JPS60151414A - Arm equipped with spherical plain bearing and manufacture thereof - Google Patents

Arm equipped with spherical plain bearing and manufacture thereof

Info

Publication number
JPS60151414A
JPS60151414A JP59006150A JP615084A JPS60151414A JP S60151414 A JPS60151414 A JP S60151414A JP 59006150 A JP59006150 A JP 59006150A JP 615084 A JP615084 A JP 615084A JP S60151414 A JPS60151414 A JP S60151414A
Authority
JP
Japan
Prior art keywords
spherical
arm
bearing
plain bearing
spherical plain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59006150A
Other languages
Japanese (ja)
Inventor
Shinya Asada
真也 浅田
Tetsuo Yoshinaga
吉永 哲男
Takahiko Todo
藤堂 高彦
Wakatomi Nakane
中根 若富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP59006150A priority Critical patent/JPS60151414A/en
Publication of JPS60151414A publication Critical patent/JPS60151414A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/02Constructions of connecting-rods with constant length
    • F16C7/026Constructions of connecting-rods with constant length made of fibre reinforced resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0614Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part of the joint being open on two sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • B29C37/0085Mechanical anchoring by means of openings in the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Support Of The Bearing (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

PURPOSE:To realize a lightweight and high tensile arm equipped with a spherical plain bearing by a method wherein an arm main body is molded out of fiber reinforced plastic integral with the spherical bearing surface of a spherical plain bearing. CONSTITUTION:A spherical plain bearing 2 consisting of a spherical body 2a, at the center of which a central hole 2 to fit a rod thereto is bored, and a spherical bearing surface 2b to pivotally support said spherical body 2a, is provided at the tip part of an arm main body 1. The arm main body is made of fiber reinforced plastic. In addition, the surface layer of the spherical bearing surface 2b is made of the same stock as that of the arm main body 1.

Description

【発明の詳細な説明】 未発明は航空機や宇宙船等において軽埴を要求される部
品として好適な球面すべり軸受イ・Jきアーム及びその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spherical slide bearing E/J arm suitable as a component required to be lightweight in aircraft, spacecraft, etc., and a method for manufacturing the same.

従来例えば航空機部品としてのアームは一般的にアルミ
ニウム合金により形成されているが未だ重さが比較的大
であり旧つ引張り強度も十分に大きくはない。特に球面
すべり軸受を有するアルミニウム合金製アームにおいて
はステンレス製の球面すべり軸受を圧入により嵌め込む
方式で取り付けているため、該軸受を嵌め込む穴を穿設
する必要があると共にこの嵌め込みに際して該穴の周辺
には応力東中が生ずるのでこれに酎えるように該穴の周
縁部のアームの肉厚を大としなければならない欠点があ
った。
Conventionally, for example, arms as aircraft parts have generally been made of aluminum alloy, but they are still relatively heavy and do not have a sufficiently high tensile strength. In particular, in aluminum alloy arms with spherical sliding bearings, the stainless steel spherical sliding bearing is attached by press-fitting, so it is necessary to drill a hole into which the bearing is fitted, and when fitting the bearing, it is necessary to drill a hole into which the bearing is fitted. Since stress is generated in the periphery of the hole, there is a drawback that the wall thickness of the arm at the periphery of the hole must be increased to accommodate this stress.

未発明はこのような欠点を排除し軽量で引張り強度も大
であり面も球面すべり軸受の周縁部を薄肉にした球面す
べり軸受付きアームとその製造ツノ:を提供することを
目的とするものであり、第1発明は珠面すベリ軸受付き
アームに関しその4¥徴とするところは少なくとも1個
の球面すベリ軸受をイ1するアーム本体を数球面すべり
軸受の球状受面と共に繊維強化プラスチックにより一体
成形したことにあり、又第2発明は珪i’r+iすベリ
輔受利きアームのjll造法に関しその特徴とするとこ
ろはアーム形成用の一ヒ型とド型を用意し、該ド型内に
、球面軸受個所の門人部を形成し乍らプリプレグを積層
し、球体の周面に少なくとも一層のプリプレグを巻伺け
た該球体を前記門人部に嵌入し、その後前記積層したプ
リプレグのヒに更にプリプレグを積層してから前記上型
を前記下型に合致させ、必要に応じて加圧加熱して樹脂
を硬化させたことにある。
The object of the present invention is to eliminate such drawbacks and provide an arm with a spherical slide bearing that is lightweight, has high tensile strength, and has a thinner peripheral edge of the spherical slide bearing, and its manufacturing horn. The first invention relates to an arm with a beveled bearing, and features 4 of the invention include the arm body having at least one spherical bevel bearing, together with the spherical bearing surfaces of several spherical bevel bearings, made of fiber-reinforced plastic. The second invention relates to the construction method of the receiver arm, and its feature is that a one-h type and a do-type are prepared for forming the arm, and the second invention Prepreg is laminated while forming a pupil part of the spherical bearing part in the spherical bearing part, the sphere with at least one layer of prepreg wrapped around the circumferential surface is fitted into the pupil part, and then the spherical body is fitted into the pupil part of the laminated prepreg. Furthermore, after laminating the prepregs, the upper mold was made to match the lower mold, and if necessary, the resin was cured by applying pressure and heating.

以F未発明球面すべり軸受付きアームの1実施例を第1
図及び第2図に従って説明する。
The following is a first example of an arm with an uninvented spherical plain bearing.
This will be explained according to the drawings and FIG.

(1)はアーム本体、(2)はその先端部に設けた球面
すべり軸受を示し、数球面すべり1h11受(2)は中
心部にロンドを嵌着する中心孔(2C)を穿設した球体
(2a)とこれを回動自在に受ける球状受面(2b)と
からなり、該中心孔(2C)にロッドを嵌着し、該ロッ
ドとiii記アーム本体(1)のアー、ムとにより該ロ
ントの傾斜回動自在なリゾク機構を構成可能にした。
(1) shows the arm body, (2) shows the spherical sliding bearing provided at its tip, and the number spherical sliding 1h11 bearing (2) is a spherical body with a center hole (2C) in which the rond is fitted. (2a) and a spherical receiving surface (2b) that rotatably receives this, a rod is fitted into the center hole (2C), and the rod and the arms and arms of the arm body (1) described in iii. It is possible to construct a mechanism that allows the front to tilt and rotate freely.

ここで前記アーム本体(1)は繊維強化プラスチックか
らなり、炭素繊維、ガラス繊維、ポロン繊維、合成繊維
、金属繊維等の繊維をエポキシ樹脂、フェノール樹脂等
の熱硬化セE樹脂又はポリサルフォン、ポリエーテルエ
ーテルケトン等の熱oT塑性樹脂で含浸硬化させて得ら
れたもので、これらの素材は使用条件に応じて選釈Of
能である。又前記球体(2a)についてステンレス球、
fiFJ、FRPf!、樹脂球、セラミックス球等使用
条件に応じていずれかにM 4JJされる。更に前記球
状受面(2b)の表面層も前記アーム本体(1)と同一
・の繊維強化プラスチックからなり、これに粉末潤滑剤
を混入分散させて静摩擦係数及び動摩擦係数をより下げ
ることができ、Fi1強化プラスチック製アームの寿命
をより一層伸ばすことができる。ここで粉末潤滑剤とし
て自己潤滑性を有する粉末テフロン、粉末黒鉛等の自己
11滑性の高いものであればなんでも良い。
Here, the arm body (1) is made of fiber-reinforced plastic, and fibers such as carbon fiber, glass fiber, poron fiber, synthetic fiber, and metal fiber are combined with thermosetting resin such as epoxy resin, phenol resin, polysulfone, and polyether. These materials are obtained by impregnation and hardening with thermoplastic resins such as etherketone, and these materials can be selected and cured depending on the usage conditions.
It is Noh. Further, regarding the sphere (2a), a stainless steel sphere,
fiFJ, FRPf! , resin balls, ceramic balls, etc. depending on the usage conditions. Furthermore, the surface layer of the spherical receiving surface (2b) is also made of the same fiber-reinforced plastic as the arm body (1), and a powder lubricant can be mixed and dispersed therein to further lower the coefficient of static friction and the coefficient of dynamic friction. The lifespan of the Fi1 reinforced plastic arm can be further extended. Any powder lubricant may be used as the powder lubricant as long as it has high self-lubricating properties such as powdered Teflon and powdered graphite.

次に前記アームの製造法について第3図乃至第8図に従
って説明する。
Next, a method of manufacturing the arm will be explained with reference to FIGS. 3 to 8.

先ず、第3図示の如き金属その他からなるアーム成形用
の上型(3a)と下型(3b)と円柱状の中子(3C)
とを用意する。そして前記繊維を前記樹脂に予め含浸さ
れて得られたシート状の成形素材即ちプリプレグ(4)
を前記下型(3b)に第4図示の如く順次積層していく
。この積層に際して球面軸受個所に門人部(5)を形成
しておく。ここでこれらプリプレグ(4)の積層数及び
切出し形状、積層方向は予め計算により決めておき、そ
の決定に従って前述の積層が行われる。
First, an upper mold (3a), a lower mold (3b), and a cylindrical core (3C) for forming an arm made of metal or other materials as shown in the third figure are prepared.
Prepare. and a sheet-like molding material, ie, prepreg (4) obtained by pre-impregnating the fibers with the resin.
are sequentially laminated on the lower mold (3b) as shown in the fourth figure. During this lamination, a gate portion (5) is formed at the spherical bearing location. Here, the number of stacked prepregs (4), the cut-out shape, and the stacking direction are determined in advance by calculation, and the above-described stacking is performed according to the determination.

次に、予め粉末潤滑剤を分散混入したプリプレグ(4a
)を用意して、第5図示の如くこれを球体(2a)の周
面に直接少なくとも・層巻き伺ける。そしてこの巻41
けられた球体(2a)を第6図示の如く前記門人部(5
)に嵌入する。このとき中子(3C)に球体(2a)の
中心孔(2C)を嵌挿させ。
Next, a prepreg (4a
), and as shown in Figure 5, it can be wrapped directly around the circumferential surface of the sphere (2a) in at least one layer. And this volume 41
The pierced sphere (2a) is placed in the disciple section (5) as shown in Figure 6.
). At this time, the core (3C) is inserted into the center hole (2C) of the sphere (2a).

これにより該球体(2a)は確実に位置決めされる。Thereby, the sphere (2a) is reliably positioned.

次に第7図示の如く前記積層したプリプレグ(4)・・
・(4)のヒに又球体(2a)の周面のプリプレグ(4
a)に沿って更にプリプレグ(4)・・・(4)を積層
していく。このときも前述と同様にプリプレグ(4)・
・・(4)の積層数及び切出し形状、積層方向は予め計
算により決めておき、その決定に従って積層を行う。
Next, as shown in Figure 7, the laminated prepreg (4)...
・In addition to (4), the prepreg (4) on the circumferential surface of the sphere (2a)
Prepregs (4)...(4) are further laminated along line a). At this time, prepreg (4) and
...(4) The number of laminated layers, cutout shape, and lamination direction are determined in advance by calculation, and lamination is performed according to the determination.

その後、第8図示の如く下型(3b)の−ヒに」二型(
3a)を合致させて、必要に応じて所定の圧力の加圧と
所定の温度の加熱によりプリプレグ(4)・・・(4)
及び(4a)を硬化させて第1図及び第2図示の如き球
面すべり軸受を有するアームを得る。
Thereafter, as shown in Figure 8, the lower mold (3b) is
3a), pressurize to a predetermined pressure and heat to a predetermined temperature as necessary to prepare prepreg (4)...(4)
and (4a) to obtain an arm having a spherical sliding bearing as shown in FIGS. 1 and 2.

次に前述した製造方法により得られた例えば炭素繊維強
化プラスチフク(CF RP)製のアームでその球面す
ベリ軸受の球体をステンレスにより形成したものと、こ
れと同一・形状のアルミニウム合金製のアームとを用意
し、それぞれについての引張破壊荷重、重量比、及び球
面すべり軸受の静摩擦係数を測定したところ次のような
結果が得られた。
Next, an arm made of, for example, carbon fiber-reinforced plastic (CF RP) obtained by the above-mentioned manufacturing method, with the sphere of the spherical belly bearing made of stainless steel, and an arm made of aluminum alloy with the same shape and shape. were prepared, and the tensile failure load, weight ratio, and static friction coefficient of the spherical plain bearing were measured for each, and the following results were obtained.

表1 表2 表3 表1より引張破壊強度はCFRP製アームが8?00k
gでアルミニウム合金アームの3.0倍であり、又表2
より小、111比はCFRPjJアームがアルミニウム
合金製アームの0.53倍であり該アルミニウム合金ア
ームよりも47%も軽くなる。又球面すべり軸受の球体
の周面の強度をCFRP製アームとアルミニウム合金製
アームと同一になるようにした場合には、曲名が後者の
1/2のil’j !l!となる。 更に表3よりCF
RP製アームの球面すべり軸受の静摩擦係数も0.08
とかなり低く、四フッ化エチレン程度であり、軸受部の
)E線強度も80kg/amと高い。又、球面すべり軸
受の動摩擦係数も、球体に接触している球面部分に炭素
#a維が直接露出しているため、きわめて低い。このよ
うにCFRP製アームは上記したようにアルミニウム合
金製アームよりも種々の点で良い特性を持っている・ このように第1発明によると球面すべり軸受の球状受面
をアーム水体と共に繊維強化プラスチックに゛より一体
成形して構成されているので、球体のみが回動自在にア
ームに埋設された状態で構造が簡単になり、又軽早で[
1一つ引張強度もに7+ <なり、更に使用条件に応じ
て繊維と樹脂を選定してM1合せれば耐食性。
Table 1 Table 2 Table 3 From Table 1, the tensile fracture strength of the CFRP arm is 8?00k.
g is 3.0 times that of the aluminum alloy arm, and Table 2
The smaller 111 ratio of the CFRPjJ arm is 0.53 times that of the aluminum alloy arm, and it is also 47% lighter than the aluminum alloy arm. Also, if the strength of the circumferential surface of the sphere of the spherical plain bearing is made the same as that of the CFRP arm and the aluminum alloy arm, the song title will be 1/2 of the latter! l! becomes. Furthermore, from Table 3, CF
The static friction coefficient of the spherical plain bearing of the RP arm is also 0.08.
It is quite low, about the same as tetrafluoroethylene, and the E-ray strength of the bearing part is also high at 80 kg/am. Furthermore, the coefficient of dynamic friction of the spherical plain bearing is extremely low because the carbon #a fibers are directly exposed on the spherical surface that is in contact with the sphere. As mentioned above, the CFRP arm has better properties in various respects than the aluminum alloy arm.In this way, according to the first invention, the spherical bearing surface of the spherical plain bearing is made of fiber-reinforced plastic along with the arm water body. Since it is constructed by integrally molding the ball, the structure is simple as only the sphere is rotatably embedded in the arm, and it is light and quick.
The tensile strength of 11 is 7+, and if you select the fiber and resin according to the usage conditions and match M1, it will be corrosion resistant.

耐低温性、#疲労性が強くなって非常に過酷な使用条件
の航空機や宇宙船等の機器の部品として使用でき、又第
2発明によればプリプレグの積層の途中に周面にプリプ
レグを巻付けた球体を介入して球面すべり軸受の球状受
面を一体成形しているので、従来の球面すべり軸受付き
アームの如く該アームに軸受の嵌め込み用の穴を穿設す
る必要がなくなると共に軸受の嵌め込みが不必要となっ
てこれに伴う応力集中が生ぜず、かくて軸受周面が薄肉
で十分でありアームの軽雀化が図れる等の効果をイ1す
る。
It has improved low temperature resistance and #fatigue resistance, and can be used as parts for equipment such as aircraft and spacecraft that are used under very harsh conditions.According to the second invention, prepreg can be wrapped around the circumferential surface in the middle of stacking the prepreg. Since the spherical bearing surface of the spherical sliding bearing is integrally molded by intervening the attached sphere, there is no need to drill a hole in the arm for fitting the bearing as in conventional arms with spherical sliding bearings. Fitting is unnecessary and stress concentration does not occur due to this, and the peripheral surface of the bearing is sufficiently thin and the arm can be made lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明アームの1実施例の斜視図、第2図はそ
の断面図、第3図は製造に使用する型の断面図、第4図
乃至第8図は製造方法を示す説明図である。 (1)・・・アーム水体 (2)・・・球面すべり軸受 (2a)・・・球体 (2b)・・・球状受面(3a)
・・・上型 (3b)・・・下型(4)、(4a)・・
・プリプレグ 第1図 d 第3図 第46 第5図 r D 第6図 習
Fig. 1 is a perspective view of one embodiment of the arm of the present invention, Fig. 2 is a sectional view thereof, Fig. 3 is a sectional view of a mold used for manufacturing, and Figs. 4 to 8 are explanatory diagrams showing the manufacturing method. It is. (1)... Arm water body (2)... Spherical plain bearing (2a)... Sphere (2b)... Spherical bearing surface (3a)
...Top mold (3b)...Bottom mold (4), (4a)...
・Prepreg Figure 1 d Figure 3 Figure 46 Figure 5 r D Figure 6 Study

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも1個の球面すべり軸受を有するアーム
本体を該球面すべり軸受の球状受面と共に繊維強化プラ
スチックにより一体成形したことを特徴とする球面すべ
り軸受付きアーム。
(1) An arm with a spherical plain bearing, characterized in that an arm body having at least one spherical plain bearing is integrally molded with a spherical bearing surface of the spherical plain bearing from fiber-reinforced plastic.
(2)前記繊維強化プラスチックに粉末潤滑剤を分散混
入させたことを特徴とする特許請求の範囲第1項記載の
球面すべり軸受付きアーム。
(2) The arm with a spherical sliding bearing according to claim 1, wherein a powdered lubricant is dispersed and mixed in the fiber-reinforced plastic.
(3)アーム形1友用の−に型と下型を用意し、該下準
内に、球面軸受個所の門人部を形成し乍らプリプレグを
積層し1球体の周面に少なくとも一層のプリプレグを巻
付けた該球体を前記門人部に嵌入し、その後前記積層し
たプリプレグの上に更にプリプレグを積層I−てから前
記上型を前記下型に合致させ、必要に応じて加圧加熱し
て樹脂を硬化させたことを特徴とする球面すベリ軸受付
きアームの製造方法。
(3) Prepare a mold and a lower mold for the arm type 1 member, form the pupil part of the spherical bearing part in the lower mold, and laminate prepreg so that at least one layer of prepreg is formed on the circumferential surface of the 1 sphere. The spherical body wrapped with A method for manufacturing an arm with a spherical bevel bearing characterized by hardening resin.
JP59006150A 1984-01-17 1984-01-17 Arm equipped with spherical plain bearing and manufacture thereof Pending JPS60151414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006150A JPS60151414A (en) 1984-01-17 1984-01-17 Arm equipped with spherical plain bearing and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006150A JPS60151414A (en) 1984-01-17 1984-01-17 Arm equipped with spherical plain bearing and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60151414A true JPS60151414A (en) 1985-08-09

Family

ID=11630494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006150A Pending JPS60151414A (en) 1984-01-17 1984-01-17 Arm equipped with spherical plain bearing and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60151414A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373529A2 (en) * 1988-12-14 1990-06-20 Tiodize Company, Inc. Method for making a non-metallic, fiber reinforced rod end bearing assembly
EP0690242A1 (en) * 1994-06-03 1996-01-03 Mac Lean-Fogg Company Ball joint link
US5609433A (en) * 1995-08-01 1997-03-11 Maclean-Fogg Company Ball joint link and method of producing same
US5713689A (en) * 1996-04-12 1998-02-03 Maclean-Fogg Company Ball joint link
EP0828951A1 (en) * 1995-05-22 1998-03-18 Avm, Inc. Connector with insert molded captive ball
JP2017508937A (en) * 2014-01-16 2017-03-30 コレボン アーベー Even number
DE102018208552A1 (en) 2017-06-06 2018-12-06 SKF Aerospace France S.A.S Connector with integrated swivel
FR3097282A1 (en) 2019-06-13 2020-12-18 Skf Aerospace France Connecting piece in composite material, in particular for the ball joint
WO2024062192A1 (en) * 2022-09-23 2024-03-28 Hydromecanique Et Frottement Self-lubricating spherical plain bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116450A (en) * 1973-03-14 1974-11-07
JPS5624215A (en) * 1979-08-04 1981-03-07 Dia Sangyo Kk Rotaty joint and manufacturing thereof
JPS56113819A (en) * 1980-02-14 1981-09-08 Nissan Motor Co Ltd Connecting rod for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116450A (en) * 1973-03-14 1974-11-07
JPS5624215A (en) * 1979-08-04 1981-03-07 Dia Sangyo Kk Rotaty joint and manufacturing thereof
JPS56113819A (en) * 1980-02-14 1981-09-08 Nissan Motor Co Ltd Connecting rod for internal combustion engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373529A2 (en) * 1988-12-14 1990-06-20 Tiodize Company, Inc. Method for making a non-metallic, fiber reinforced rod end bearing assembly
EP0690242A1 (en) * 1994-06-03 1996-01-03 Mac Lean-Fogg Company Ball joint link
US5615967A (en) * 1994-06-03 1997-04-01 Maclean-Fogg Company Ball joint link
EP0828951A1 (en) * 1995-05-22 1998-03-18 Avm, Inc. Connector with insert molded captive ball
EP0828951A4 (en) * 1995-05-22 1998-09-02 Avm Inc Connector with insert molded captive ball
US5609433A (en) * 1995-08-01 1997-03-11 Maclean-Fogg Company Ball joint link and method of producing same
US5713689A (en) * 1996-04-12 1998-02-03 Maclean-Fogg Company Ball joint link
US10584738B2 (en) 2014-01-16 2020-03-10 Corebon Ab Kinematic pairs
JP2017508937A (en) * 2014-01-16 2017-03-30 コレボン アーベー Even number
DE102018208552A1 (en) 2017-06-06 2018-12-06 SKF Aerospace France S.A.S Connector with integrated swivel
CN108999883A (en) * 2017-06-06 2018-12-14 斯凯孚航空法国公司 Connector with integrated rotary joint
FR3067073A1 (en) * 2017-06-06 2018-12-07 SKF Aerospace France S.A.S CONNECTOR WITH INTEGRATED BALL
US11268566B2 (en) 2017-06-06 2022-03-08 SKF Aerospace France S.A.S Connector with integrated swivel
FR3097282A1 (en) 2019-06-13 2020-12-18 Skf Aerospace France Connecting piece in composite material, in particular for the ball joint
WO2024062192A1 (en) * 2022-09-23 2024-03-28 Hydromecanique Et Frottement Self-lubricating spherical plain bearing
FR3140143A1 (en) * 2022-09-23 2024-03-29 Hydromecanique Et Frottement SELF-LUBRICATING BALL JOINT

Similar Documents

Publication Publication Date Title
US3950599A (en) Low-friction laminate liner for bearings
US3519228A (en) Airfoil structure
JPS60151414A (en) Arm equipped with spherical plain bearing and manufacture thereof
US7151129B2 (en) Carbon nanofiber-dispersed resin fiber-reinforced composite material
US5253867A (en) Multi-component shaft for golf clubs
US4186696A (en) Push rods and the like
CA1155378A (en) Bearing assembly and method for making same
US5145320A (en) Mass loaded composite rotor for vibro-acoustic application
Reed et al. Cryogenic composite supports: a review of strap and strut properties
JP2997706B2 (en) Method of manufacturing non-metal rod end bearing assembly
CN108533945A (en) Pressure pan
JP2001140893A (en) Double-layer sliding member made of resin
US4006051A (en) Method of preparing a low-friction laminate liner for bearings
Dasari et al. Effects of cryogenic aging on flexural behavior of advanced inter-ply hybrid fiber-reinforced polymer composites
US3268983A (en) Method of making low friction spherical bearings
Hou et al. Design and fabrication of CFRP interstage attach fitting for launch vehicles
JP2020153503A (en) Pressure vessel inspection method
US4631228A (en) Method for making a porous rigid structure and the porous rigid structure made thereby
USH219H (en) Layered construction of composite interceptor motor cases, etc.
JP2003021144A (en) Resin composite sliding member and manufacturing method of the same
EP3189124B1 (en) Composite bearing with enhanced wear and machinability
US20030035602A1 (en) Injection molded fabric lined self-lubricating bearing
JPH03166921A (en) Preparation of fiber reinforced composite material
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JP2004107661A (en) Underwater slide member, and method for manufacturing the same