JPS60153180A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS60153180A
JPS60153180A JP888784A JP888784A JPS60153180A JP S60153180 A JPS60153180 A JP S60153180A JP 888784 A JP888784 A JP 888784A JP 888784 A JP888784 A JP 888784A JP S60153180 A JPS60153180 A JP S60153180A
Authority
JP
Japan
Prior art keywords
base
pellet
pressure sensor
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP888784A
Other languages
Japanese (ja)
Inventor
Kenji Fukase
健二 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP888784A priority Critical patent/JPS60153180A/en
Publication of JPS60153180A publication Critical patent/JPS60153180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To contrive the improvement in characteristics by enabling the problem of the difference in coefficient of thermal expansion to be eliminated without the use of a special base or intermediate table by a method wherein a pellet of the titled sensor having a diaphragm part is adhered to the base with silicon resin which hardens at a temperature of 70 deg.C or less. CONSTITUTION:The pressure sensor 1 has a structure that said pellet 4 has been loaded to the top of the base 2 in such an arrangement as to block its hole 3, and coated over the surface with a coat material 5; thereafter, a package 6 having a pressure introduction cylinder 6a has been fixed to the top of the base 2. The pellet 4 is formed of silicon and consists of the annular peripheral base part 4a and the disk diaphragm part 4b. Piezoresistors 7, 7... and wiring layers extending from these piezoresistors to the top of the base part 4a are formed on the surface of the diaphragm part 4b, and each wiring layer is electrically connected via metallic fine wires 9 to a lead 8 planted to the base 2. The base 2 is made of iron, kovar, or the like. Besides, the base part 4a of the pellet is loaded to the base 2 with an adhesive 10 made of silicon resin which hardens at 70 deg.C or less.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体圧力センサに関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to semiconductor pressure sensors.

(ロ)従来技術 ダイヤフラム部をもつ半導体圧力センサベレットを基台
に装着せる形態の半導体圧力センサは、ダイヤフラム部
が被測定圧力によシ変形したとき、その変形量をピエゾ
抵抗効果を利用して電気量に変換し、圧力検出をなすも
のである。
(b) Prior art semiconductor pressure sensor with a diaphragm part A semiconductor pressure sensor in which a pellet is attached to a base uses a piezoresistance effect to control the amount of deformation when the diaphragm part is deformed by the pressure to be measured. It converts into electrical quantity and detects pressure.

従って、この種のセンサでは、被測定圧力以外の他の要
因によりダイヤフラム部が変形すると、もはや正確な圧
力検出を行えない。通常、最も問題となる上記他の要因
は、センサペレットと基台との間の熱膨張係数の差であ
る。即ち、この場合、温度変化によってセンサの出力が
変化してしまうのである。
Therefore, in this type of sensor, if the diaphragm portion is deformed due to factors other than the pressure to be measured, accurate pressure detection can no longer be performed. Typically, the other factor that is most problematic is the difference in coefficient of thermal expansion between the sensor pellet and the base. That is, in this case, the output of the sensor changes due to temperature changes.

従来、この様な熱膨張係数の差の問題を解決すべく、セ
ンサペレットと熱膨張係数の等しい材質からなる中間基
台をセンサベレットと基台との間に挿入し、ペレットと
基台との間の熱膨張係数の差を緩和することが提案され
ているC特公昭54−41304号公報)。しかし乍ら
、この場合、基台と中間台との間の熱膨張係数の差に基
づく歪の影響は依然として残る。
Conventionally, in order to solve the problem of such a difference in thermal expansion coefficient, an intermediate base made of a material with the same coefficient of thermal expansion as the sensor pellet was inserted between the sensor pellet and the base, and the distance between the pellet and the base was It has been proposed to alleviate the difference in thermal expansion coefficient between However, in this case, the influence of distortion due to the difference in thermal expansion coefficient between the base and the intermediate stand still remains.

その他、特公昭54−41313号公報には基台自体を
センサペレットとほぼ同一の熱膨張係数の材質で構成す
ることも開示されているが、完全に熱膨張係数を一致さ
せるのは容易ではなく、又その様な基台材料は高価であ
る。
In addition, Japanese Patent Publication No. 54-41313 discloses that the base itself is made of a material with almost the same coefficient of thermal expansion as the sensor pellet, but it is not easy to match the coefficient of thermal expansion completely. Also, such base material is expensive.

そして、上述の例において、センサベレット、中間基台
もしくは基台とはガラス性の接着剤にて接着されておシ
、数100℃の温度で処理しなければならなりり。従っ
て、センサペレット自身も数100℃の温度に晒される
ため、圧力センサの特性が劣化する。
In the above example, the sensor pellet, the intermediate base, or the base are bonded to each other with a glass adhesive, and must be processed at a temperature of several hundred degrees Celsius. Therefore, the sensor pellet itself is exposed to temperatures of several hundred degrees Celsius, and the characteristics of the pressure sensor deteriorate.

(ハ)発明の目的 本発明は、特殊な基台材料を用いることなく、更に、圧
力センサの特性を劣化させることなく、従来の熱膨張係
数の差の問題を解決せんとするものでおる。
(c) Purpose of the Invention The present invention aims to solve the conventional problem of the difference in thermal expansion coefficient without using a special base material and without deteriorating the characteristics of the pressure sensor.

に)発明の構成 本発明の半導体圧力セ/すは、ダイヤフラム部を壱する
半導体圧力センサベレットを、70℃以下の温度により
硬化するシリコーン樹脂で基台に接着することを特徴と
するものである。
B) Structure of the Invention The semiconductor pressure sensor of the present invention is characterized in that a semiconductor pressure sensor pellet including a diaphragm part is adhered to a base with a silicone resin that hardens at a temperature of 70°C or less. .

(ホ)実 施 例 第1図に実施例の半導体圧力センサ(1)を示す。(e) Implementation example FIG. 1 shows a semiconductor pressure sensor (1) according to an embodiment.

この圧力センサil+は、基台(2)の上面に、その孔
(3)を塞ぐ配置にて半導体圧力センサペレット(4)
を装着し、ペレット表面を被覆材(5)で覆った後、圧
力導入筒(6a)を有するパッケージ(6)を基台(2
)上面に固設した構造をもつ。
This pressure sensor il+ has a semiconductor pressure sensor pellet (4) arranged on the top surface of the base (2) to close the hole (3).
After mounting the pellet and covering the pellet surface with the coating material (5), the package (6) having the pressure introduction tube (6a) is placed on the base (2).
) Has a structure fixed on the top surface.

ベレット(4)はシリコンで形成され、約400μn+
厚さの環状周囲基部(4a)と、エツチングにより肉薄
とされた約50μm厚さの円板状ダイヤスラム部(4b
)とからなる。ダイヤフラム部(4b)の表面にはピエ
ゾ抵抗+71(7)・・・と、図には現われていないが
、これらピエゾ抵抗より基部(4a)の上面にまで延び
る配線層が形成され、各配線層は、基台(2)に植設し
たリード(8に金属細線(9)を介して電気的に連なっ
ている。従って上記センサにおいて、圧力導入筒(6a
)を通じて被測定圧力が気体又は液体の形にてパッケー
ジ(6)内に加わると、斯るパッケージ内の圧力と基台
の孔(3)内との圧力差に応じてセンサのダイヤフラム
部(4b)が変形し、その変形量に応じた電気的信号が
リード(8)より取り出される。
The pellet (4) is made of silicon and has a thickness of about 400 μn+
An annular peripheral base (4a) with a thickness of
). On the surface of the diaphragm part (4b), piezoresistors +71 (7)... Although not shown in the figure, a wiring layer extending from these piezoresistors to the upper surface of the base part (4a) is formed, and each wiring layer is electrically connected to the lead (8) implanted in the base (2) via a thin metal wire (9). Therefore, in the above sensor, the pressure introduction cylinder (6a
), when the pressure to be measured is applied in the form of gas or liquid into the package (6), the diaphragm part (4b) of the sensor increases depending on the pressure difference between the pressure inside the package and the hole (3) in the base ) is deformed, and an electrical signal corresponding to the amount of deformation is extracted from the lead (8).

本実施例で、基台(2)は鉄、コバール等から構成され
ている。また、ベレットの基部(4a)は70℃以下の
温度で硬化するシリコーン樹脂からなる接着剤11[)
にて基台(2)に装着されている。従って、ベレット(
4)の装着時、基台(2)及びベレツ) 14Jを高温
に晒す必要がなく、基台(2)を大きく膨張させずにベ
レット(4)を装着することができるので、基台(2)
とベレット(4)との熱膨張係数の差に基づくベレット
【4)の装着時の残留歪がベレット(4)に影響を及ぼ
さない。また、ベレット(4)の特性が高温で劣化する
こともない。
In this embodiment, the base (2) is made of iron, Kovar, or the like. In addition, the base (4a) of the pellet is coated with an adhesive 11 made of silicone resin that hardens at a temperature of 70°C or lower.
It is attached to the base (2) at. Therefore, Beret (
When attaching the base (2) and the beret (4), there is no need to expose the base (2) and the beret (4) to high temperatures, and the beret (4) can be attached without significantly expanding the base (2). )
Residual strain when the beret [4] is attached due to the difference in thermal expansion coefficient between the beret and the belet (4) does not affect the beret (4). Furthermore, the properties of the pellet (4) do not deteriorate at high temperatures.

接着剤ti1mとしては、更に耐熱性及びベレット+4
)との熱膨張係数を考慮する必要がるる。従って本実施
例では、例えば東芝シリコーン(株)よシ市販されてい
るシリコーン樹脂の品番YE5822やYE5818の
ものが使用される。これらは2液性のもので、YE58
22はゴム状であり、またYES81Bはゲル状を呈す
る。そしてこれらの場合、接着剤111を基台(2)の
所定部に塗布して、その上にベレット14)を載置し、
これを70℃の温度で硬化させる。なお、これら接着剤
Illは室温でも十分硬化可能であるが、70℃程度に
加熱することによって硬化速度が速くなる。
As adhesive ti1m, heat resistance and Beret +4
) and the coefficient of thermal expansion must be taken into account. Therefore, in this embodiment, commercially available silicone resins such as YE5822 and YE5818 manufactured by Toshiba Silicone Co., Ltd. are used. These are two-component, YE58
22 is rubber-like, and YES81B is gel-like. In these cases, adhesive 111 is applied to a predetermined portion of the base (2), and the pellet 14) is placed on top of it.
This is cured at a temperature of 70°C. Note that these adhesives Ill can be sufficiently cured even at room temperature, but the curing speed becomes faster when heated to about 70°C.

第2図に、本実施例と、東芝シリコーン(株)より市販
されているシリコーン樹脂の品番TSE!+25および
東しシリコーン(株)より市販されているシリコーン樹
脂の品番JCR6107を接着剤として使用した例のピ
エゾ抵抗(7)の抵抗値および抵抗温度係数の変化を示
す。図中、Aはベレット]4)を接着する前のピエゾ抵
抗(7」の抵抗値および抵抗温度係数で6り、B%Cは
夫々TSE!、25およびJCR6107を接着剤とし
て使用したもの、DはYE5822もしくはYES81
8を接着剤として使用したものを示す。なお、TSE5
25およびJCR6107は110℃〜150℃の温度
で硬化させたものである。
Figure 2 shows this example and the product number TSE! of silicone resin commercially available from Toshiba Silicone Corporation. Figure 2 shows changes in the resistance value and temperature coefficient of resistance of a piezoresistor (7) using silicone resin product number JCR6107 commercially available from Toshi Silicone Co., Ltd. as an adhesive. In the figure, A is the resistance value and temperature coefficient of resistance of the piezoresistor (7) before gluing the bellet] 4), B%C is the resistance value and resistance temperature coefficient of the piezoresistor (7) before bonding, B%C is the one using TSE!, 25 and JCR6107 as adhesives, D is YES5822 or YES81
8 is used as an adhesive. In addition, TSE5
No. 25 and JCR6107 were cured at a temperature of 110°C to 150°C.

同図からも明らかな如(、TSE325もしくはJCB
6107のように比較的高温で硬化させる必要のめる場
合、ピエゾ抵抗(7)の抵抗値および温度係数は、初期
値、即ち図中人の場合より大きく変化している。これは
、ベレット(4]の装着時にベレット(4)及び基台(
2)を高温に晒したことによシペレット(4)vcFl
l17ベて基台(2)が大きく膨張し、これに伴う残留
歪がベレット14)に影響を及ぼしたためである。
As is clear from the figure (, TSE325 or JCB
When it is necessary to cure at a relatively high temperature like 6107, the resistance value and temperature coefficient of the piezoresistor (7) change significantly from the initial values, that is, the case of the person in the figure. When installing the beret (4), the beret (4) and the base (
By exposing 2) to high temperature, the pellet (4)vcFl
This is because the base (2) expanded significantly and the resulting residual strain affected the pellet 14).

一方、YE5822もしくはYES818の場合、抵抗
値および温度係数に大きな変化は見られない〇 また、第3図に、TSE325もしくはJCB6107
を接着剤として使用した場合(実線a)と、YE5B2
2もしくはYES 818を接着剤として使用した場合
(実線b)とにおけるオフセット電圧の温度ドリフト特
性を示しているが、本実施例の場合、オフセット電圧の
温度ドリフトが小さい。これは、温度に影響され難い圧
力センサを提供することができることを示す。
On the other hand, in the case of YE5822 or YES818, there is no significant change in resistance value or temperature coefficient.
When used as adhesive (solid line a) and YE5B2
2 or YES 818 as an adhesive (solid line b), the temperature drift of the offset voltage is small in the case of this example. This shows that it is possible to provide a pressure sensor that is not easily affected by temperature.

(へ)考察の効果 本考案によれば、特殊な基台や中間台を用いることなく
、熱膨張係数の差の問題を解消することができ、特性の
優れた圧力センサを提供することができる。
(f) Effects of Consideration According to the present invention, the problem of the difference in thermal expansion coefficient can be solved without using a special base or intermediate stand, and a pressure sensor with excellent characteristics can be provided. .

【図面の簡単な説明】[Brief explanation of drawings]

図は本考案の実施例を示し、第1図は圧力センサの断面
図、第2図はピエゾ抵抗の抵抗4連および抵抗温度係数
の変化を示す特性図、第6図はオフセット電圧の温度ド
リフト特性図である。 (2)・・・基台、(4ト・・ペレツ)、lllm−・
・接着剤。 出願人三洋電機株式会社 代理人弁理士 佐 野 静 夫 第1図 第2図 第3図
The figures show an embodiment of the present invention. Fig. 1 is a cross-sectional view of a pressure sensor, Fig. 2 is a characteristic diagram showing four piezoresistance resistors and changes in temperature coefficient of resistance, and Fig. 6 is a temperature drift of offset voltage. It is a characteristic diagram. (2)...base, (4t...perez), lllm-...
·glue. Applicant Sanyo Electric Co., Ltd. Representative Patent Attorney Shizuo Sano Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)ダイヤフラム部を有する半導体圧力センサベレッ
ト全、70℃以下の温度によシ硬化するシリコーン樹脂
で基台に接着することを特徴とする半導体圧力セ/す。
(1) A semiconductor pressure sensor characterized in that the entire semiconductor pressure sensor pellet having a diaphragm portion is adhered to a base with a silicone resin that hardens at a temperature of 70° C. or less.
JP888784A 1984-01-20 1984-01-20 Semiconductor pressure sensor Pending JPS60153180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP888784A JPS60153180A (en) 1984-01-20 1984-01-20 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP888784A JPS60153180A (en) 1984-01-20 1984-01-20 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS60153180A true JPS60153180A (en) 1985-08-12

Family

ID=11705186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP888784A Pending JPS60153180A (en) 1984-01-20 1984-01-20 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS60153180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266827A (en) * 1992-04-16 1993-11-30 Fuji Electric Co., Ltd. Semiconductor pressure sensor assembly having an improved package structure
US5703393A (en) * 1995-06-27 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor pressure detecting device and manufacturing method of the device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266827A (en) * 1992-04-16 1993-11-30 Fuji Electric Co., Ltd. Semiconductor pressure sensor assembly having an improved package structure
US5703393A (en) * 1995-06-27 1997-12-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor pressure detecting device and manufacturing method of the device

Similar Documents

Publication Publication Date Title
US4295115A (en) Semiconductor absolute pressure transducer assembly and method
US6201285B1 (en) Sensor with diaphragm sensor chip
US3697917A (en) Semiconductor strain gage pressure transducer
US20030154796A1 (en) Pressure sensor
JP2656566B2 (en) Semiconductor pressure transducer
JP3114453B2 (en) Physical quantity detection sensor and process state detector
JPS63238441A (en) Semiconductor pressure sensor and manufacture thereof
JPH02503356A (en) pressure measuring device
JPS59688A (en) Method of coating sensitive physical structure so as to interact in approximately airtight manner
JPS60153180A (en) Semiconductor pressure sensor
JPH07101747B2 (en) Semiconductor pressure sensor
JPH0447244A (en) Semiconductor pressure sensor
JPS5887880A (en) Semiconductor diaphragm type sensor
US4400682A (en) Pressure sensor
JPS59102131A (en) Semiconductor pressure sensor
JPS59154332A (en) Semiconductor pressure sensor
JPH10170367A (en) Semiconductor pressure sensor
JP3140033B2 (en) Semiconductor device
JPS61110023A (en) Structure of pressure-electricity converter
JPS60171429A (en) Pressure-electricity converter
JP2002267684A (en) Semiconductor-type dynamic quantity sensor
JPS5845533A (en) Pressure detector
JPS6055672A (en) Structure of pressure-electric converter
JPS63195537A (en) Absolute pressure type semiconductor pressure sensor
JPH071214B2 (en) Semiconductor pressure sensor