroopti
c Switching in Liquid ery
stajlsに“固体物理″16(141)1981 
「液晶」等に記載されておシ1本発明ではこれらに開示
された強誘電性液晶を用いることができる。
As a liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectic C phase (SrnC) or H phase (SrrJ()) liquid crystal having ferroelectric properties is suitable. For sex liquid crystal, please refer to “LE JO”
URNAL DE PffSIQUELETTER8'
36 (L-69) 1975, rFerrroelec
tricLiquid Crystajts J ;5
“ApPJied Physics Letters”
36(11)19801'-8ubmicro 5ec
ond B15tab7! eEjelectroopti
c Switching in Liquid ery
“Solid State Physics” 16 (141) 1981 in stajls
In the present invention, the ferroelectric liquid crystals disclosed in these documents can be used.

第1図は、強誘電性液晶セルの例を模式的に描いたも(
7)t’ある。11と11′は、InzOs +SnO
2やITO(Indium−Tin 0xide )等
の透明電極がシートされた基板(ガラス板)であシ、そ
の間に層12がガラス面に垂直になるよう配向した* SmC相又はSmH相の液晶が封入されている。
Figure 1 schematically depicts an example of a ferroelectric liquid crystal cell (
7) There is t'. 11 and 11' are InzOs +SnO
It is a substrate (glass plate) on which transparent electrodes such as 2 or ITO (Indium-Tin Oxide) are sheeted, between which a layer 12 is oriented perpendicular to the glass surface.* SmC phase or SmH phase liquid crystal is sealed. has been done.

太線で示した線13が液晶分子を表わしておシ、この液
晶分子13はその分子に直交した方向に双極子モーメン
) 14 (P上ンを有している。基板11と11’上
の電極間に一定の閾値以上の電圧を印加すると、液晶分
子13のらせん構造がほどけ、双極子モーメント14は
すべて電界方向に向くよう、液晶分子13は配向方向を
変えることができる。液晶分子13は細長い形状を有し
ておシ、その長軸方向と短軸方向で屈折率異方性を示し
、従って例えば、ガラス面の上下に互いにクロスニコル
の偏光子を置けば、電圧印加極性によって光学特性が変
わる液晶変調素子となることは、容易に理解される。さ
らに液晶セルの厚さを充分に薄くした場合(例えば1μ
)には、第2図に示すように電界を印加していない状態
でも液晶分子のらせん構造はほどけ(非らせん構造)%
その双極子モーメン)P又はP′畔上向(24)又は下
向き(24’)のどちらかの状態をとる。このようなセ
ルに第2図に示す如く一定の閾値以上の極性の異る電界
E又はE′を与えてやると、双極子モーメントは電界E
又はE′の電界ベクトルに対応して上向き24又は下向
き24′と向きを変え、それに応じて液晶分子は第1の
安定状態23かあるいは第2の安定状態23′の倒れか
一方に配向する。このような強誘電性液晶を光変調素子
として用いることの利点は2つある。第1に応答速度が
極めて速いこと、第2に液晶分子の配向が双安定性を有
することである。第2の点を例えば第2図によって説明
すると、電界Eを印加すると液晶分子は第1の安定状態
23に配向するが、この状態は車昇を切っても安定であ
る。又、逆向きの電界E′を印加すると、液晶分子は第
2の安定状態23′に配向してその分子の向きを変える
が、やはシミ界を切ってもこの状態に留っている。又、
与える電界Eが一定の閾値を越えない限シ、それぞれの
配向状態にやはシ維持されている。このような、応答速
度の速さと双安定性が有効に実現されるにはセルとして
は出来るだけ薄い方が好しく、一般的には0.5〜20
μ、特′に1μ〜5μが適している。この種の強誘電性
液晶を用いたマトリクス電極構造を有する液晶電気光学
装置は、例えばクラークとラガバルによシ米国特許第4
367924号公報で提案されている◇本発明の駆動法
の好ましい具体例を第3図に示す。
A thick line 13 represents a liquid crystal molecule, and this liquid crystal molecule 13 has a dipole moment in the direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between them, the helical structure of the liquid crystal molecules 13 is unraveled, and the orientation direction of the liquid crystal molecules 13 can be changed so that all the dipole moments 14 are oriented in the direction of the electric field.The liquid crystal molecules 13 are elongated. It has a shape and exhibits refractive index anisotropy in the major and minor axis directions. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the optical properties will change depending on the polarity of voltage application. It is easily understood that the liquid crystal modulation element changes.Furthermore, if the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ
), as shown in Figure 2, the helical structure of liquid crystal molecules unravels (non-helical structure) even when no electric field is applied.
The dipole moment) P or P' takes either an upward (24) or downward (24') state. When such a cell is given an electric field E or E' with a different polarity above a certain threshold as shown in Fig. 2, the dipole moment will change depending on the electric field E.
Or, the direction changes to upward 24 or downward 24' in response to the electric field vector of E', and accordingly, the liquid crystal molecules are oriented either in the first stable state 23 or in the tilted second stable state 23'. There are two advantages to using such a ferroelectric liquid crystal as a light modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. To explain the second point with reference to FIG. 2, for example, when the electric field E is applied, the liquid crystal molecules are oriented in a first stable state 23, and this state remains stable even when the vehicle is turned off. When an electric field E' in the opposite direction is applied, the liquid crystal molecules are oriented to a second stable state 23' and change their orientation, but they remain in this state even after the spot field is turned off. or,
As long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally 0.5 to 20
μ, particularly 1 μ to 5 μ, is suitable. A liquid crystal electro-optical device having a matrix electrode structure using ferroelectric liquid crystals of this kind is disclosed, for example, in U.S. Pat.
A preferred specific example of the driving method of the present invention proposed in Japanese Patent No. 367924 is shown in FIG.

第3図(4)は、中間に強誘電性液晶化合物が挾まれた
マトリクス電極構造を有するセル31の模式図である。
FIG. 3(4) is a schematic diagram of a cell 31 having a matrix electrode structure in which a ferroelectric liquid crystal compound is sandwiched in the middle.

32は走査電極群であシ、33は信号電極群である。今
、説明を簡略化するために、白黒の二値信号を表示する
場合を例にとって示す。第3回国に於て、斜線で示され
る画素が「黒」に、その他が「白」に対応するものとす
る。第3図(B) −(a)と(B) −(blはそれ
ぞれ選択された走査電極に与えられる電気信号とそれ以
外の走査電極(選択されない走査電極)に与えられる電
気信号を示し、第3図(B) −(C)と(B) −(
d)はそれぞれ選択された(これを黒とする)信号電極
に与えられる電気信号と選択されない(これを白とする
)信号電極に与えられる電気信号を表わす。第3図(B
) −fa)〜(B) −(d)ではそれぞれ横軸が時
間を、縦軸が電圧を示している。書込み期間内にあるt
、t ttとt3はそれぞれ第1.第2と第3の位相で
あることを示す。本例ではt1=t2=t3で示されて
いる。走査電極群32は遂次書込み期間が選択される。
32 is a scanning electrode group, and 33 is a signal electrode group. Now, to simplify the explanation, an example will be shown in which a black and white binary signal is displayed. In the third country, it is assumed that the pixels indicated by diagonal lines correspond to "black" and the others correspond to "white". FIG. 3(B)-(a) and (B)-(bl indicate the electrical signal given to the selected scanning electrode and the electrical signal given to the other scanning electrodes (unselected scanning electrodes), respectively; Figure 3 (B) - (C) and (B) - (
d) represents an electric signal applied to a selected (black) signal electrode and an electric signal applied to an unselected (white) signal electrode, respectively. Figure 3 (B
) -fa) to (B) - (d), the horizontal axis represents time and the vertical axis represents voltage. t within the write period
, t tt and t3 are the first . Indicates the second and third phases. In this example, t1=t2=t3. For the scan electrode group 32, successive write periods are selected.

今、双安定性を有する液晶セルの第1の安定状態(これ
を白とする)を与えるための印加時間△tでの閾値電圧
を−Vth2とし、第2の安定状態(これを黒とする゛
)を与えるための印加時間△tでの閾値電圧をVtbl
 とすると1選択された走査電極に与えられる電気信号
は、第3図(B)−talに示される如く位相(時間)
 1+では3Voを、位相(時間) t2では一2■。
Now, the threshold voltage at the application time Δt to give the first stable state (this is white) of a liquid crystal cell having bistable property is -Vth2, and the second stable state (this is black) is set as -Vth2. The threshold voltage at the application time △t to give ゛) is Vtbl
Then, the electrical signal given to one selected scanning electrode has a phase (time) as shown in FIG. 3(B)-tal.
3Vo for 1+, -2■ for phase (time) t2.

又、位相t、では0となるような電圧である。又、それ
以外の走査電極は、第1図(B) −(blに示す如く
アース状態となっておシミ気信号Oである。一方、選択
された信号電極に与えられる電気信号は第3図(B) 
−(e)に示される如く位相t1においてOで、位相t
2.において■。であシ、位相t、においては−■。で
ある。
Further, the voltage is 0 at phase t. In addition, the other scanning electrodes are in the ground state as shown in FIG. (B)
- O at phase t1 as shown in (e), and phase t
2. In ■. At phase t, -■. It is.

又、選択されない信号電極に与えられる電気信号は第3
図(B) −(d)に示される如く位相t1においてO
で1位相t、において−V。%位相tsにおいてVoで
ある。以上に於て、電圧値V。は■。<VthI〈3v
oと−Vo > Vt hz > 3 VOを満足する
所望の値に設定される。このような電気信号が与えられ
たときの、各画素に印加される電圧波形を第3図(C)
に示す。
Further, the electric signal given to the unselected signal electrode is the third
O at phase t1 as shown in Figures (B)-(d)
at one phase t, at −V. Vo at % phase ts. In the above, the voltage value V. ■. <VthI〈3v
o and -Vo > Vthz > 3 It is set to a desired value that satisfies VO. Figure 3 (C) shows the voltage waveform applied to each pixel when such an electrical signal is applied.
Shown below.

第3図(C)に於て(alと(b)は、それぞれ選択さ
れた走査電極上にあって、「黒」及び「白」を表示され
るべき画素に、又(C)と(d)はそれぞれ選択されて
いない走査電極上の画素に印加される電圧 1波形であ
る。第3図(C)から明らかな如く1選択された走査電
極上にあるすべての画素は、第1の位相t1で閾値電圧
−Vthzを越える電圧−3′vOが印加されるために
、まず−担白に揃えられる。
In FIG. 3(C), (al and (b) are on the selected scanning electrodes, and "black" and "white" are to be displayed on the pixels, and (c) and (d) are on the selected scanning electrodes, respectively. ) is one voltage waveform applied to each pixel on an unselected scan electrode.As is clear from FIG. 3(C), all pixels on one selected scan electrode Since a voltage -3'vO exceeding the threshold voltage -Vthz is applied at t1, the voltage is first set to -white.

このうち、「黒」と表示すべき画素では第2の位相t2
で、閾値電圧Vth1を越える電圧3 V、が印加され
るために他方の光学的安定状態(「黒」)に転移する。
Among these, for pixels to be displayed as "black", the second phase t2
Then, since a voltage of 3 V exceeding the threshold voltage Vth1 is applied, the state transitions to the other optically stable state ("black").

又、同−走査電極上に存在し、「白」と表示すべき画素
では第2の位相t2に於ける印加電圧は閾値電圧vth
、を越えない電圧V。であるために、一方の光学的安定
状態に留った寸まである。
In addition, in a pixel that exists on the same scanning electrode and is to display "white", the applied voltage at the second phase t2 is equal to the threshold voltage vth.
, the voltage V does not exceed . Therefore, there is a degree that it remains in one optically stable state.

一方、選択されない走査電極上では、すべての画素に印
加される電圧は士■又はOであって、いずれも閾値電圧
を越えない。従って、液晶分子は、配向状態を変えるこ
となく前回走査されたときの信号状態に対応した配向を
そのまま保持している。即ち、走査電極が選択されたと
きに、まず第1の位相t1において、−担一方の一光学
的安定状態「白」に揃えられ、次に第2の位相t2にお
いて、選択された画素が他方の光学的安定状態(黒)に
転移されて、−ライン分の信号の書込みが行われ、−フ
レームが終了して次回選択されるまでの間は、その信号
状態を保持し得るわけである。
On the other hand, on unselected scan electrodes, the voltages applied to all pixels are either 2 or 0, and neither exceeds the threshold voltage. Therefore, the liquid crystal molecules maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, first in a first phase t1 it is aligned to one optically stable state "white" on the negative side, and then in a second phase t2 the selected pixel is aligned on the other side. The signal is transferred to an optically stable state (black), the signal for one line is written, and that signal state can be maintained until the frame ends and is selected next time.

以上述べた駆動信号を時系列的に示したのが第4図であ
る。81〜S、は走査電極に印加される電気信号で、1
1とI、は信号電極に印加される電気信号で、AとCは
第3図(A)K示した画素AとCに印加される電圧波形
である。
FIG. 4 shows the drive signals described above in chronological order. 81 to S are electric signals applied to the scanning electrodes, and 1
1 and I are electric signals applied to the signal electrodes, and A and C are voltage waveforms applied to pixels A and C shown in FIG. 3(A)K.

さて、双安定性を有する状態での強訪電液晶の電界によ
るスイッチングのメカニズムは微視的には必ずしも明ら
かではないが、一般に所定の(第1の)安定状態に所定
時間の強い電界でスイッチングした後、全く電界が印加
されない状態に放置する場合には、はぼ半永久的にその
状態を保つことは可能であるが、所定時間ではスイッチ
ングしないような弱い電界(先に説明した例で言えば、
vth以下の電圧に対応)であっても、逆極性の電界が
長時間に渉って印加される場合には、逆の(第2の)安
定状態へ再び配向状態が反転してしまい、その結果正し
い情報の表示や変調が達成できない現象が生じる。
Now, the mechanism of switching by an electric field in a strongly charged liquid crystal in a state with bistability is not necessarily clear microscopically, but in general, switching occurs in a predetermined (first) stable state with a strong electric field for a predetermined period of time. After that, if you leave it in a state where no electric field is applied at all, it is possible to maintain that state almost semi-permanently, but it is possible to maintain that state semi-permanently, but if the electric field is so weak that it does not switch for a certain period of time (in the example explained earlier) ,
(corresponding to voltages below vth), if an electric field of opposite polarity is applied for a long time, the orientation state will be reversed again to the opposite (second) stable state, and the As a result, a phenomenon occurs in which correct information display and modulation cannot be achieved.

本発明者等は、このような弱電界の長時間印加による配
向状態の反転現象(一種のクロストーク)の生じ易さが
、基板表面の材質、粗さや液晶材料等によって影響を受
けることは認識したが、定量的には未だ把みきっていな
い。ただ、ラビングやSiO等の斜方蒸着等液晶分子の
配向のだめの一軸性基板処理を行うと、上記反転現象の
生じ易さが増す傾向にあることは確認した。
The inventors of the present invention recognize that the ease with which the orientation state reversal phenomenon (a type of crosstalk) occurs due to the long-term application of such a weak electric field is affected by the substrate surface material, roughness, liquid crystal material, etc. However, it has not yet been determined quantitatively. However, it has been confirmed that when uniaxial substrate processing is performed to prevent the orientation of liquid crystal molecules, such as rubbing or oblique evaporation of SiO, etc., the tendency for the above-mentioned inversion phenomenon to occur tends to increase.

特に、高い温度の時に低い温度の場合に較べてその傾向
が強く現われることも確認した。いずれにしても、正し
い情報の表示や変調を達成するために一定方向の電界が
長時間に渉って印加されることは、避けるのが好しい。
In particular, it was confirmed that this tendency appears more strongly at high temperatures than at low temperatures. In any case, in order to achieve correct information display or modulation, it is preferable to avoid applying an electric field in a fixed direction for a long time.

従って、本発明の駆動法に於ける第3の位相t3は一定
方向の弱電界が印加され続けることを防止するための位
相であって、その好ましい具体例と−して第3図(B)
 −fc)及び(d)に示すごとく、信号電極群に位相
t、に於て印加、した情報信号((C)は黒、(d)は
白に対応)と極性の異る信号を位相t、に於て印加する
ものである。たとえば、第3図(A)K示したパターン
を表示しようとする場合1位相t3を持たない駆動方法
を行うと、走査電極Stを走査したとき、画素Aは黒と
なるが、S、以降では信号電極工1に印加される電気信
号は一■。が連続し、その電圧はそのまま画素人に印加
されるため画素Aがやがて白に反転しでしまう可能性が
太きい。
Therefore, the third phase t3 in the driving method of the present invention is a phase for preventing the continued application of a weak electric field in a certain direction, and a preferred specific example thereof is shown in FIG. 3(B).
-fc) and (d), the information signal ((C) corresponds to black and (d) corresponds to white) applied to the signal electrode group at phase t and the signal of different polarity are applied to the signal electrode group at phase t. , is applied at . For example, when trying to display the pattern shown in FIG. 3(A)K, if a driving method that does not have one phase t3 is used, when the scanning electrode St is scanned, the pixel A will be black, but the pixel S and thereafter will be black. The electric signal applied to the signal electrode 1 is 1. continues and that voltage is applied to the pixel as it is, so there is a high possibility that the pixel A will eventually turn white.

走査時第1の位相t!に於て、その走査電極上の画素を
一担すべて「白」とし、第2の位相後に於て、情報に応
じて対応する画素を「黒」に書き換えるわけであるが、
本実施例では第1の位相t1で「白」とするための電圧
は一3V、でありその印加時間は△tである。一方、「
黒」に書き換えるための電圧は3voであシ、その印加
時間はやはシΔtである。又、走査時以外に於て各画素
に加わる電圧は、最大1±Vo Iで、あシ、とれが連
続して印加さする最も長“時間は・第4 1図で示す4
10個所で2Δtであシ、クロストークは全く起こらず
、全画面の走査が一度終了すると1、表示された情報は
、半永久的に保持されるため、双安定性を有さない通常
のTN液晶を用いた表示素子における如き、リフレッシ
ユニ程は全く必要ない。
First phase t during scanning! In this case, all the pixels on the scanning electrode are set to "white", and after the second phase, the corresponding pixels are rewritten to "black" according to the information.
In this embodiment, the voltage for making it "white" in the first phase t1 is -3V, and its application time is Δt. on the other hand,"
The voltage for rewriting to "black" is 3Vo, and the application time is Δt. In addition, the voltage applied to each pixel during periods other than scanning is at most 1±VoI, and the longest period of time that the recesses and recesses are continuously applied is 4 as shown in Figure 1.
It is 2Δt at 10 points, no crosstalk occurs, and once the entire screen has been scanned, the displayed information is retained semi-permanently, so it is a normal TN liquid crystal without bistability. There is no need for a refresh unit at all as in a display element using .

さて、第3の位相t3の最適時間間隔としては、この位
相に於て、信号電極に印加される電圧の大きさにも依存
し、第2の位相t、に於て情報信号として付加される電
圧と逆極性の電圧を印加する場合、一般的には電圧が大
きい場合には、時間間隔は短く、電圧が小さい場合には
時間間隔は長くするのが好しいが、時間間隔が長いと一
画面全体を走査するに長い時間を要することになる。こ
のため、好ましくはt3≦t2と設定するのがよい。
Now, the optimal time interval for the third phase t3 depends on the magnitude of the voltage applied to the signal electrode in this phase, and is added as an information signal in the second phase t. When applying a voltage with the opposite polarity to the voltage, it is generally preferable to shorten the time interval when the voltage is large, and to lengthen the time interval when the voltage is small; It will take a long time to scan the entire screen. Therefore, it is preferable to set t3≦t2.

実施例1 透明導電膜(ITO)が互いに500X500のマトリ
クスを構成するようパターニングされた1組ツガラス板
に、スピンコードによシ約300人のポリイミド膜を形
成した。それぞれの基板を表面にテレン布が巻きつけら
れたローラによってラビング処理を施し、ラビング方向
が一致するようにして貼C6わせてセルを形成した。こ
のときのセル間隔は約1.6μである。このセルに強誘
電液晶であるデシロキシベンジリデン−P′−アミノ−
2−メチルブチルシンナメート(DOBAMBC)を注
入し、加熱溶融状態よシ除冷することによ’) s S
mC状態で均一なモノドメイン状態を得た。セル温度を
70℃にコントロールし、第3図に示した駆動方法に基
づき、VO” 10 V 、 tl = t2= ts
=Δt=50μsecと設定して、線順次走査を行った
ところ、極めて良好な画像が得られた。
Example 1 About 300 polyimide films were formed using a spin cord on a set of glass plates in which transparent conductive films (ITO) were patterned to form a 500×500 matrix. Each substrate was rubbed with a roller whose surface was wrapped with a terrane cloth, and the substrates were pasted together to form a cell C6 so that the rubbing directions matched. The cell spacing at this time is approximately 1.6μ. In this cell, a ferroelectric liquid crystal, desyloxybenzylidene-P'-amino-
By injecting 2-methylbutyl cinnamate (DOBAMBC), heating it to a molten state and slowly cooling it.')
A uniform monodomain state was obtained in the mC state. Controlling the cell temperature at 70°C, based on the driving method shown in Figure 3, VO" 10 V, tl = t2 = ts
When line sequential scanning was performed by setting =Δt=50 μsec, an extremely good image was obtained.

強誘電性液晶化合物の例としては、前述の実施例1で用
いたDOBAMBCの他に、ヘキシルオキシベンジリデ
ン−P′−アミノ−2−クロロプロピルシンナメート(
HOBACPC)、4−O−(2−メチル)−ブチル−
レゾルシリテン−4′−オクチルアニリン(MBRA8
)などを用いることができる。
In addition to DOBAMBC used in Example 1, examples of ferroelectric liquid crystal compounds include hexyloxybenzylidene-P'-amino-2-chloropropyl cinnamate (
HOBACPC), 4-O-(2-methyl)-butyl-
resolsiliten-4'-octylaniline (MBRA8
) etc. can be used.

これらの材料を用いて、素子を構成する場合液晶化合物
がSmC*相又はSmH相となるような温度状態に保持
する為、必要に応じて素子をヒーターが埋め込まれた銅
ブロツク等圧よシ支持することができる。
When constructing an element using these materials, in order to maintain the temperature state such that the liquid crystal compound becomes the SmC* phase or SmH phase, the element is supported by equal pressure on a copper block embedded with a heater as necessary. can do.

本発明の方法は、液晶−光シャッタや液晶テレビなどの
光学シャッタあるいはディスプレイ分野に広く応用する
ことができる。
The method of the present invention can be widely applied to the field of optical shutters and displays such as liquid crystal-optical shutters and liquid crystal televisions.

【図面の簡単な説明】 第1図および第2図は1本発明の駆動法で用いる液晶素
子の斜視図である。第3図(4)は、本発明の駆動法で
用いる電極構造の平面図である。 第3図(B)fa)〜Td)は、電極に印加する電気信
号の波形を表わす説明図である。第3図(C)(al〜
(d)は。 画素に印加される電圧波形を表わす説明図である。第4
図は1時系列で電圧を印加した時の電圧波形を表わす説
明図である。 (α) (cL) (い 就 品■ (C) 図の (C) 手続補正書(自発) 昭和60年 1月 8日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第10503号 2、発明の名称 光学変調素子の駆動法 3、補正をする渚 事件との関係 特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)キャノン株式会社 代表者 賀 来 龍 三 部 4、代理人 居所 〒148東京都大田区下丸子3−30−2キャノ
ン株式会社内(電話758−2111)5、補正の対象 図 面 6、補正の内容 (1)図面の第3図(A)を別紙添付の図面のとおり訂
正する。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are perspective views of a liquid crystal element used in the driving method of the present invention. FIG. 3(4) is a plan view of the electrode structure used in the driving method of the present invention. FIG. 3(B) fa) to Td) are explanatory diagrams showing waveforms of electric signals applied to the electrodes. Figure 3 (C) (al~
(d) is. FIG. 3 is an explanatory diagram showing a voltage waveform applied to a pixel. Fourth
The figure is an explanatory diagram showing a voltage waveform when voltage is applied in one time series. (α) (cL) (In stock) (C) (C) Procedural amendment (voluntary) January 8, 1985 Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case 1988 Patent Application No. 10503 No. 2, Name of the invention: Driving method for optical modulation element 3, Relation to the Nagisa case for correction Patent applicant address: 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (100
) Canon Co., Ltd. Representative Ryu Kaku 3 Department 4, Agent address: Canon Co., Ltd., 3-30-2 Shimomaruko, Ota-ku, Tokyo 148 (telephone: 758-2111) 5, Drawings subject to amendment 6, Contents of amendment (1) Figure 3 (A) of the drawings is corrected as shown in the attached drawing.

Claims (8)

【特許請求の範囲】[Claims] (1) 交差した走査電極群と信号電極群の間に双安定
性光学変調物質が配置され、該走査電極群と信号電極群
の交差部を画素としたマトリクス画素構造を有する光学
変調素子の駆動法において、前記マトリクス画素構造の
うち選択された走査電極上の画素に書込み期間内の第1
の位相で前記双安定性光学変調物質を第1の安定状態に
配向させる電圧が印加され、第2の位相で前記画素のう
ち選択された画素に前記双安定性光学変調物質を第2の
安定状態に配向させる電圧が印加されて前記走査電極上
の画素が書込まれ、しかる後に該書込まれた画素の双安
定性光学変調物質に交番する電圧を印加することを特徴
とする光学変調素子の駆動法。
(1) Driving an optical modulation element having a matrix pixel structure in which a bistable optical modulation material is arranged between an intersecting scanning electrode group and a signal electrode group, and the intersection of the scanning electrode group and the signal electrode group is used as a pixel. In the method, a first pixel on a selected scan electrode in the matrix pixel structure is
A voltage is applied that orients the bistable optical modulating material to a first stable state in a phase of an optical modulation element, characterized in that a voltage is applied to orient the pixel on the scanning electrode to write, and then an alternating voltage is applied to the bistable optical modulation material of the written pixel. driving method.
(2) 前記書込み期間内に第3の位相を有し、該第3
の位相が第2の位相で印加された信号電極群の電気信号
と異なる電気信号を前記信号電極群に印加する補助信号
印加期間である特許請求の範囲第1項記載の光学変調素
子の駆動法。
(2) having a third phase within the write period;
The method for driving an optical modulation element according to claim 1, wherein the phase is an auxiliary signal application period in which an electrical signal different from the electrical signal applied to the signal electrode group at a second phase is applied to the signal electrode group. .
(3)前記第3の位相が第fの位相で印加された信号電
極群の電気信号と異なる極性の電気信・号を前記信号電
極群に印加する補助信号印加期間である特許請求の範囲
第2項記載の光学変調素子の駆動法。
(3) The third phase is an auxiliary signal application period in which an electric signal/signal having a polarity different from the electric signal applied to the signal electrode group at the f-th phase is applied to the signal electrode group. 2. A method for driving an optical modulation element according to item 2.
(4) 前記第3の位相期間をt、とし、前記第2の位
相期間をトとしたときs j3と髄の間でt3≦t2の
関係を有している特許請求の範囲第2項又は第3項記載
の光学変調素子の駆動法。
(4) When the third phase period is t and the second phase period is t, there is a relationship of t3≦t2 between s j3 and the pith, or 4. A method for driving an optical modulation element according to item 3.
(5) 前記第2の位相で信号電極群に印加する電気信
号のうち、選択された信号電極に印加する電気信号と選
択されない信号電極に印加する電気信号の電圧極性が相
違している特許請求の範囲第1項記載の光学変調素子の
駆動法。
(5) Among the electrical signals applied to the signal electrode group in the second phase, the voltage polarities of the electrical signals applied to the selected signal electrodes and the electrical signals applied to the unselected signal electrodes are different. A method for driving an optical modulation element according to item 1.
(6) 前記双安定性光学変調物質が強誘電性液晶であ
る特許請求の範囲第1項記載の光学変調素子の駆動法。
(6) The method for driving an optical modulation element according to claim 1, wherein the bistable optical modulation substance is a ferroelectric liquid crystal.
(7)前記強誘電性液晶がカイラルスメクテイツクC相
又はH相を有する液晶である特許請求の範囲第6項記載
の光学変調素子の駆動法。
(7) The method for driving an optical modulation element according to claim 6, wherein the ferroelectric liquid crystal is a liquid crystal having a chiral smect C phase or H phase.
(8)前記カイラルスメクテイツクC相又はH相を有す
る液晶がらせん構造を形成していない液晶相である特許
請求の範囲第7項記載の光学変調素子の駆動法。
(8) The method for driving an optical modulation element according to claim 7, wherein the liquid crystal having the chiral smect C phase or H phase is a liquid crystal phase that does not form a helical structure.
JP59010503A 1984-01-23 1984-01-23 Driving method of optical modulating element Granted JPS60156046A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP59010503A JPS60156046A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element
DE19853501982 DE3501982A1 (en) 1984-01-23 1985-01-22 METHOD FOR DRIVING A LIGHT MODULATION DEVICE
FR8500846A FR2558606B1 (en) 1984-01-23 1985-01-22 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE AND OPTICAL MODULATION DEVICE FOR IMPLEMENTING IT
GB8501718A GB2156131B (en) 1984-01-23 1985-01-23 Optical modulation device and driving method therefor
GB8726218A GB2204172B (en) 1984-01-23 1987-11-09 Optical modulation device and driving method therefor
CA000582351A CA1278890C (en) 1984-01-23 1988-11-04 Driving method for optical modulation device
US07/390,922 US5092665A (en) 1984-01-23 1989-08-08 Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
SG559/91A SG55991G (en) 1984-01-23 1991-07-16 Optical modulation device and driving method therefor
SG56091A SG56091G (en) 1984-01-23 1991-07-16 Optical modulation device and driving method therefor
HK711/91A HK71191A (en) 1984-01-23 1991-09-05 Optical modulation device and driving method therefor
HK712/91A HK71291A (en) 1984-01-23 1991-09-05 Optical modulation device and driving method therefor
US08/079,215 US5296953A (en) 1984-01-23 1993-06-21 Driving method for ferro-electric liquid crystal optical modulation device
US08/206,211 US5559616A (en) 1984-01-23 1994-03-03 Driving method for ferroelectric liquid crystal device with partial erasure and partial writing
US08/450,016 US5877739A (en) 1984-01-23 1995-05-25 Driving method for optical modulation device
US08/450,017 US5774102A (en) 1984-01-23 1995-05-25 Driving method for optical modulation device
US08/649,469 US5757350A (en) 1984-01-23 1996-05-17 Driving method for optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010503A JPS60156046A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element

Publications (2)

Publication Number Publication Date
JPS60156046A true JPS60156046A (en) 1985-08-16
JPS6249604B2 JPS6249604B2 (en) 1987-10-20

Family

ID=11752005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010503A Granted JPS60156046A (en) 1984-01-23 1984-01-23 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS60156046A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159128A (en) * 1986-01-07 1987-07-15 Canon Inc Driving method for optical modulating element
JPS62204233A (en) * 1986-03-05 1987-09-08 Hitachi Ltd Liquid crystal matrix driving device
JPS62264029A (en) * 1986-05-12 1987-11-17 Canon Inc Driving method for ferroelectric liquid crystal element
JPS62270924A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Display device using ferroelectric matrix liquid crystal
JPS62278538A (en) * 1986-05-26 1987-12-03 Nec Corp Driving method for liquid crystal element
JPS6373228A (en) * 1986-09-17 1988-04-02 Canon Inc Method for driving optical modulating element
JPS63253333A (en) * 1987-04-10 1988-10-20 Citizen Watch Co Ltd Matrix-type liquid crystal display driving method
JPH01304966A (en) * 1988-06-01 1989-12-08 Canon Inc Display apparatus
US4932759A (en) * 1985-12-25 1990-06-12 Canon Kabushiki Kaisha Driving method for optical modulation device
WO1990007725A1 (en) * 1985-07-31 1990-07-12 Minoru Yazaki Method of driving liquid crystal element
JPH03501894A (en) * 1987-11-18 1991-04-25 イギリス国 Multiple addressing LCD display and multiple addressing method for LCD display
US5011269A (en) * 1985-09-06 1991-04-30 Matsushita Electric Industrial Co., Ltd. Method of driving a ferroelectric liquid crystal matrix panel
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
JPH07175042A (en) * 1985-07-31 1995-07-14 Seiko Epson Corp Driving method for liquid crystal element
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440109U (en) * 1990-08-02 1992-04-06

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07175042A (en) * 1985-07-31 1995-07-14 Seiko Epson Corp Driving method for liquid crystal element
WO1990007725A1 (en) * 1985-07-31 1990-07-12 Minoru Yazaki Method of driving liquid crystal element
US5011269A (en) * 1985-09-06 1991-04-30 Matsushita Electric Industrial Co., Ltd. Method of driving a ferroelectric liquid crystal matrix panel
US4932759A (en) * 1985-12-25 1990-06-12 Canon Kabushiki Kaisha Driving method for optical modulation device
JPS62159128A (en) * 1986-01-07 1987-07-15 Canon Inc Driving method for optical modulating element
JPS62204233A (en) * 1986-03-05 1987-09-08 Hitachi Ltd Liquid crystal matrix driving device
JPS62264029A (en) * 1986-05-12 1987-11-17 Canon Inc Driving method for ferroelectric liquid crystal element
JPS62270924A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Display device using ferroelectric matrix liquid crystal
JPS62278538A (en) * 1986-05-26 1987-12-03 Nec Corp Driving method for liquid crystal element
JPH0453405B2 (en) * 1986-09-17 1992-08-26 Canon Kk
JPS6373228A (en) * 1986-09-17 1988-04-02 Canon Inc Method for driving optical modulating element
JPS63253333A (en) * 1987-04-10 1988-10-20 Citizen Watch Co Ltd Matrix-type liquid crystal display driving method
JPH03501894A (en) * 1987-11-18 1991-04-25 イギリス国 Multiple addressing LCD display and multiple addressing method for LCD display
JPH01304966A (en) * 1988-06-01 1989-12-08 Canon Inc Display apparatus
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
US5657141A (en) * 1992-12-25 1997-08-12 Canon Kabushiki Kaisha Liquid crystal device
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5932136A (en) * 1995-10-20 1999-08-03 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US6122031A (en) * 1996-02-09 2000-09-19 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus including same
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces

Also Published As

Publication number Publication date
JPS6249604B2 (en) 1987-10-20

Similar Documents

Publication Publication Date Title
JPS60156046A (en) Driving method of optical modulating element
US5092665A (en) Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
US5633652A (en) Method for driving optical modulation device
US4800382A (en) Driving method for liquid crystal device
JPS6249605B2 (en)
JPS6245536B2 (en)
US5296953A (en) Driving method for ferro-electric liquid crystal optical modulation device
JPS6245535B2 (en)
JPH0422496B2 (en)
US5381254A (en) Method for driving optical modulation device
JPS6261930B2 (en)
JPS6249607B2 (en)
JPH0578803B2 (en)
JPH0431373B2 (en)
JPH0431374B2 (en)
US5757350A (en) Driving method for optical modulation device
JPH0422493B2 (en)
JP2614220B2 (en) Display device
JPS6360428A (en) Driving method for optical modulating element
CA1258327A (en) Driving method for optical modulation device
JP2584214B2 (en) Driving method of liquid crystal element
JPH0523405B2 (en)
JPS6249606B2 (en)
JPS63118130A (en) Liquid crystal device
JPS62294224A (en) Liquid crystal device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees