JPS60154212A - Connecting method of polarization maintaining optical fiber - Google Patents

Connecting method of polarization maintaining optical fiber

Info

Publication number
JPS60154212A
JPS60154212A JP59011469A JP1146984A JPS60154212A JP S60154212 A JPS60154212 A JP S60154212A JP 59011469 A JP59011469 A JP 59011469A JP 1146984 A JP1146984 A JP 1146984A JP S60154212 A JPS60154212 A JP S60154212A
Authority
JP
Japan
Prior art keywords
polarization
maintaining optical
axis
optical fibers
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59011469A
Other languages
Japanese (ja)
Other versions
JPS6334442B2 (en
Inventor
Masataka Nakazawa
正隆 中沢
Noburu Shibata
宣 柴田
Tsuneo Horiguchi
常雄 堀口
Masamitsu Tokuda
正満 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59011469A priority Critical patent/JPS60154212A/en
Publication of JPS60154212A publication Critical patent/JPS60154212A/en
Publication of JPS6334442B2 publication Critical patent/JPS6334442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve measurement sensitivity by making an adjustment so that light power in one main axial direction is maximum as to rear scattered light generated beyond a point at which a connection is expected to be made, or so that light power in another main axial direction is minimum. CONSTITUTION:Two main axes of polarization maintaining optical fibers A and B are denoted as (x) and (y), and then a polarizer 2 is aligned to the (x) axis and an analyzer 5 is aligned to the (y) axis. Consequently, rear scattered light detected by a photodetector 6 is extremely small because there is a little mode coupling between the main axes (x) and (y). While alignment is insufficient at a connection point, part of the energy of an optical pulse signal which propagates along the main axis (x) after passing through the connection point is coupled with the main axis (y), so rear scattered light in the mode of the main axis (y) is generated beyond the connection point and detected by the photodetector 6. When rear scattered light beyond the connection point which is polarized in the direction of the main axis (y) is minimized by rotating end parts around cores mutually, the current coupling is minimum and a connection is only made in the state.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は通信用光ファイバの接続方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for connecting communication optical fibers.

特に、偏波保持光ファイバを接続するときに、その主軸
を合わせるための方法に関する。
In particular, the present invention relates to a method for aligning the principal axes of polarization-maintaining optical fibers when connecting them.

〔従来゛技術の説明〕[Explanation of conventional technology]

光ヘテロゲイン通信方式の開発が進展し、偏波保持光フ
ァイバの利用が注目されるようになった。
As the development of optical heterogain communication systems progresses, the use of polarization-maintaining optical fibers has attracted attention.

偏波保持光ファイバもその製造ピースは長さが限られる
ので、長距離伝送に使用するには、接続を行うことが必
要である。偏波保持光ファイバは、よく知られているよ
うに、伝送される光信号の偏光方向は二つの主軸の方向
に限られ、この二つの偏光方向の光信号が光ファイバを
伝播中に生じるモード結合は極力抑制されなければなら
ない。このため、偏波保持光ファイバの接続は、光ファ
イバのコアを合わせる他に、主軸方向を正しく合わせて
行うことが必要である。
Polarization-maintaining optical fibers also have a limited length in manufactured pieces, so they must be spliced in order to be used for long-distance transmission. As is well known, in polarization-maintaining optical fibers, the polarization directions of the transmitted optical signals are limited to two main axes, and the modes that occur when optical signals in these two polarization directions propagate through the optical fiber. Coupling must be suppressed as much as possible. For this reason, when connecting polarization-maintaining optical fibers, it is necessary not only to align the cores of the optical fibers, but also to properly align the principal axes.

すなわち二本の偏波保持光ファイバを接続するには、そ
の端部を互いに接近させ、コアを合わせ、ついでそのコ
ア回りに回転を与えて主軸方向を合わせてから接続を行
うことになる。第1図はその主軸を合わせるための従来
例方法の説明図である。
That is, in order to connect two polarization-maintaining optical fibers, their ends are brought close to each other, their cores are aligned, and then rotation is applied around the cores to align their principal axes before connection is performed. FIG. 1 is an explanatory diagram of a conventional method for aligning the main axes.

二本の偏波保持光ファイバAおよびBを接続するには、
光源lおよび偏光子2を偏波保持光ファイバAの接続端
と反対の端部に□配置して、一つの主軸に一致する光信
号を入射させる。偏波保持光ファイバBの接続端と反対
の端部では、得られる出射光から入射側の主軸に対応す
る主軸方向に一致する偏光方向の光信号を検光子5を介
して光検出器6で検出し、この電気出力を表示装置7で
観測する。このようにしておいて、接続端でコア回りに
両偏波保持光ファイバを回転させて、光検出器6に得ら
れるその主軸方向の偏光が最大になるように調節する。
To connect two polarization-maintaining optical fibers A and B,
A light source 1 and a polarizer 2 are placed at the end opposite to the connection end of the polarization-maintaining optical fiber A, and an optical signal that coincides with one principal axis is input. At the end of the polarization-maintaining optical fiber B opposite to the connection end, an optical signal with a polarization direction corresponding to the main axis direction corresponding to the main axis on the input side is detected from the output light by the photodetector 6 via the analyzer 5. The electrical output is detected and observed on the display device 7. In this manner, both polarization-maintaining optical fibers are rotated around the core at the connection end to adjust the polarization in the principal axis direction obtained by the photodetector 6 to be maximum.

この方法は原理に忠実な方法であるが、出射光を検出す
るために検光子5の軸方向を合わせる手数が必要である
こと、出射光の最大値となる点の感度が悪く精密な主軸
方向の検出ができないこと、入射端と出射端が別である
ことなどの欠点がある。
Although this method is faithful to the principle, it requires a lot of effort to align the axial direction of the analyzer 5 in order to detect the emitted light, and the sensitivity of the point where the emitted light has the maximum value is poor, and the precise principal axis direction There are disadvantages such as the inability to detect and the fact that the input end and output end are separate.

これを改良するものとして、第2図に示す方法が知られ
ている。この方法は、接続しようとする二本の偏波保持
光ファイバAおよびBの一端に設けた光源1から、光フ
ァイバAの主軸方向に一致する偏光方向のパルス状の光
信号を入射する。光ファイバBの他端では、この出射光
を光検出器6で検出し、その電気出力を表示装置7で時
間軸上で観測する。
As a method for improving this, a method shown in FIG. 2 is known. In this method, a pulsed optical signal is input from a light source 1 provided at one end of two polarization-maintaining optical fibers A and B to be connected, the polarization direction of which coincides with the main axis direction of optical fiber A. At the other end of the optical fiber B, this emitted light is detected by a photodetector 6, and its electrical output is observed on a time axis by a display device 7.

この方法では、入射端から一つの光パルス信号を入射す
ると、接続点でモード結合があるとき、すなわち主軸方
向が一致していないときには、出射端では二つのモード
の出射光が観測される。こ (の二つのモードの光信号
は群伝播時間に差Δtがあるので、出射端の表示装置7
には例えば第3図(1)のように二つのパルス信号が観
測される。この状態で接続端をコアの回りに回転させて
、第3図(2)さらに第3図(3)のように調節すると
、接続点でモード結合の最も小さくなる位置を知ること
ができる。
In this method, when one optical pulse signal is input from the input end, when there is mode coupling at the connection point, that is, when the principal axis directions do not match, two modes of output light are observed at the output end. Since the optical signals in these two modes have a difference Δt in group propagation time, the display device 7 at the output end
For example, two pulse signals are observed as shown in FIG. 3 (1). In this state, by rotating the connecting end around the core and adjusting it as shown in FIG. 3 (2) and then as shown in FIG. 3 (3), it is possible to find out the position where the mode coupling is the smallest at the connecting point.

この方法は出射端に検光子が不要であること、二つのパ
ルスが一つになるように調節すればよいので感度がよい
などの利点があるが、入射端と出射端とは別である。し
たがって、ケーブルピースが製造工場に巻き取られてい
る状態ψときにはよいが、ケーブルが布設された後では
、入射端と出射端とは遠方になってしまい測定の能率が
いちじ 。
This method has the advantage that an analyzer is not required at the output end, and the sensitivity is good because it is only necessary to adjust the two pulses so that they become one, but the input end and the output end are separate. Therefore, this is fine when the cable piece is being wound up at the manufacturing factory, but after the cable is installed, the input end and output end are far apart, reducing measurement efficiency.

るしく悪くなる。It gets worse.

〔発明の目的〕[Purpose of the invention]

本発明はこれを改良するもので、入射端と出射端とが同
一端にあり、しかも測定感度が高く調節の容易な接続方
法を提供することを目的とする。
The present invention is an improvement on this, and aims to provide a connection method in which the input end and the output end are located at the same end, and which has high measurement sensitivity and is easy to adjust.

(発明の特徴) 本発明は、二本の偏波保持光ファイバのそれぞれの端部
を相互に接近させるステップと、その端部のコア位置を
合わせるステップと、その端部の主軸方向を合わせるス
テップと、その端部を相互に接続するステップとを含む
偏波保持光ファイバの接続方法において、上記主軸方向
を合わせるステップは、上記二本の偏波保持光ファイバ
のうちの一本の偏波保持光ファイバの接続する端部の反
対側の端部からこの一本の偏波保持光ファイバの一つの
主軸方向に光パルスを入射させ、この光パルスにより上
記二本の偏波保持光フアイバ内で発生する後方散乱光を
上記反対側の端部で二つの主軸の少なくとも一つについ
て時間軸上で観測し、接続しようとする点以遠で発生す
る後方散乱光について、上記一つの主軸方向の光パワー
が最大になり、もしくは上記一つの主軸とは別の主軸方
向の光パワーが最小になるように調節する方法を含むこ
とを特徴とする。
(Features of the Invention) The present invention provides the steps of bringing the respective ends of two polarization-maintaining optical fibers close to each other, adjusting the core positions of the ends, and adjusting the principal axis directions of the ends. In the method for connecting polarization-maintaining optical fibers, the step of aligning the main axis direction includes connecting the ends of the polarization-maintaining optical fibers to each other. A light pulse is input in the direction of one of the principal axes of this single polarization-maintaining optical fiber from the end opposite to the connecting end of the optical fiber, and this light pulse causes a change in the two polarization-maintaining optical fibers. The generated backscattered light is observed on the time axis for at least one of the two principal axes at the opposite end, and the optical power in the direction of the one principal axis is determined for the backscattered light generated beyond the point to be connected. The present invention is characterized in that it includes a method of adjusting so that the optical power is maximized or the optical power in a direction of a principal axis other than the one principal axis is minimized.

〔実施例による説明〕。[Explanation by Examples].

第4図は本発明実施例方法の説明図である。光源lは光
パルス信号を発生し、この光パルス信号は、偏光子2を
ビームスプリンタ8を介して、接続される二本の偏波保
持光ファイバのうちの一本の偏波保持光ファイバAの一
端に入力される。この光パルス信号はこの偏波保持光フ
ァイバの中を伝播し、後方散乱光を発生する。この後方
散乱光は、この偏波保持光ファイバの中を逆方向に伝播
して、上記一端に現れ、ビームスプリンタ8により、検
光子5を介して光検出器6に入力する。光検出器6の電
気出力は、低雑音増幅器9により増幅され、平均処理回
路10で信号雑音比が改−されて、表示装置7に表示さ
れる。この表示装置7では、偏波保持光ファイバの一端
に現れた後方散乱光の強度(対数表示、dB)が時間軸
上に表示される。
FIG. 4 is an explanatory diagram of a method according to an embodiment of the present invention. A light source 1 generates an optical pulse signal, and this optical pulse signal passes through a polarizer 2 to a polarization-maintaining optical fiber A, which is one of the two polarization-maintaining optical fibers to be connected via a beam splinter 8. is input at one end. This optical pulse signal propagates through this polarization maintaining optical fiber and generates backscattered light. This backscattered light propagates in the opposite direction in this polarization-maintaining optical fiber, appears at the above-mentioned one end, and is input to a photodetector 6 via an analyzer 5 by a beam splinter 8 . The electrical output of the photodetector 6 is amplified by a low-noise amplifier 9, the signal-to-noise ratio is modified by an averaging circuit 10, and the resulting signal is displayed on a display device 7. In this display device 7, the intensity (in logarithmic representation, dB) of the backscattered light appearing at one end of the polarization-maintaining optical fiber is displayed on the time axis.

接続しようとする二本の偏波保持光ファイバAおよびB
はその接続しようとする点を接近させ、コア合わせを行
いこの接続しようとする点を光信号が通過する状態とす
る。
Two polarization maintaining optical fibers A and B to be connected
brings the points to be connected close together, cores are aligned, and the optical signal passes through the points to be connected.

いま、偏波保持光ファイバAおよびBの二つの主軸をX
、 Yとし、偏光子2をX軸に合わせ、検光子5をY軸
に合わせると、偏波保持光ファイバAの中では主軸Xと
Yとの間にはほとんどモード結合がないから、光検出器
6に検出される後方散乱光はきわめて小さい。接続点の
軸合わせが十分に行われていない状態では、光パルス信
号が接続点を通過すると、主軸Xを伝播していた光パル
ス信号のエネルギーの一部が主軸Yに結合するので、接
続点より遠方では主軸Yのモードで後方散乱光が発生し
光検出器6に検出される。
Now, the two main axes of polarization maintaining optical fibers A and B are
, Y, and align the polarizer 2 with the X axis and the analyzer 5 with the Y axis, there is almost no mode coupling between the principal axes X and Y in the polarization maintaining optical fiber A, so light detection is possible. The backscattered light detected by the device 6 is extremely small. If the axis of the connection point is not sufficiently aligned, when the optical pulse signal passes through the connection point, part of the energy of the optical pulse signal that was propagating along the main axis X will be coupled to the main axis Y. At a farther distance, backscattered light is generated in the mode of the principal axis Y and is detected by the photodetector 6.

この状態で、接続しようとする点で両側波保持光ファイ
バの端部をコアの回りに相互に回転させ、両側波保持光
ファイバAおよびBの主軸Xが近づくと、偏波保持光フ
ァイバBの主軸X方向に結合する光エネルギーは小さく
なるから、主軸Y方向に偏光する接続点以遠の後方散乱
光は小さくなる。
In this state, the ends of the double-side wave-maintaining optical fibers are mutually rotated around the core at the point to be connected, and when the principal axes X of the double-side wave-maintaining optical fibers A and B approach, Since the light energy coupled in the direction of the main axis X becomes smaller, the backscattered light beyond the connection point polarized in the direction of the main axis Y becomes smaller.

したがって、端部をコアの回りに相互に回転させて、主
軸Y方向に偏光する接続点以遠の後方散乱光を最小に調
節すると、そのときの状態がモード、□6.64、あい
、□7あり1、や。1□1,1を実行すればよい。
Therefore, if the ends are mutually rotated around the core to minimize the backscattered light beyond the connection point polarized in the principal axis Y direction, the state at that time is mode □6.64, Ai, □7 Yes 1, yes. Just execute 1□1,1.

いま、検光子5を主軸Yに一致させるとしたが、この検
光子5の偏光方向を主軸×に二数させる場合には、入射
光の偏光方向が主軸Xの方向であるから、主軸父に一致
する偏光方向の後方散乱光は比較的高いレベルで発生し
ているので、光検出器6には比較的高いレベルの出力力
(得られる。このときには、接続点以遠で発生する後方
散乱光について、その値が最大になるように、接続する
端部をコア回りに回転させて調節すればよい。
Now, we have assumed that the analyzer 5 is aligned with the principal axis Y, but if the polarization direction of the analyzer 5 is to be made to coincide with the principal axis x, since the polarization direction of the incident light is in the direction of the principal axis Since the backscattered light in the matching polarization direction is generated at a relatively high level, the photodetector 6 has a relatively high level of output power (obtained. At this time, the backscattered light generated beyond the connection point is , the connecting end can be adjusted by rotating it around the core so that its value is maximized.

つぎにこの状況を定量的に検討すると、光ファイバAの
X軸方向の入射パワーをPとし、各光ファイバの伝送損
失は等しくαdB/kmとする。また誘電率ゆらぎの非
対角要素によって発生するモード結合係数をh、光ファ
イバAの長さをZとする。
Next, considering this situation quantitatively, it is assumed that the incident power in the X-axis direction of the optical fiber A is P, and the transmission loss of each optical fiber is equal to αdB/km. Further, let h be the mode coupling coefficient generated by off-diagonal elements of dielectric constant fluctuation, and let Z be the length of the optical fiber A.

このとき光ファイバAの出力としてはX軸方向およびy
軸方向のパワーをそれぞれPX%p3’とすると、 Px (Z)#P exp((rZ) −−−−−−(
1−1)Py (Z)#Phz exp(−αZ) ・
−(1−2)となる。後方散乱光の発生係数を光ファイ
バA、BについてSA、Saとし、光パルス幅内での後
方へのモード結合量cAとすると、光ファイバAの各主
軸方向の後方散乱光めパワーp asxおよびP as
Yは PBsx(Z) = SA P exp (−2ot 
Z) −−(2−1’)Pesv(z) ”2SA h
ZP exp(−2αZ)+ CAP exp (−2
αZ)−(2−2)となる。ここモ、第5図に示すよう
に、接続点で角度θだけ主軸の回転があり、光ファイバ
Bの主軸をx′、y′ と表わすと、光ファイバB、入
射端近傍のX′軸方向およびy′軸方向への伝搬パワー
Pに′、Py′は、 Px’=Pxcos2θ+P y sin 2 θ−−
−−−− (3−1) Py’=Pxsin2θ+P y cos 2 θ−・
・・ (3−2) となる。光ファイバBがらの後方散乱光のパワーPIメ
′およびP68Y’は、 PISSX’ =Sa Px’ +Ca Py’ −−
(4−1)P、sY’ =Sa Py’ +Ca Px
’ −(4−2)0 となる。ただし、cBは後方へのモード結合係数である
。後方散乱光は再びθの変換を受けて光ファイバAに戻
ってくるので、X軸方向およびy軸方向での光ファイバ
Bからの信号(接続点の近傍は、 Plss% (Z = Z+ΔZ) = P6gg’ cos 2 θ+P66y’ sin
 2 θ・・・−−−−−(5−1) 、弘イ(Z=Z +Δ 2) ” PIS8%’ Sin 2 θ + pfi&Y’
 cos 2 θ−・・・・−(5−1) となる。ここで我々はp、、 < z >について注目
しているので式(3)、(4)、(5)を用い、さらに
モード結合方程式を解くことにより、 一−−−゛−・−・lbJ 1 を得る。ここで、θ−0の場合、すなわち主軸が一致し
ている場合には、Pa5Y (Z=0)はSa>CBで
あることを考慮して、 P6SY =CHP exp (−2αZ) +2SB
hZP exp (−2αZ)−一一一一・−+?) となる。しかし、θ≠0のときには、π/4までP 1
s6Yは単調増加関数となる。すなわち、式(6)をθ
で偏微分すると、 ・<1−tth乙XS+5−Cs)) 4(l−*PLz)(5e−CB)exe(−xclZ
)sinlθ2 ン0 −−−−−−−−−181 となる。すなわち、hzは10−2〜1O−3であるた
め1−4hZ>0 となり、また消光比が10〜30dBの光ファイバにお
いてはレイリー散乱の係数SBの方が後方モード (結
合係数CBに比べて102程度大きい。したかっ2 てSa> Caであることから式(8)は0≦θく□ の範囲で単調増加となり、P6SYはθの変化とともに
増加することがわかる。したがって、θ=0のときPa
3Yが最小となり、θの正負を問わず主軸の不一致とと
もにPaaYは増加する。したかってPIIISYが最
小になるように接続点で光ファイバBを回転させればよ
い。
At this time, the output of optical fiber A is in the X-axis direction and in the y-axis direction.
If the power in the axial direction is PX%p3', then Px (Z)#P exp((rZ) -------(
1-1) Py (Z)#Phz exp(-αZ) ・
-(1-2). If the generation coefficients of backscattered light are SA and Sa for optical fibers A and B, and the amount of backward mode coupling within the optical pulse width is cA, then the power of backscattered light in each principal axis direction of optical fiber A is p asx and P as
Y is PBsx (Z) = SA P exp (-2ot
Z) --(2-1')Pesv(z) "2SA h
ZP exp (-2αZ) + CAP exp (-2
αZ)-(2-2). Here, as shown in Figure 5, there is a rotation of the principal axis by an angle θ at the connection point, and if the principal axes of optical fiber B are expressed as x' and y', optical fiber B is in the X'-axis direction near the input end. And the propagation power P' and Py' in the y'-axis direction are Px'=Px cos2θ+P y sin 2 θ--
----- (3-1) Py'=Pxsin2θ+Py cos 2θ-・
... (3-2) becomes. The powers PI' and P68Y' of the backscattered light from optical fiber B are: PISSX' = Sa Px' + Ca Py' --
(4-1) P, sY' = Sa Py' + Ca Px
'-(4-2)0. However, cB is a backward mode coupling coefficient. The backscattered light returns to optical fiber A after being transformed by θ again, so the signals from optical fiber B in the X-axis and y-axis directions (near the connection point are: Plss% (Z = Z + ΔZ) = P6gg' cos 2 θ+P66y' sin
2 θ・・・−−−−−(5-1), Hiroi (Z=Z +Δ 2) ” PIS8%' Sin 2 θ + pfi &Y'
cos 2 θ−···−(5-1). Here, we are focusing on p,, <z>, so by using equations (3), (4), and (5) and further solving the mode coupling equation, Get 1. Here, in the case of θ-0, that is, when the principal axes coincide, considering that Pa5Y (Z=0) is Sa>CB, P6SY = CHP exp (-2αZ) +2SB
hZP exp (-2αZ)-1111・-+? ) becomes. However, when θ≠0, P 1 up to π/4
s6Y becomes a monotonically increasing function. In other words, equation (6) is changed to θ
Partially differentiating with
) sinlθ2 n0 −−−−−−−−181. That is, since hz is 10-2 to 1O-3, 1-4hZ>0, and in an optical fiber with an extinction ratio of 10 to 30 dB, the Rayleigh scattering coefficient SB is the backward mode (compared to the coupling coefficient CB). It is larger by about 102.Since Sa>Ca, equation (8) increases monotonically in the range 0≦θ×□, and it can be seen that P6SY increases as θ changes.Therefore, when θ=0, Time Pa
3Y becomes the minimum, and PaaY increases with mismatch of the principal axes regardless of the sign of θ. Therefore, it is only necessary to rotate the optical fiber B at the connection point so that PIIISY is minimized.

式(2−2)および(7)に着目すると、S^>SB 
SCA>CB の場合の後方散乱光のパワーは第5図(a)に、またS
^〈5BSC^<CB の場合の後方散乱光のパワーを第5図(b)に示す。
Focusing on equations (2-2) and (7), S^>SB
The power of backscattered light when SCA>CB is shown in Figure 5(a), and S
The power of the backscattered light when ^<5BSC^<CB is shown in FIG. 5(b).

いずれの場合にも、光ファイバBでの後方散乱光のレベ
ルが最小になるように調整すればよい。
In either case, adjustment may be made so that the level of backscattered light in optical fiber B is minimized.

X軸方向の散乱光を測定して接続する場合には、こんど
は逆にPb5xが最大になるように光ファイバBを回転
すればよい。この場合は検光子5の偏光方向はX軸方向
に設定する。
When connecting by measuring the scattered light in the X-axis direction, the optical fiber B should be rotated so that Pb5x is maximized. In this case, the polarization direction of the analyzer 5 is set to the X-axis direction.

3 (発明の効果〕 以上説明したように、本発明によれば、偏波保持光ファ
イバの接続点で主軸合わせを行う場合に、接続する光フ
ァイバの一端のみで観測を行うことができる優れた利点
がある。すなわち、ケーブルを布設した後に接続を行う
場合に、送信側と受信側が同一地点になるので、測定の
効率がいちじるしく向上する。また、表示を観測しなが
ら、最小もしくは最大をめる方法であるから、操作が簡
単であり、誤りが少なく、感度が高くなる利点がある。
3 (Effects of the Invention) As explained above, according to the present invention, when performing principal axis alignment at the connection point of polarization-maintaining optical fibers, observation can be performed only at one end of the optical fibers to be connected. This has the advantage that when making a connection after laying the cable, the transmitting and receiving sides are at the same point, which greatly improves measurement efficiency.Also, it is possible to measure the minimum or maximum while observing the display. Since it is a method, it has the advantage of being easy to operate, having few errors, and having high sensitivity.

さらに、接続箇所が3箇所以上になる場合にも、各接続
箇所を個別に識別して接続を行うことができる利点があ
る。
Furthermore, even when there are three or more connection points, there is an advantage that each connection point can be individually identified and connected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例方法の説明図。 第2図は従来例方法の説明図。 第3図は従来例方法の動作説明図。 第4図は本発明実施例方法の説明図。 第5図は本発明実施例方法の動作説明図。 4 第6図は接続点の偏光方向角度を説明するための図。 l・・・光源、2・・・偏光子、5・・・検光子、6・
・・光検出器、7・・・表示装置、8・・・ビームスプ
リンタ、9・・・低雑音増幅器、lO・・・平均処理回
路。 1′ 。 5 53− 「0 く
FIG. 1 is an explanatory diagram of a conventional method. FIG. 2 is an explanatory diagram of a conventional method. FIG. 3 is an explanatory diagram of the operation of the conventional method. FIG. 4 is an explanatory diagram of a method according to an embodiment of the present invention. FIG. 5 is an explanatory diagram of the operation of the method according to the embodiment of the present invention. 4 FIG. 6 is a diagram for explaining the polarization direction angle of the connection point. l...Light source, 2...Polarizer, 5...Analyzer, 6...
...Photodetector, 7.Display device, 8.Beam splinter, 9.Low noise amplifier, lO..Average processing circuit. 1′. 5 53- “0 ku

Claims (1)

【特許請求の範囲】 (11二本の偏波保持光ファイバのそれぞれの端部を相
互に接近させるステップと、 その端部のコア位置を合わせるステップと、その端部の
主軸方向を合わせるステップと、その端部を相互に接続
するステップと を含む偏波保持光ファイバの接続方法において、上記主
軸方向を合わせるステップは、 上記二本の偏波保持光ファイバのうちの一本の偏波保持
光ファイバの接続する端部の反対側の端部からこの一本
の偏波保持光ファイバの一つの主軸方向に光パルスを入
射させ、 この光パルスにより上記二本の偏波保持光フアイバ内で
発生する後方散乱光を上記反対側の端部で二つの主軸の
少なくとも一つについて時間軸上で観測し、 接続しようとする点以遠で発生する後方散乱光について
、上記一つの主軸方向の光パワーが最大になり、もしく
は上記一つの主軸とは別の主軸方向の光パワーが最小に
なるように調節する方法を含むことを特徴とする偏波保
持光ファイバの接続方法。
[Claims] (11) A step of bringing the respective ends of the two polarization-maintaining optical fibers close to each other, a step of adjusting the core position of the ends, and a step of adjusting the principal axis direction of the ends. In the method for connecting polarization-maintaining optical fibers, the step of aligning the principal axis direction includes connecting the polarization-maintaining optical fibers of one of the two polarization-maintaining optical fibers to each other. A light pulse is input in the direction of one of the principal axes of this one polarization-maintaining optical fiber from the end opposite to the end to which the fibers are connected, and this light pulse generates light within the two polarization-maintaining optical fibers. Observe the backscattered light on the time axis for at least one of the two principal axes at the opposite end, and calculate the optical power in the direction of the one principal axis for the backscattered light generated beyond the point to be connected. A method for connecting polarization-maintaining optical fibers, comprising a method of adjusting the optical power in a direction of a principal axis other than the one principal axis to a maximum or a minimum.
JP59011469A 1984-01-24 1984-01-24 Connecting method of polarization maintaining optical fiber Granted JPS60154212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59011469A JPS60154212A (en) 1984-01-24 1984-01-24 Connecting method of polarization maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011469A JPS60154212A (en) 1984-01-24 1984-01-24 Connecting method of polarization maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS60154212A true JPS60154212A (en) 1985-08-13
JPS6334442B2 JPS6334442B2 (en) 1988-07-11

Family

ID=11778931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011469A Granted JPS60154212A (en) 1984-01-24 1984-01-24 Connecting method of polarization maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPS60154212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134404A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Method and device for aligning optical axis of optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134404A (en) * 1987-11-20 1989-05-26 Nippon Telegr & Teleph Corp <Ntt> Method and device for aligning optical axis of optical waveguide

Also Published As

Publication number Publication date
JPS6334442B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US5712704A (en) Appliance for measuring polarization mode dispersion and corresponding measuring process
CN103076155B (en) Optical fiber Verdet constant measurement system on basis of double optical paths
CN103743553B (en) The dual channel optical performance testing device of a kind of integrated waveguide manipulator and polarization crosstalk identification thereof and processing method
CN100437050C (en) Distribution type fiber-optic vibration sensor
CN108287056B (en) System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode
CN103900680A (en) Device and detecting method for restraining polarization crosstalk measuring noise by the adoption of light source
JP2001228054A (en) Apparatus and method for measurement of polarization mode dispersion
CN111337052B (en) Y waveguide parameter measuring instrument, measuring system and measuring method
CN103900799A (en) Optical coherence polarization measuring device capable of restraining interferential noises
US6750956B2 (en) Method and apparatus for on-line monitoring of polarization mode dispersion in a transmission system
CN105953817A (en) Method for assembling core sensitive optical path of optical fiber gyro
CN212030564U (en) Light source frequency shift calibration auxiliary channel structure and optical fiber vibration measuring device
CN107505510A (en) Field measurement device and system
Tsubokawa et al. Measurement of mode couplings and extinction ratios in polarization-maintaining fibers
CN105823624A (en) Calibration device for optical coherence polarization measurement and dynamic range calibration method thereof
JPS60154212A (en) Connecting method of polarization maintaining optical fiber
Eyal et al. Measurement of polarization mode dispersion in systems having polarization dependent loss or gain
CN111272197A (en) Single-beam extraction system based on Sagnac interferometer
Imai et al. Polarization fluctuation characteristics of a highly birefringent fiber system under forced vibration
CN219574218U (en) Optical electric field sensor and electric field measuring device
CN2651762Y (en) Sensing head of small polarization analysis magneto-optic independent magnetic field sensor
JPS6235627B2 (en)
Esman et al. Passive elimination of polarization sensitivity of fiber-optic microwave modulators
JP2572339B2 (en) Optical fiber testing method and apparatus
Craig et al. Accurate polarization dependent loss measurement and calibration standard development