JPS60154468A - Manufacture of positive electrode for fuel cell and air cell - Google Patents

Manufacture of positive electrode for fuel cell and air cell

Info

Publication number
JPS60154468A
JPS60154468A JP59010784A JP1078484A JPS60154468A JP S60154468 A JPS60154468 A JP S60154468A JP 59010784 A JP59010784 A JP 59010784A JP 1078484 A JP1078484 A JP 1078484A JP S60154468 A JPS60154468 A JP S60154468A
Authority
JP
Japan
Prior art keywords
electrode
metal phthalocyanine
air
metal
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59010784A
Other languages
Japanese (ja)
Other versions
JPH0677460B2 (en
Inventor
Toshiro Hirai
敏郎 平井
Junichi Yamamoto
準一 山本
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59010784A priority Critical patent/JPH0677460B2/en
Publication of JPS60154468A publication Critical patent/JPS60154468A/en
Publication of JPH0677460B2 publication Critical patent/JPH0677460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain a high energy density positive electrode fo a fuel cell and air cell whose polarization is small, potential drop rarely occurs in high rate discharge, large current discharge is available by carrying metal phthalocyanine of iron, copper, cobalt, nickel, zinc, molybdenum, or manganese in an electrode current collecting material. CONSTITUTION:At least one of phthalic anhydride, phthalonitrile, phthalimide, or ortho-cyanobenzamide, and metal compound which produces metal phthalocyanine with at least one of the above compound are added to electrode current collecting material such as carbon powder, graphite, acetylene black, activated carbon, carbon fiber, or porous nickel plate. This mixture is reacted in an atmosphere of non-reacted gas such as nitrogen, and argon to synthesize metal phthalocyanine. The metal phthalocyanine is carreid on the electrode current collecting material to form electrode material. A positive electrode is prepared in such a way that a mixed powder 1 obtained by mixing the electrode material carried with metal phthalocyanine to water repellent material is pressed with a nickel or silver metal screen 2 and they heated and sintered.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、分極が小さく、大電流取得を可能にする燃料
電池または空気電池用正極、さらに詳細には、燃料電池
または空気電池用の酸素極または空気極において、該電
極を作製するのに触媒合成用反応物質と電極構成物質と
を混合し、非反応性ガス下または溶媒中で加熱し触媒合
成を行ない金属フタロシアニンを合成すると同時に直接
構成祠料に担持させた新規な上記電極を製造する方法に
関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a positive electrode for a fuel cell or an air cell, which has small polarization and can obtain a large current, and more particularly, to an oxygen electrode for a fuel cell or an air cell. Alternatively, at the air electrode, to prepare the electrode, a reaction material for catalyst synthesis and an electrode constituent material are mixed, heated under a non-reactive gas or in a solvent to synthesize the catalyst, and at the same time synthesize the metal phthalocyanine, directly into the structure. The present invention relates to a method for manufacturing the above-mentioned novel electrode supported on a material.

〔発明の背景〕[Background of the invention]

従来、燃料電池、空気電池用の空気極または酸素極に用
いる触媒については、種々の提案がなされている。
Conventionally, various proposals have been made regarding catalysts used in air electrodes or oxygen electrodes for fuel cells and air cells.

すなわち、燃料電池用の空気極触媒又は酸素極触媒とし
ては、銅、銀、金、白金、パラジウム等の金属類、タン
グステンブロンズ、鉄又は銅フタロシアニン、活性炭及
びリチウムをドープした酸化ニッケル等が知られ、又、
空気電池用の空気極触媒としては、白金、パラジウム、
ルテニウム及び銀等の貴金属類、銀と水銀及びルテニウ
ムと金等の合金髪Ji、マンガン及びオスミウム等の遷
移全屈の酸化物類及びNiFe1 O4、C0Fe20
4 、N LCr204及びC0AI20a等のスピネ
ル酸化物類が知ら才じζいる。
That is, as air electrode catalysts or oxygen electrode catalysts for fuel cells, metals such as copper, silver, gold, platinum, and palladium, tungsten bronze, iron or copper phthalocyanine, activated carbon, and nickel oxide doped with lithium are known. ,or,
Platinum, palladium,
Noble metals such as ruthenium and silver, composite metals Ji such as silver and mercury and ruthenium and gold, transition total bending oxides such as manganese and osmium, and NiFe1 O4, C0Fe20
Spinel oxides such as 4, N LCr204 and COAI20a are well known.

これらの触媒物質の効果は電極担持体である炭素材料な
どの表面への担持状態によって太き(左右されている。
The effectiveness of these catalytic substances depends on the state of their support on the surface of the carbon material, which is the electrode carrier.

貴金属類を初めとする無機物質は、ある主の分散媒中で
炭素材料などの電極担体と混合する方法があるが、分散
が不充分であり、充分な効果を発現するためには相当量
を必要とする。一方、銅、鉄フタロシアニンなどの有機
錯体では、硫酸、ピリジン、テトラハイドロフランなど
の可溶な溶媒中にいったん/8解し、これに炭素わ)末
などの電極m体粉末を混合した後、水などの貧溶媒中に
落として触媒の担持された電極担体粉末を得る含浸法な
どが従来の方法として既知である。
There is a method of mixing inorganic substances such as noble metals with electrode carriers such as carbon materials in a certain dispersion medium, but the dispersion is insufficient and a considerable amount must be used to achieve a sufficient effect. I need. On the other hand, for organic complexes such as copper and iron phthalocyanine, they are dissolved in a soluble solvent such as sulfuric acid, pyridine, or tetrahydrofuran, and then an electrode m-body powder such as carbon powder is mixed therein. Conventional methods include an impregnation method in which an electrode carrier powder on which a catalyst is supported is obtained by dropping the electrode carrier powder into a poor solvent such as water.

上記の方法は、jjj4機触媒に比べてはるかに優れた
分li&効果を示すが、溶解中に中心金属の脱離を!1
−シてhに媒効果が低下したり、さらに分子が分解した
すする虞があり、また、担持の工程が極めて複雑になる
欠点もあった。
The above method shows a much better separation effect than the JJJ4 catalyst, but the central metal is eliminated during melting! 1
However, there is a risk that the medium effect will be lowered and the molecules may be decomposed into soot, and there is also the drawback that the loading process becomes extremely complicated.

〔発明の概説〕[Overview of the invention]

本発明はこのような現状に鑑みてなされたものであり、
その目的は、分極が小さく、大電流密度領域においても
電位低下がほとんど起こらず大電流の取得が可能である
高エネルギー密度の燃料電池、空気電池用正極の製造方
法を擢供することである。
The present invention was made in view of the current situation, and
The purpose is to provide a method for manufacturing a positive electrode for a high energy density fuel cell or air cell, which has small polarization and can obtain a large current with almost no potential drop even in a large current density region.

本発明につき概説すれば、本発明の燃料電池・空気電池
用正極の製造方法は、電極集電体材料に対し、鉄、銅、
コバルト、ニッケル、亜鉛、モリブデン、マンカンなど
の金属フタ1−2シアニンを含有し、その含有方法が、
反応物質と電極材料を混合し、これに窒素ガス、アルゴ
ンガスなどの非反応性ガス雰囲気下、またはエチレング
リコール、N、N−ジメチルボルムアミド、トリクロル
ベンゼンなどの溶媒中で合成すると同時に担持さ−[る
ことを特徴とするものである。
To summarize the present invention, the method for producing a positive electrode for fuel cells/air cells according to the present invention uses iron, copper, iron, copper, etc. for the electrode current collector material.
Contains metal caps such as cobalt, nickel, zinc, molybdenum, and mankanine, and contains 1-2 cyanine.
A reactant and an electrode material are mixed and simultaneously synthesized and supported under a non-reactive gas atmosphere such as nitrogen gas or argon gas, or in a solvent such as ethylene glycol, N,N-dimethylbormamide, or trichlorobenzene. [It is characterized by

これまで、燃料電池及び空気電池用の空気極、百メー極
に触媒としζ、上記担持法により金属フタロシアニンを
用いた例はない。本発明によれば、電極に」二記の合成
と同時に金属フタロシアニンを担持・uしめることによ
り、金属フタロシアニンを含自さ・口る新規な構成によ
り、後述のように従来の金属フタロシアニン担持の場合
に比べ、電極への用持工15!を省略でき、かつ作製さ
れた電極分極を小さくし、長期安定性の優れ、大電流の
取得がi+J能にするという優れ、j;: 3JJ果か
えられる。
Until now, there has been no example of using metal phthalocyanine as a catalyst in air electrodes and 100 meter electrodes for fuel cells and air cells by the above-mentioned supporting method. According to the present invention, metal phthalocyanine is supported on the electrode at the same time as the synthesis described in section 2, and the metal phthalocyanine is contained in the electrode. Compared to the above, it takes 15 times more work to the electrode! can be omitted, the polarization of the prepared electrode is reduced, long-term stability is excellent, and large current can be obtained with i+J capability.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

燃料電池は負極活物質として水素ガスを使用し、化1N
′質とし°7’ K OII、N a OH等のアルカ
リ電解質、NaC1、KCI等の中性電解質、リン酸等
の酸性電解う″」を使用して構成され、また空気電池は
11秒活物り″(とし゛ζ亜鉛、アルミニウム、マグネ
シウム、鉄またはそれらの合金等を使用し、電解質とり
、゛ζ上記燃料電池用電解質と同しものを使用して構成
される。
Fuel cells use hydrogen gas as the negative electrode active material, and
The air cell is constructed using ``alkaline electrolytes such as KOII and NaOH, neutral electrolytes such as NaCl and KCI, and acidic electrolytes such as phosphoric acid''. The electrolyte is made of zinc, aluminum, magnesium, iron, or an alloy thereof, and the electrolyte is the same as the electrolyte for the fuel cell described above.

本発明によって製造される電極は、上述の燃料電池・空
気電池用の正極として′用いられるが、上記+1g +
h’<の本体となる電極95重体材料は、従来この種の
電極材料として用いられるものであればいがなるもので
もよい。たとえば炭素粉末、グラファイト、アセチレン
ブランク、ケッチェンブラックE、C,、活性炭、炭素
繊維等の一種以上の炭素物質、および多孔質ニッケル板
などであることができる。
The electrode manufactured according to the present invention is used as a positive electrode for the above-mentioned fuel cell/air cell, and the above-mentioned +1g +
The heavy material of the electrode 95 serving as the main body of h'< may be any material conventionally used as this type of electrode material. For example, one or more carbon materials such as carbon powder, graphite, acetylene blank, Ketjenblack E, C, activated carbon, carbon fiber, and porous nickel plate can be used.

このような電極集電体材料に対し、金属フタロシアニン
の合成用出発物質を添加する。
A starting material for synthesizing metal phthalocyanine is added to such an electrode current collector material.

ずなわら、0;1記電極集電体114料に、無水フタル
酸、フタロニトリル、フタルイミド、オルトシアノヘン
ズアミドの一種以上および前述の無水フタル酸、フタロ
ニトリル、フタルイミド、オルトシアノヘンズアミドの
一種以上と金属フタロシアニンを生成する金属化合物を
添加する。
Zunawara, 0; 1. In the electrode current collector 114 material, one or more of phthalic anhydride, phthalonitrile, phthalimide, orthocyanohenzamide, and one of the above-mentioned phthalic anhydride, phthalonitrile, phthalimide, orthocyanohenzamide. Add the above and a metal compound that produces metal phthalocyanine.

このような金属化合物としては、た2=えば鉄、銅、コ
バルト、ニッケル、亜鉛、モリブデン、マンガンなどに
りなる群より選択された一種以上の金属化合物(たとえ
ば、塩化物)であることがCきる。
Such metal compounds include, for example, one or more metal compounds (for example, chlorides) selected from the group consisting of iron, copper, cobalt, nickel, zinc, molybdenum, manganese, etc. Wear.

このような金属化合物の混合聞は、電極材料全体を基準
とし、好ましくは3.51量%以上であるのがよい、3
.5重量%未満であると、本発明による9)J果、すな
わち従来に比し良47な性能をえるのが困ツUになる。
The mixing ratio of such metal compounds is preferably 3.51% by weight or more, based on the entire electrode material.
.. If the amount is less than 5% by weight, it will be difficult to obtain the 9) J results of the present invention, that is, performance that is better than the conventional one.

一方、無水フタル酸、フタロニトリル、フタルイミド、
オルトシアノヘンズアミドの一種以上の添加頃は、好ま
しくは10重量%以上であるのがよい。10重量%未満
であると、良好な性能の電池が(qにくくなるからであ
る。
On the other hand, phthalic anhydride, phthalonitrile, phthalimide,
The amount of one or more orthocyanohenzamides added is preferably 10% by weight or more. This is because if it is less than 10% by weight, it becomes difficult to produce a battery with good performance.

また、反応物質の一つとして尿素を添加することができ
、無水フタル酸の場合、無水フクル酸のモル故に対し、
2倍程度添加する。
In addition, urea can be added as one of the reactants, and in the case of phthalic anhydride, because of the molar ratio of fucuric anhydride,
Add about twice as much.

このような混合物に、任意にAs、 05などの合成触
媒を添加してもよい。
A synthetic catalyst such as As, 05, etc. may optionally be added to such a mixture.

このような混合体は、溶媒中あるいは窒素、アルゴンガ
スなどの非反応性ガス雰囲気下において反応さセ、金属
フタロシアニンを合成するとともに前記電極終電材料に
担持せしめ電極材料とするものである。
Such a mixture is reacted in a solvent or in an atmosphere of a non-reactive gas such as nitrogen or argon gas to synthesize metal phthalocyanine and supported on the electrode terminal material to form an electrode material.

前述の溶媒としては、反応温度において前述の反応物質
に対し非反応性で、前記反応温度以上のrlB:点を有
するとともに、t’+jj記反応物質を可溶するもので
あればいかなるものでもよい。たとえば、iij述のエ
チレングリコール、N、N−ジメナルホルム゛rミド、
トリクロルヘンゼンなどの一種以上であることができる
The above-mentioned solvent may be any solvent as long as it is non-reactive with the above-mentioned reactant at the reaction temperature, has an rlB: point equal to or higher than the reaction temperature, and can dissolve the t'+jj reactant. . For example, ethylene glycol, N,N-dimenalformamide,
It can be one or more of trichlorhenzene and the like.

前述の合成および担持の条件としては、好ましくは溶媒
中では用いられる溶媒の沸点より10℃以下の温度(た
とえば、エチレングリコールの場合では180℃程度)
、ガス雰囲気中においては200℃以上の温度で5時間
以上加熱して行われる。上記温度より低いと、金属フタ
し1シアニンが生成しに<<、合成に時間がかかるから
である。
The conditions for the above-mentioned synthesis and loading are preferably a temperature of 10°C or lower than the boiling point of the solvent used (for example, about 180°C in the case of ethylene glycol);
, in a gas atmosphere, by heating at a temperature of 200° C. or higher for 5 hours or longer. This is because if the temperature is lower than the above, it takes a long time to synthesize 1 cyanine with a metal cap.

正極電極は、前記電極集電体材料に前述の金属フタロシ
アニンを担持した電極材料と撥水剤を混合した混合粉体
をニッケル、銀等の金属網とともに成形圧着し、これを
加熱焼成して作製することができる。
The positive electrode is produced by molding and pressing a mixed powder obtained by mixing the electrode material supporting the metal phthalocyanine and a water repellent with the electrode current collector material together with a metal mesh of nickel, silver, etc., and then heating and baking this. can do.

本発明における上記金属フタロシア;、ンが触媒として
有効である理由は、正極における電極反応(たとえばア
ルカリ電解質中では、 01!+1120+2 e−−=OH−+HC)2− 
)において生成する中間体(酸性電解質使用の場合: 
Ilg Ot 7tvtx lJ’21!Mffi(t
jl(Di合: HOt −りの分解速度を大きくし、
電極反応を充分円滑に進めることができるためと考えら
れる。とりわけ鉄フタVシアニンの場合、最も効率のよ
い4電子反応(たとえばアルカリ電解質中では、02+
2J1g O+4e−−=40H−)を優先的に選択し
、電極反応の進行が充分円滑となる。
The reason why the metal phthalocyanate in the present invention is effective as a catalyst is because of the electrode reaction at the positive electrode (for example, in an alkaline electrolyte, 01!+1120+2 e--=OH-+HC) 2-
) (when using acidic electrolyte:
Ilg Ot 7tvtx lJ'21! Mffi(t
jl(Di: increase the decomposition rate of HOt-ri,
This is thought to be because the electrode reaction can proceed sufficiently smoothly. Especially in the case of iron cap V cyanine, the most efficient four-electron reaction (for example, in an alkaline electrolyte, 02+
2J1g O+4e--=40H-) is preferentially selected, and the electrode reaction proceeds sufficiently smoothly.

さらに、本発明における合成と同時に担持する方法をと
ることにより、金属フタロシアニンと炭素物質などの電
極集電体ヰ4ねとの間の接触が良好になり、導電率が向
」ニし、電子の供給がさらにスムースになる。
Furthermore, by using the method of supporting simultaneously with the synthesis in the present invention, the contact between the metal phthalocyanine and the electrode current collector material such as carbon material is improved, the electrical conductivity is improved, and the electron Supply becomes smoother.

次ぎに本発明によって製造される正極の一例の構造を図
面により説明する。
Next, the structure of an example of a positive electrode manufactured according to the present invention will be explained with reference to the drawings.

第1図は本発明にお番ノる正極(空気極または酸素極)
の構造を一具体例を示した断面概略図であり、1は電極
材料層、2はニッケル製網、3は疎水性多孔質層である
Figure 1 shows the positive electrode (air electrode or oxygen electrode) used in the present invention.
1 is a schematic cross-sectional view showing a specific example of the structure, in which 1 is an electrode material layer, 2 is a nickel mesh, and 3 is a hydrophobic porous layer.

この空気トーを電池に組み込むに当たっては、電極14
料層lが電)IJ1′質に、疎水性多孔質層3がガスに
接゛4るように向きを定める。この結果、電極材料層1
中に電解質、ガス及び電極粉体の三和昇面が形成される
。なお、ニッケル製1i12は電極材料層lおよび疎水
性多孔質層3の支持体および集電体として設けられる。
When incorporating this air toe into a battery, the electrode 14
The material layer 1 is oriented so that it is in contact with the electrolytic material and the hydrophobic porous layer 3 is in contact with the gas. As a result, electrode material layer 1
A triad of electrolyte, gas and electrode powder is formed inside. Note that nickel 1i12 is provided as a support and a current collector for the electrode material layer 1 and the hydrophobic porous layer 3.

前記疎水性多孔質層3は、電解質側に設けられた電極材
料層1と同様の材料を使用するが、電極材料層1に比べ
゛ζ撥水剤の割合を高め(または撥水剤のみで構成しζ
もよい。
The hydrophobic porous layer 3 uses the same material as the electrode material layer 1 provided on the electrolyte side, but has a higher proportion of water repellent (or only a water repellent) than the electrode material layer 1. compose ζ
Good too.

この場合、撥水効果のみで反応には全く関与しない)、
かフ多孔度を大とする。
In this case, it only has a water repellent effect and does not participate in the reaction at all).
Increase the porosity.

次ぎに、本発明を実hb例によって説明するが、本発明
はこれによりなんら限定されるものではない。なお、実
施例における電極電位の電流依存性の測定では、いずれ
も飴和カロメル電極(SCE )を参照電極としてこれ
を基準に電位を評価した。
Next, the present invention will be explained using a practical example, but the present invention is not limited thereto in any way. In the measurement of the current dependence of electrode potential in Examples, the potential was evaluated based on a candy calomel electrode (SCE) as a reference electrode.

測定は20〜25℃の室温中で行、た。Measurements were carried out at room temperature of 20-25°C.

実施例1 フタロニトリル 4 g、 FcCIp −nll e
 01.4g、尿素 0.25 gの各出発物質に炭素
わ)末(200メツシュ通過) 1g、アセチレンブラ
ノク3g、ケッチェンブランクE、C,4g の電極構
成材料を乳鉢でよく混合し、セパラブルフラスコ中、N
2雰囲気下で、300℃、108時間加熱した。その後
、350℃に温度をあげ、さらに2時間加熱した。
Example 1 Phthalonitrile 4 g, FcCIp-nlle
01.4 g of urea, 0.25 g of urea, 1 g of carbon powder (passed through 200 meshes), 3 g of acetylene Blank, and 4 g of Ketjen blanks E, C, and urea were mixed well in a mortar, and separated. In the bull flask, N
The mixture was heated at 300° C. for 108 hours under two atmospheres. Thereafter, the temperature was raised to 350° C. and further heated for 2 hours.

得られた粉末は、メタノールでソックスレー抽出により
精製した。乾燥の後、得られた粉体 4゜5gとテフロ
ンエマルジョン(テフロン 60%含有>2.5gとを
よく混練し、ロールを用いてシート状にした。シートを
30分間程度空気中で乾燥した後、シートの片側にニッ
ケル製網(50メソシユ)を置き、さらにその上に多孔
質テフロンシー1〜を置い°ζ、250℃の温度、10
0kg/−の圧で30分間ポットプレスした。空気中で
冷却し、直径30龍の円形に切り出して空気極を製造し
た。
The resulting powder was purified by Soxhlet extraction with methanol. After drying, 4.5 g of the obtained powder and 2.5 g of Teflon emulsion (containing 60% Teflon) were thoroughly kneaded and formed into a sheet using a roll. After drying the sheet in air for about 30 minutes, A nickel mesh (50 mesh) was placed on one side of the sheet, and a porous Teflon sheet was placed on top of it.
Pot press was carried out for 30 minutes at a pressure of 0 kg/-. It was cooled in air and cut out into a circle with a diameter of 30 mm to produce an air electrode.

電解質として、l N K OHを使用し、亜鉛を負極
として空気電池を構成し、空気中で空気極の電極電位(
E、対SC[i以1・同様)の電流密度依存性を調べた
An air battery is constructed using lNKOH as the electrolyte and zinc as the negative electrode, and the electrode potential of the air electrode (
E, current density dependence versus SC [i and 1 and similar) was investigated.

また、比較のため上記方法により担持された鉄フタロシ
アニンの量(24重量%)と同量の鉄フタロシアニン(
2,5g)を炭素15)未 1g、アセチレンブランク
 3g1ケツチエンブラツクE。
For comparison, the same amount of iron phthalocyanine (24% by weight) as the amount of iron phthalocyanine supported by the above method (24% by weight) was also used.
2.5 g) of carbon 15), 1 g of acetylene blank, 3 g of acetylene blank, 1 ketchen black E.

C,4gの炭素材料粉体に担持させ、この混合粉体 4
.5gとテフロンエマルジョン 2.5gとから上記方
法と同様にして作製した空気極の電極電位の電流密度依
存性も同時に調べた。
C, supported on 4 g of carbon material powder, and this mixed powder 4
.. At the same time, the dependence of the electrode potential on the current density of an air electrode prepared from 5 g of Teflon emulsion and 2.5 g of Teflon emulsion in the same manner as above was also investigated.

結果を第2図に示す。すなわち、第2図は本実施例にお
ける空気極の電流密度と電極電位の関係を示したグラフ
であり、Aは本実施例に示した担持法により担持した鉄
フタロシアニンの場合、Bは従来の既知の方法により鉄
フタロシアニンの担持がされた場合、Cは従来の銀を触
媒に用いた場合である。
The results are shown in Figure 2. That is, FIG. 2 is a graph showing the relationship between the current density of the air electrode and the electrode potential in this example, where A is iron phthalocyanine supported by the supporting method shown in this example and B is the conventional known iron phthalocyanine. When iron phthalocyanine was supported by the method described above, C is a case where conventional silver was used as a catalyst.

第2図によると、本実施例で示された合成と同時に担持
する方法によって鉄フタロシアニンが14持された場合
、平衡電位が−(+、 006 V、50 m iA 
/ c+a通電時で−0,2■、1001nA、/cn
1通電n、’Iで−0,235Vとなっている。また、
0〜10001Δ/(:請の電流(1bを往復して変化
させたときのヒステリシスも3つの内で最も小さく、電
位応答性が良好となっている。
According to FIG. 2, when 14 iron phthalocyanines are supported by the simultaneous synthesis and loading method shown in this example, the equilibrium potential is -(+, 006 V, 50 m iA
/ c+a -0,2■, 1001nA, /cn when energized
The voltage is -0,235V at one energization n,'I. Also,
The hysteresis when changing the current 1b back and forth is also the smallest among the three, and the potential response is good.

第2図から明らかなように、従来の方法により担持され
た鉄フタロシアニンの場合や触媒として銀を用いた場合
に比し、合成と同時に担持する方法によって鉄フタロシ
アニンを担持した本発明の場合には、平衡電位が高く、
かつ分極が小さく、大電流密度領域でも電位の大幅な低
下が見られず安定している。
As is clear from FIG. 2, compared to the case of iron phthalocyanine supported by the conventional method or the case of using silver as a catalyst, in the case of the present invention in which iron phthalocyanine was supported by the method of supporting at the same time as synthesis. , the equilibrium potential is high;
In addition, the polarization is small, and the potential is stable without a significant drop even in the high current density region.

実施例2 無水フタル酸 4.Ogと尿素 6.0 g 、 Cu
C10,7gに触媒として^5205 0.1gを加え
、これに炭素粉末 1g、アセチレンブランク 3.0
g、ケッチェンブランクE、C,4,0gの電極構成材
料を乳鉢でよく混合し、これらをトリクロルベンゼン 
500m1に混合した後、セパラブルフラスコ中、20
0℃、10時間加熱した。その後トリクロルベンゼン 
400m1でうずめ、熱濾過した。トリクロルベンゼン
で6しい、蒸lt?7 L7た1歩、希塩酸 500m
1を添加し、96℃でJJII l!51.た。
Example 2 Phthalic anhydride 4. Og and urea 6.0 g, Cu
Add 0.1 g of ^5205 as a catalyst to C10.7 g, add 1 g of carbon powder, and 3.0 g of acetylene blank.
g, Ketjen Blank E, C, 4.0g of electrode constituent materials were mixed well in a mortar, and these were mixed with trichlorobenzene.
After mixing 500 ml, in a separable flask, 20
It was heated at 0°C for 10 hours. Then trichlorobenzene
The mixture was poured into a 400ml volume and filtered hot. Steamed with trichlorobenzene? 7 L7 step, dilute hydrochloric acid 500m
1 and JJII l! at 96°C. 51. Ta.

これを濾過、水洗いした後、乾燥させて電極松科をj7
だ。
After filtering and washing with water, dry it and use the electrode Pinaceae as j7.
is.

得られた粉体 4.5gとテフロンエマルジョン2.5
gとから実施例1と同様の工程で空気極を作製し、電極
電位の電流依存性を調べた。電解質にI N K OH
を用い、亜鉛を負極とし゛ζ空気電池を構成し、空気中
で空気極の電極電位の電流密度依存性を調べた。
4.5 g of the obtained powder and 2.5 g of Teflon emulsion
An air electrode was prepared from Example 1 in the same manner as in Example 1, and the current dependence of the electrode potential was investigated. I N K OH for electrolyte
A ζ-air battery was constructed using zinc as the negative electrode, and the dependence of the electrode potential of the air electrode on current density in air was investigated.

また、比較のため上記方法により担持されたtlalフ
タロシアニンのl、(20重量%)と同量OJ) l”
! 7タロシアニン(2,1,g)を炭素粉末 1g、
アセチレンブランク 3g1ケノチエンブラ・ツクE。
In addition, for comparison, the same amount of OJ (20% by weight) of tlal phthalocyanine supported by the above method was used.
! 7 Talocyanine (2.1, g) with 1 g of carbon powder,
Acetylene blank 3g1 Kenochiembra Tsuku E.

C,4gの混合粉体に担持させ、この混合粉体4.5g
とテフロンエマルジョン 2.5 g トカ6上記方法
と同様にして作製した空気極の電極電位の電流密度依存
性も同時に調べた。
C, supported on 4g of mixed powder, and 4.5g of this mixed powder
and Teflon emulsion 2.5 g Toca 6 The dependence of the electrode potential on the current density of the air electrode prepared in the same manner as above was also investigated at the same time.

結果を第3図にしめず。すなわち、第3図は本実施例に
おける空気極の電極電位の関係を示したグラフであり、
Dは本実施例に示した担持法により担持した′Llil
フタロシアニンの場合、Eは従来の方法により担持した
銅フタ〔2シアニンの場合である。
The results are shown in Figure 3. That is, FIG. 3 is a graph showing the relationship between the electrode potentials of the air electrode in this example,
D is 'Llil supported by the supporting method shown in this example.
In the case of phthalocyanine, E is the case of copper cap [2 cyanine] supported by a conventional method.

第3図によると、本実施例の方法によって担持された銅
フタロシアニン含有の空気極では、平行電位が−0,3
5V、50 rn A /c、fJ電電時−0,335
V、 100mA/cJ*電時で−0,52Vとなっ)
、:。
According to FIG. 3, the parallel potential of the copper phthalocyanine-containing air electrode supported by the method of this example is -0,3
5V, 50 rn A/c, fJ electric hour -0,335
V, 100mA/cJ * -0.52V at electric time)
, :.

第3図から明らかなように、従来の方法により11持さ
れた銅フタロシアニンの場合に比し、合成と同時に1u
持する方法によって銅フタロシアニンを担持した本発明
の場合には、平衡電位が高く、かつ分極が小さく、大電
流密度領域でも電位の大幅な低下が見られず安定してい
る。
As is clear from Figure 3, compared to the case of copper phthalocyanine, which was prepared by the conventional method, 1 u of copper phthalocyanine was synthesized simultaneously.
In the case of the present invention in which copper phthalocyanine is supported by the method described above, the equilibrium potential is high and the polarization is small, and the potential is stable without a significant drop even in a high current density region.

実施例3 フタlIニトリ# 4 g 、 NiCl2またはCo
C1wまkはZlICJ2またはMr+CI 2または
MoCl5 1.4 g −尿素 0−25 gと炭素
粉末 1g、アセチレンブランク 3g1ケッチェンブ
ランクE、C,4gを乳鉢でよく混合し、セパラブルフ
ラスコ中、NQ雰囲気下で、350℃、70時間加熱し
た。
Example 3 Lid Nitri #4 g, NiCl2 or Co
For C1w, 1.4 g of ZlICJ2 or Mr+CI 2 or MoCl5 - 0-25 g of urea, 1 g of carbon powder, 3 g of acetylene blank, 1 g of Ketjen blanks E, C, and 4 g were mixed well in a mortar and placed in a separable flask under NQ atmosphere. The mixture was heated at 350° C. for 70 hours.

その後、400°Cに温度をあげ、さらに2時間加熱し
た。
Thereafter, the temperature was raised to 400°C and heated for further 2 hours.

冑られた粉末は、メタノール、エーテルで線状した。乾
燥の後、得られた粉体 4.5gとテフロンエマルジョ
ン 2.5gとから実施例1と同槌にして空気極を作製
した。負極に亜鉛を用い、電解質として、INKOI−
1を使用し、空気電池を構成し、空気中で空気極の電極
電位(対SC[)の電流密度依存性を調べた。
The crushed powder was linearized with methanol and ether. After drying, an air electrode was prepared from 4.5 g of the obtained powder and 2.5 g of Teflon emulsion using the same mallet as in Example 1. Using zinc as the negative electrode and as the electrolyte, INKOI-
1 was used to construct an air battery, and the dependence of the electrode potential of the air electrode (vs. SC[) on current density in air was investigated.

測定結果を第1表に示す。ニッケル、コバルト、亜鉛、
モリブデン、マンガンの各金属フタロシアニンを本方法
によって担持した空気極の平衡電位、50mΔ/ cJ
通電時、100 rnA/c−通電峙での各電位は第り
表のようになっていることが分がった。
The measurement results are shown in Table 1. nickel, cobalt, zinc,
Equilibrium potential of the air electrode supporting each metal phthalocyanine of molybdenum and manganese by this method, 50 mΔ/cJ
It was found that the potentials at 100 rnA/c when current was applied were as shown in Table 1.

檜 第1表 ただし、表中、Pcば′フタロシアニンを示す。Japanese cypress Table 1 However, in the table, Pc b'phthalocyanine is shown.

製工程の簡略下が可能であるとともに、有効にして充分
な量の触媒を効率よく構成材料中に担持することが可能
であり、かつその特性は分極が小さく、大電流密度領域
においても電位低下がほとんど起こらない従来に比べて
、優れた効果を発揮するものである。このため、この電
極を正極として組み込んだ燃料電池および空気電池は大
電流の取得ができ、また、より一層の高エネルギー密度
化が可能であり、従来に比し、極めて高い実用価値を期
待できる。
In addition to simplifying the manufacturing process, it is possible to effectively support a sufficient amount of catalyst in the constituent materials, and its characteristics include low polarization and no potential drop even in the high current density region. This method exhibits an excellent effect compared to the conventional method in which this phenomenon hardly occurs. Therefore, fuel cells and air cells incorporating this electrode as a positive electrode can obtain a large current and have even higher energy density, and can be expected to have extremely high practical value compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における正極構造の一具体例を示した概
略断面図、第2図、第3図はそれぞれ本発明の時の空気
極について電流密度と電極電位の関係を示したグラフで
ある。 ■・・・電極材料層、2・・・ニッケル製網、3・・・
疎水性多孔質層。 出願人代理人 雨 宮 正 季
FIG. 1 is a schematic cross-sectional view showing a specific example of the positive electrode structure according to the present invention, and FIGS. 2 and 3 are graphs showing the relationship between current density and electrode potential for the air electrode according to the present invention, respectively. . ■... Electrode material layer, 2... Nickel mesh, 3...
Hydrophobic porous layer. Applicant's agent Masaki Amemiya

Claims (1)

【特許請求の範囲】[Claims] 電極集電体材料とともに、フタロニトリル、無水フタル
酸、フタルイミド、オルトシアノベンズアミドの一種以
上および前記フタロニトリル、無水フタル酸、フタルイ
ミド、オルトシアノベンズアミrの一種以上と金属フタ
ロシアニンを生成する金属化合物とを混合し、前記電極
材料表面に金属フタロシアニンを合成するとともに担持
させ、金属フタロシアニンを触媒として担持させたこと
を特徴とする燃料電池・空気電池用正極の製造方法。
Together with the electrode current collector material, one or more of phthalonitrile, phthalic anhydride, phthalimide, orthocyanobenzamide, and one or more of the above phthalonitrile, phthalic anhydride, phthalimide, orthocyanobenzamide r and a metal compound that produces metal phthalocyanine. A method for producing a positive electrode for a fuel cell/air cell, characterized in that a metal phthalocyanine is synthesized and supported on the surface of the electrode material, and the metal phthalocyanine is supported as a catalyst.
JP59010784A 1984-01-24 1984-01-24 Method for producing positive electrode for fuel cell / air cell Expired - Lifetime JPH0677460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59010784A JPH0677460B2 (en) 1984-01-24 1984-01-24 Method for producing positive electrode for fuel cell / air cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59010784A JPH0677460B2 (en) 1984-01-24 1984-01-24 Method for producing positive electrode for fuel cell / air cell

Publications (2)

Publication Number Publication Date
JPS60154468A true JPS60154468A (en) 1985-08-14
JPH0677460B2 JPH0677460B2 (en) 1994-09-28

Family

ID=11759958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59010784A Expired - Lifetime JPH0677460B2 (en) 1984-01-24 1984-01-24 Method for producing positive electrode for fuel cell / air cell

Country Status (1)

Country Link
JP (1) JPH0677460B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075039A1 (en) * 2007-12-12 2009-06-18 Toyota Jidosha Kabushiki Kaisha Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell
CN103390755A (en) * 2013-07-31 2013-11-13 喻元胜 Chemical formula and production method of air diffusion electrode
CN103996861A (en) * 2014-06-05 2014-08-20 国家纳米科学中心 Application of polymer product obtained by polymerizing aromaticnitrile compound as oxygen reduction catalyst
JP2018029011A (en) * 2016-08-18 2018-02-22 埼玉県 Oxygen reduction catalyst, production method thereof and fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857266A (en) * 1981-09-30 1983-04-05 Pentel Kk Manufacture of air electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857266A (en) * 1981-09-30 1983-04-05 Pentel Kk Manufacture of air electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075039A1 (en) * 2007-12-12 2009-06-18 Toyota Jidosha Kabushiki Kaisha Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell
JP2013232401A (en) * 2012-02-20 2013-11-14 Fujifilm Corp Nitrogen-containing carbon alloy, method for producing the same, carbon alloy catalyst, and fuel cell
CN103390755A (en) * 2013-07-31 2013-11-13 喻元胜 Chemical formula and production method of air diffusion electrode
CN103996861A (en) * 2014-06-05 2014-08-20 国家纳米科学中心 Application of polymer product obtained by polymerizing aromaticnitrile compound as oxygen reduction catalyst
JP2018029011A (en) * 2016-08-18 2018-02-22 埼玉県 Oxygen reduction catalyst, production method thereof and fuel cell

Also Published As

Publication number Publication date
JPH0677460B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US4132619A (en) Electrocatalyst
CA1227158A (en) Electrochemical reduction of carbon oxides to carboxylic acid
CN108963276A (en) Non-precious metal catalyst and preparation method thereof for catalytic oxidation-reduction
CA2387379A1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
JPH0763627B2 (en) Improved catalytic material
CN113097508A (en) Noble metal supported electrocatalyst and preparation method and application thereof
Dong et al. Metal-organic frameworks and their derivatives for Li–air batteries
Prabhuram et al. Effects of incorporation of Cu and Ag in Pd on electrochemical oxidation of methanol in alkaline solution
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
CN106129421A (en) A kind of metal-air battery nitrogen-doped carbon aerogel catalyst and preparation method
CN108923050A (en) A kind of carbon nano-structured elctro-catalyst of the nucleocapsid of high catalytic performance and preparation method thereof
US3585079A (en) Fuel cell electrodes having a polymeric metal-containing or metal-free phthalocyanine catalyst
CN108039499B (en) Preparation method of nitrogen-doped exfoliated carbon nanotube loaded cobaltosic oxide material
Javed et al. Highly dispersed active sites of Ni nanoparticles onto hierarchical reduced graphene oxide architecture towards efficient water oxidation
CN104258853B (en) A kind of Gold iridium bi-functional oxygen electrode catalyst and preparation method and application
CN111729680A (en) High-efficiency bifunctional oxygen electrocatalyst with heterostructure and preparation and application thereof
CN108746659B (en) Flower-shaped AgPd nano alloy and preparation and use methods thereof
Ji et al. Facile preparation and properties of high nitrogen-containing Fe/Co/N co-doped three-dimensional graphene bifunctional oxygen catalysts for zinc air battery
JP2005235688A (en) Carrying catalyst for fuel cell, its manufacturing method and fuel cell
CN108484415A (en) A kind of preparation method of cadmium metal organic coordination compound and products thereof and derivative
JP5252776B2 (en) Fuel cell electrode catalyst and method for producing the same
JPS60154468A (en) Manufacture of positive electrode for fuel cell and air cell
US3753782A (en) Electrode for electrochemical reduction of oxygen and process for its production
JP2006309973A (en) Fuel cell electrode catalyst and fuel cell
KR101111486B1 (en) manufacturing method of Electrocatalyst material for direct methanol fuel cell