JPS60151228A - Manufacture of cobalt-containing isotropic magnetic iron oxide - Google Patents

Manufacture of cobalt-containing isotropic magnetic iron oxide

Info

Publication number
JPS60151228A
JPS60151228A JP59264670A JP26467084A JPS60151228A JP S60151228 A JPS60151228 A JP S60151228A JP 59264670 A JP59264670 A JP 59264670A JP 26467084 A JP26467084 A JP 26467084A JP S60151228 A JPS60151228 A JP S60151228A
Authority
JP
Japan
Prior art keywords
ions
suspension
cobalt
magnetic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59264670A
Other languages
Japanese (ja)
Other versions
JPH0567572B2 (en
Inventor
ヴエルナー、シュテク
ヴイルヘルム、ザルネキ
ヘルムート、ヤクシュ
ラスツロ、マロズイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPS60151228A publication Critical patent/JPS60151228A/en
Publication of JPH0567572B2 publication Critical patent/JPH0567572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、針状γ−Fe00Hを2価のコバルトイオン
及び鉄イオンとアルカリ性媒体中で不活性ガス雰囲気中
で反応させることにより、式:%式%:] 〔式中、XはO,OS〜0.8の値を表わす〕で示され
るコバルト含有、等方性の磁性酸化鉄を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is characterized by reacting acicular γ-Fe00H with divalent cobalt ions and iron ions in an alkaline medium in an inert gas atmosphere. %: ] [In the formula, X represents O, OS~0.8] The present invention relates to a method for producing cobalt-containing isotropic magnetic iron oxide.

従来の技術 磁気記録担体の開発は、長い間特にデータ及びビデオ信
号記憶における要求により高密度で記録する方向に向け
られて来た。この目的のためには、有機結合剤中に細分
された、極めて高い保磁力を有する磁性材料をベースと
する極めて平滑な表面を有する記録材料が特に適当であ
ると見なされる。
BACKGROUND OF THE INVENTION The development of magnetic record carriers has long been directed towards recording at high densities, particularly due to the demands in data and video signal storage. For this purpose, recording materials with extremely smooth surfaces based on magnetic materials with extremely high coercivity subdivided into organic binders are considered particularly suitable.

記録密度の上昇と結び付いた記録波長の短縮により、記
録層の自己減磁による出力の低下が一層顕著になる。減
磁の減少は確かに層厚さの縮小により可能である。しか
しながら、この手段は磁性粉末を含有する結合剤層を有
する記録担体においては、単位面積当りの存在する磁性
材料の減少、すなわち層素子の残留磁気の減少に基づき
、また製作技術上の理由から限度がある。薄いにもかか
わらず十分な磁化における薄い層厚さの問題点を排除す
るも51つの方法は、薄い磁性金属フィルムをベースと
する記録材料を用いることから成る。
As the recording wavelength decreases in conjunction with the increase in recording density, the decrease in output due to self-demagnetization of the recording layer becomes more pronounced. A reduction in demagnetization is certainly possible by reducing the layer thickness. However, this measure is limited in record carriers with a binder layer containing magnetic powder due to the reduction of the magnetic material present per unit area, ie the reduction of the remanence of the layer elements, and also due to production technology reasons. There is. One way to eliminate the problem of thin layer thicknesses in thin yet sufficient magnetization consists of using recording materials based on thin magnetic metal films.

しかしながら、このような均質な金属層の製造の問題の
他に就中それを利用する際の機械的問題点が生じる。
However, in addition to the problems of producing such a homogeneous metal layer, mechanical problems arise, among other things, when using it.

前記困難性の見地において、かつそれにもかかわらず高
い記録密度と同時に高い出力レベルを有する磁気記録材
料を提供せんとする努力において、既にまた、記録担体
に対して垂直な磁気記録を実施することも提案された。
In view of said difficulties, and in an effort to nevertheless provide magnetic recording materials with high recording densities and at the same time high power levels, it has already also been possible to carry out magnetic recording perpendicular to the record carrier. was suggested.

このためには、記録担体は、少なくとも磁気ヘッドの最
も近くに位置する層範囲で垂直方向の磁化を可能にする
層を有しているべきである(米国特許第3,052,5
67号明細書)。この原理の一層の開発において、大抵
はCo/Cr層をベースとする、支持体面に対して垂直
な磁性異方性を有する一連の種々の磁性層が調査された
。しかしながら、その製造もまた達成可能な特性も未だ
満足されない。更にまた、該記録法のために適当な磁気
ヘッドを開発することも1つの重要な問題点である。
For this purpose, the record carrier should have a layer that allows perpendicular magnetization at least in the layer region located closest to the magnetic head (US Pat. No. 3,052,5
Specification No. 67). In the further development of this principle, a series of different magnetic layers, mostly based on Co/Cr layers, with magnetic anisotropy perpendicular to the support plane were investigated. However, neither their manufacture nor the achievable properties are still unsatisfactory. Furthermore, developing a suitable magnetic head for the recording method is also an important issue.

高い感度と同時に記録密度を高めるもう1つの方法は、
記録のために使用される磁界の垂直成分を利用すること
である。この場合には、特に高い記録密度(短い波長う
で有効な、磁性層の表面にリングヘッドによって形成さ
れる磁界の垂直成分が採用される。このような記録系の
ための磁性材料としては、記録担体の全ての方向に高い
相対的残留磁気を生じる物質が適当である。このために
は等方性の磁性材料、特に立方体の酸化鉄、就中正六面
体の磁鉄鉱をベースとして構成されたものが適当である
。この磁鉄鉱の製法、例えばα−1β−又はγ−FeO
OHとFe(Of()2とから出発する製法は公知であ
る〔IrjTIcドイツ連邦共和国特許出願公開第25
08155号、同第2746359号及び同第2508
085号明細書、特開昭58−36932号公報〕。ま
た、水酸化コバルト及びγ−Fe00Hから立方体のコ
バルトフェライトを製造することも既に開示された〔ク
ラウゼ他著(Krause et al、 ) 、 Z
、f。
Another way to increase recording density at the same time as high sensitivity is to
It utilizes the perpendicular component of the magnetic field used for recording. In this case, a perpendicular component of the magnetic field formed by a ring head on the surface of the magnetic layer is employed, which is particularly effective at high recording densities (short wavelengths).Magnetic materials for such recording systems include: Materials that produce a high relative remanence in all directions of the record carrier are suitable. For this purpose, isotropic magnetic materials, in particular those constructed on the basis of cubic iron oxide, especially hexahedral magnetite, are suitable. This method of producing magnetite, e.g. α-1β- or γ-FeO
The production process starting from OH and Fe(Of()2) is known [IrjTIc German Patent Application No. 25]
No. 08155, No. 2746359 and No. 2508
Specification No. 085, Japanese Unexamined Patent Publication No. 58-36932]. It has also been previously disclosed that cubic cobalt ferrite can be produced from cobalt hydroxide and γ-Fe00H [Krause et al., Z.
, f.

a n o r g 、 Ch 、 ”、na 331
5p231 (1964) 〕o Lかしながら、これ
らの材料は、磁気特性、特に保磁力に関しであるいはま
た熱もしくは機械的負荷における磁気特性の安定性に関
し、て、磁気記録担体において使用するためには不適当
である。
a no r g, Ch, ”, na 331
5p231 (1964)] o L However, these materials are not suitable for use in magnetic record carriers with respect to their magnetic properties, in particular their coercivity, or also their stability under thermal or mechanical loads. It's inappropriate.

発明が解決しようとする問題点 従って、本発明の課題は、一方では簡単かつ経済的な方
法で通常の素材を用いて実施することができ、かつ他方
では等方性磁化特性、記録担体のために好適な高い保磁
力、更に就中磁化可能な個別粒子の特に狭い切換域分布
(SFD)によって優れた磁性材料を提供する、等方性
の磁性材料の製法を見い出すことであった。これらの特
性は特に高密度での磁気記録のために重要である。この
課題を解決するために出発物質として容易に入手される
塩化鉄(11)を使用しかつコバルトで等方性磁鉄鉱を
変態させることを提案する。
The problem to be solved by the invention The problem of the invention is therefore, on the one hand, to be implemented in a simple and economical way using conventional materials, and, on the other hand, to provide isotropic magnetization properties for the record carrier. The objective was to find a process for the production of isotropic magnetic materials which provides an excellent magnetic material due to its high coercivity, which is suitable for magnetization, as well as a particularly narrow switching zone distribution (SFD) of the individual magnetizable particles. These properties are particularly important for high-density magnetic recording. To solve this problem, it is proposed to use the readily available iron chloride (11) as a starting material and to transform isotropic magnetite with cobalt.

問題点を解決するための手段 ところで、前記課題は、式: %式%] 〔式中、XはO,OS〜0.8の値を表わす〕で示され
るコバルト含有、等方性の磁性酸化鉄を製造する方法に
おいて、γ−FeOOHを水性分散液中でCO(II 
)イオン及びF、(II)イオンと8よりも高いpH値
で不活性ガス下に35℃と懸濁液の沸点との間の温度で
常圧で反応させることにより解決されることが判明した
Means for Solving the Problems By the way, the above-mentioned problem is a cobalt-containing, isotropic magnetic oxide represented by the formula: In a method for producing iron, γ-FeOOH is dissolved in CO(II) in an aqueous dispersion.
) ions and F, (II) ions were found to be solved by reacting them at normal pressure at a temperature between 35 °C and the boiling point of the suspension under an inert gas at a pH value higher than 8. .

本発明方法のための出発物質としては、公知方法で得ら
れ、鱗繊石とも称される針状のγ−F”eOOHをその
製造の際に生成した懸濁液、洗浄したもしくは未洗浄の
フィルタケーキの形又は乾燥した顔料の形で使用する。
Starting materials for the process of the invention are acicular γ-F"eOOH, which is obtained by known methods and is also called lepidolite, in the suspension formed during its preparation, washed or unwashed. Use in filter cake form or dry pigment form.

γ−FeOOHは例えば塩化鉄(、II)溶液からアン
モニアでpi(=7で20〜50℃の温度で水酸化鉄(
II)を沈殿させかつ引続き沈殿した水酸化物を上記p
H値の保持下に空気で酸化させることにより製造するこ
とができる〔シュベルトマン(Schwertmann
 )著、“Zeitschrift f、Anorg。
γ-FeOOH can be prepared, for example, from iron chloride (II) solution with ammonia at a temperature of 20 to 50°C at pi (=7).
II) and subsequently the precipitated hydroxide in the above p
It can be produced by oxidizing with air while maintaining the H value [Schwertmann
), “Zeitschrift F, Anorg.

Chemie ” 298 (1959)、p337〜
348 )、ドイツ連邦共和国特許第1223352号
明細書から、もう1つの鱗繊石の製法が公知であり、該
方法は鉄(II)塩溶液をアルカリ金属又はアルカリ土
類金属塩基で沈殿させかつ水酸化鉄(It)又は炭酸塩
を酸素、空気、有機ニトロ化合物又はその他の酸化剤で
酸化させることにより芽晶を形成させかつ場合により鱗
繊石の芽晶成長を鉄(11)塩溶液中で金属鉄の存在下
に又は鉄(II)塩溶液中で同時に当量の鉄([1)イ
オン及びアルカリ金属又はアルカリ土類金属溶液又は懸
濁液を添加しながら、又は同時に当量の鉄(It)イオ
ン及びアルカリ金属又はアルカリ土類金属塩基溶液又は
懸濁液を添加しながら酸化剤を使用して実施することよ
り成る。類似した方法で、鱗繊石はまた、第1工程で塩
化鉄(II)と水性アルカリとを合しかつ得られた混合
物を、該混合物のpH値が2.9〜4.1になるまで酸
素を含有するガスを導入しながら攪拌することによって
コロイド状の鱗繊石芽晶の懸濁液を製造し、次いで第2
工程で該懸濁液を激しく攪拌しながら26.7〜60℃
の温度でかつ上記pH値を保持して過剰の塩化鉄(II
)の存在下で同時にかつ連続的にアルカリ及び酸素を含
有するガスを、芽晶量の重量部当り全生成物1.2〜5
重量部が形成されるまで供給することによっても得られ
る。また、ドイツ連邦共和国特許出願公告第10617
60号明細書又はヨーロッパ特許機構出願公開第407
22号明細書記載の方法に基づき、好適なγ−FeOO
H粒子を得ることができる。
Chemie” 298 (1959), p337~
348), from German Patent No. 1 223 352, another method for producing lepidolite is known, which involves precipitating an iron(II) salt solution with an alkali metal or alkaline earth metal base and precipitating it with water. Formation of spores by oxidation of iron (It) oxide or carbonate with oxygen, air, organic nitro compounds or other oxidizing agents and optionally spore growth of lepidolite in an iron(11) salt solution. in the presence of metallic iron or in an iron(II) salt solution or simultaneously with the addition of an equivalent of iron ([1) ions and an alkali metal or alkaline earth metal solution or suspension; It consists of carrying out using an oxidizing agent with the addition of ions and an alkali metal or alkaline earth metal base solution or suspension. In a similar manner, lepidolite is also prepared by combining iron(II) chloride and aqueous alkali in the first step and adding the resulting mixture until the pH value of the mixture is between 2.9 and 4.1. A suspension of colloidal lepidoblasts is prepared by stirring while introducing an oxygen-containing gas, and then a second
In the process, the suspension was heated to 26.7-60°C while stirring vigorously.
Excess iron chloride (II) at a temperature of
) in the presence of alkali and oxygen-containing gas at the same time and continuously at a rate of 1.2 to 5 total products per part by weight of the amount of bud crystals.
It can also be obtained by feeding until parts by weight are formed. Also, Federal Republic of Germany Patent Application Publication No. 10617
Specification No. 60 or European Patent Organization Application Publication No. 407
Based on the method described in No. 22, suitable γ-FeOO
H particles can be obtained.

ところで、本発明方法によれば、γ−F e OOHの
水性懸濁液を不活性ガス、有利には窒素雰囲気を施した
容器に装入する。それに、攪拌しなからFe(II)塩
溶液、大抵はFe Ct2をかつ同時に又はその後でC
o(■)塩溶液、大抵はCo C12を加える。NaO
H、KOH又はNH3を用いてpH値を8よりも大きい
値、又は有利にはアルカリ金属水酸化物でioよりも大
きい値に調整した後、該反応混合物C更に攪拌しながら
35℃と沸点との間の温度で5分〜8時間、有利にはl
O分〜6時間保持する。次いで、今や黒色に変色した懸
濁液を濾過し、該フィルタケーキを水で洗浄しかつ洗浄
した濾過ケーキを50〜350℃で、有利には非酸化性
雰囲気内で乾燥する。こうして得られた磁性材料は前記
式の等方性粒子から成る。
According to the method of the invention, however, an aqueous suspension of γ-F e OOH is placed in a container which is provided with an inert gas, preferably nitrogen, atmosphere. Additionally, an Fe(II) salt solution, usually FeCt2, is added without stirring and at the same time or afterwards C
o (■) Add a salt solution, usually Co C12. NaO
After adjusting the pH value to a value greater than 8 using H, KOH or NH3, or advantageously greater than io with an alkali metal hydroxide, the reaction mixture C is heated to 35° C. and boiling point with further stirring. from 5 minutes to 8 hours at a temperature between
Hold for 0 minutes to 6 hours. The now blackened suspension is then filtered, the filter cake is washed with water and the washed filter cake is dried at 50-350° C., preferably in a non-oxidizing atmosphere. The magnetic material thus obtained consists of isotropic particles of the above formula.

等方性とは、前記関係において、粒子が十分に直方体状
である、すなわち統計的平均において3つの立体軸の全
てが十分な大きさでありかつ詳細には最高でも2:lま
での長さ対厚さの比が確認されることな意味する。
Isotropy means, in the above relationship, that the particle is sufficiently rectangular, that is, on a statistical average, all three steric axes are sufficiently large and, in detail, have a length of at most 2:l. This means that the ratio of thickness to thickness cannot be confirmed.

本発明方法の有利な1実施態様では、γ−FeOOH合
成は前記方法で実施する。しかしながら、反応を、その
終了点まで実施せず、既にFe(■)イオンの部分的転
化後K、すなわちγ−FeOOH芽晶形成期後に停止さ
せろ。次いで、この今や存在するγ−FeOOH芽晶懸
濁液にCo([)塩溶液及び前記塩基の1つを容器内容
物を予め不活性雰囲気でおおった後に不活性ガス下に加
える。塩基の添加により、未だγ−F e OOHに酸
化されていないFe([)成分がFe(OH)2として
析出する。次いで、Fe(OH)2の析出と共に8より
も大きく約14以下、有利には10〜13の高めたpH
値でγ−Fe00Hの(CoxFelx) Q [Fe
2O,]への転化を実施する。この反応は35℃と懸濁
液の沸点との間の温度で実施するのが有利である。反応
は極めて迅速に進行するので、特に高めた温度では10
分〜8時間、有利には6時間以内の反応時間で十分であ
る。乾燥生成物への後処理は、既述のとおり行なう。
In one advantageous embodiment of the process according to the invention, the γ-FeOOH synthesis is carried out in the process described above. However, the reaction is not carried out to its end point, but is stopped already after partial conversion of the Fe(■) ions, ie after the γ-FeOOH sprouting phase. A Co([) salt solution and one of the bases mentioned above are then added to this now existing γ-FeOOH sprout suspension under inert gas after the contents of the vessel have previously been blanketed with an inert atmosphere. By adding the base, the Fe([) component which has not yet been oxidized to γ-Fe OOH is precipitated as Fe(OH)2. Then an elevated pH of greater than 8 and less than or equal to about 14, advantageously from 10 to 13, with precipitation of Fe(OH)2.
(CoxFelx) Q [Fe
2O,] is carried out. This reaction is advantageously carried out at a temperature between 35° C. and the boiling point of the suspension. The reaction proceeds extremely rapidly, especially at elevated temperatures.
Reaction times between minutes and 8 hours, preferably up to 6 hours, are sufficient. Work-up of the dried product is carried out as described above.

本発明方法のも51つの実施態様では、ca([1)イ
オンを全部又は一部分既にγ−F e 00M合成の開
始時に加える。その他は前記のとおり操作する。
In another embodiment of the method of the invention, the ca([1) ions are added in whole or in part already at the beginning of the γ-Fe 00M synthesis. Other operations are as described above.

本発明に基りき製造した磁性酸化鉄は、公知方法で酸化
性ガス、例えば酸素又は空気で、12tJ〜4.5U℃
の温度で酸化させることができる。その都度の酸化温度
に依存して、酸化時間は10分〜6時間が有利であるこ
とが立証された。完全に酸化すると、コバルトフェライ
ト及びCo変性されたカンマ−酸化鉄(I[l)から組
成された粉末が生成づ−る。
The magnetic iron oxide produced according to the invention can be prepared in a known manner with an oxidizing gas such as oxygen or air at 12 tJ to 4.5 U°C.
It can be oxidized at a temperature of Depending on the respective oxidation temperature, oxidation times of 10 minutes to 6 hours have proven advantageous. Complete oxidation produces a powder composed of cobalt ferrite and Co-modified commer-iron oxide (I[l).

この場合、正確な構造式は表わすことができない、それ
というのもどれだけのコバル) ([1)イオンがガン
マ−酸化鉄(III)相の格子内に溶解しかつ埋込まれ
ているかを確実に規定することはできないからである。
In this case, the exact structural formula cannot be expressed because how much cobal? This is because it cannot be specified.

極く部分的酸化の際には、第3の相としてなおコバルト
変性された磁鉄鉱が生じる。
In the case of only partial oxidation, cobalt-modified magnetite still forms as a third phase.

更に、本発明に基づいて製造した磁性酸化鉄は、その磁
気特性、例えば比磁化を改善するため又は結晶度を高め
るために自体公知方法で還元性雰囲気、例えば水素及び
/又は−酸化炭素中で、又は酸化鉄の存在下に分解する
有機物質を用いて後処理することができる。金属相−へ
の還元を回避するために、同時に水蒸気が存在するのが
有利である。
Furthermore, the magnetic iron oxide produced according to the invention can be treated in a manner known per se in a reducing atmosphere, for example hydrogen and/or carbon oxide, in order to improve its magnetic properties, for example the specific magnetization or to increase the crystallinity. or can be post-treated with organic substances that decompose in the presence of iron oxide. In order to avoid reduction to the metallic phase, it is advantageous for water vapor to be present at the same time.

該後処理は一般に250〜600℃で10分〜2時間で
実施する。
The post-treatment is generally carried out at 250-600°C for 10 minutes to 2 hours.

、更に、本発明による磁性酸化鉄は特に出発物質からコ
バルト含有鉄粒子を製造するために適当であり、該鉄粒
子は同様に磁気記録担体な製造する際の磁性材料として
使用1−ることかできる。
Furthermore, the magnetic iron oxide according to the invention is particularly suitable for producing cobalt-containing iron particles from starting materials, which iron particles can also be used as magnetic material in the production of magnetic record carriers. can.

この場合、金属粒子の製造は自体公知方法で行なう。こ
の場合には、安定化の公知方法、特に例えばドイツ連邦
共和国特許出願公開第1907691号明細書に基つ<
 S、(II)イオン、ドイツ連邦共和国特許出願公開
第2434. (J58号及び同第2434096号明
細書に基り(アルカリ土類金属イオン、ドイツ連邦共和
国特許出願公開第2646348号明細書に基づ(燐酸
塩イオンを用いた、ドイツ連邦共和国特許出願公開第3
228669号明細書に基づき無機及び有機物質を使用
したかつ特開昭52−121799号公報及び特開昭5
2−153198号公報に基つき珪酸塩/5i02を用
いた形状安定化法を、発火性金属粒子の不動態化におけ
ると同様に、技術水準から公知であると同じ方法で採用
することができる。
In this case, the metal particles are produced by a method known per se. In this case, known methods of stabilization can be used, in particular for example according to German Patent Application No. 1907691.
S, (II) Ion, German Patent Application No. 2434. J58 and 2434096 (based on alkaline earth metal ions, based on German Published Patent Application No. 2646348 (based on phosphate ions, German Patent Application No. 3)
Using inorganic and organic substances based on the specification of No. 228669 and JP-A-52-121799 and JP-A-5
The shape stabilization method with silicate/5i02 according to JP 2-153198 can be employed in the same manner as is known from the state of the art as in the passivation of pyrophoric metal particles.

最後にまた言及すれば、本発明に基づいて製造した等方
性の磁性酸化鉄は印刷インキ顔料として使用するため又
は磁性トナーを製造するためにも適当である。
Last but not least, the isotropic magnetic iron oxides produced according to the invention are also suitable for use as printing ink pigments or for producing magnetic toners.

本発明に基づき製造したコバルト含有の等方性の磁性酸
化鉄の重要な使用目的は、磁気記録担体を製造する際に
磁性材料として使用することである。該酸化鉄を用いる
と、保磁力及び切換酸分布によって影響される記録特性
を驚異的に有利に変えることができる。この3つの直交
方向の全てにおける比較的高い残留磁気を用いると、画
像密度を高めるためかつ高い周波数を記憶させるために
有効な垂直成分による記録の利点を利用すべきであるよ
うな磁気記録担体を製造する際に特に有利に使用するこ
とができる。
An important use of the cobalt-containing isotropic magnetic iron oxide produced according to the invention is as a magnetic material in the production of magnetic recording carriers. Using the iron oxide, recording properties influenced by coercivity and switching acid distribution can be altered surprisingly advantageously. This relatively high remanence in all three orthogonal directions makes it possible to create magnetic record carriers that should take advantage of recording with an effective perpendicular component to increase image density and to store high frequencies. It can be used particularly advantageously in manufacturing.

記録担体の製造は自体公知方法で行なう。このためには
、磁性材料を重合体結合剤中に分散させる。結合剤とし
ては、この目的のために公知の化合物、例えばポリビニ
ル誘導体、ポリウレタン、ポリエステルの単及び共重合
体及び同種のものが適当である。結合剤は、場合により
別の添加物を含有することができる、適当な有機溶剤中
の溶液で使用する。該磁性層を硬質又は可撓性支持体例
えばプレート、シート及び厚紙に施ず。
The record carrier is manufactured by methods known per se. For this purpose, the magnetic material is dispersed in a polymeric binder. Suitable binders are the compounds known for this purpose, such as polyvinyl derivatives, polyurethanes, mono- and copolymers of polyesters and the like. The binder is used in solution in a suitable organic solvent, which may optionally contain further additives. The magnetic layer is applied to rigid or flexible supports such as plates, sheets and cardboard.

実施例 次に、本発明を実施例により公知技術水準に基つく実験
に比較して説明する。記載のCo([)又はFe([)
含有率は全化合物に対して重量俸で示す。
EXAMPLES Next, the present invention will be explained by examples in comparison with experiments based on the state of the art. Co([) or Fe([) as described
The content is expressed in terms of weight relative to all compounds.

粉末試料の侮気値は160kA/mの磁界で振動マグネ
トメータで又はパルス磁化器内で前礎化後に振動マグネ
トメートで測定した。[kA/m ]で測定した保磁力
Hの値は、酸化物の場合にはρ= 1 、2 f/lr
A及び金属顔料の場合にはρ=1.6ψdの充填密度で
粉末測定したものである。比残留磁気(Mr/ρ)及び
飽和値(Mm/ρ)は夫々〔nTrr? )で示されて
いる。テープの飽和磁化及び残留磁気は(mT :lで
示されている。
The light value of the powder samples was determined with a vibrating magnetometer in a magnetic field of 160 kA/m or with a vibrating magnetometer after pre-forming in a pulse magnetizer. The value of coercive force H measured in [kA/m] is ρ = 1, 2 f/lr in the case of oxides.
In the case of A and metal pigments, powder measurements were made at a packing density of ρ=1.6ψd. The specific remanence (Mr/ρ) and saturation value (Mm/ρ) are respectively [nTrr? ). The saturation magnetization and remanence of the tape are expressed as (mT:l).

切換酸分布(SFD 、 switching fie
ld distributjon)は、一般r磁化可能
な個々の粒子から成る記憶層の磁気単一性の1つの尺度
である。これは個々粒子が切換わる磁界領域を生じる。
Switching acid distribution (SFD)
ld distribution) is one measure of the magnetic unity of a storage layer consisting of generally magnetizable individual grains. This creates a magnetic field region in which individual particles switch.

磁気記録層の切換職分布は短波長又は高波長の記憶の際
には決定的な役割を演じる。狭いSFDは逆の磁化した
領域間の移行長さを減少させかつ従って高い記録密度を
可能にする。
The switching distribution of the magnetic recording layer plays a decisive role in the storage of short or high wavelengths. A narrow SFD reduces the transition length between oppositely magnetized regions and thus allows for higher recording densities.

SFDの測定値としては、(1−8)を使用する。(1-8) is used as the SFD measurement value.

(1−8)は式: dM/dH=MR/((1−S*)
・He)眞基づきM−0(すなわちHe)でヒステリシ
ス曲線の急傾斜から得られる〔ウィリアムス(M、 L
 、Wi l l −iams)、コムストック(R,
L、Com5tock )著、“AIP Conf、 
Proc、 ” 5.738(197]、))。
(1-8) is the formula: dM/dH=MR/((1-S*)
・He) Based on the steep slope of the hysteresis curve at M-0 (i.e. He) [Williams (M, L
, Will-iams), Comstock (R,
L, Com5tock), “AIP Conf,
Proc, ” 5.738 (197], )).

比較実験l 還流冷却器及び攪拌機を有する2tのガラス容器に、水
750 rnl、中のオレンジ色のγ−Fe00H,5
1J ?を攪拌しかつ容器を窒素で掃気することにより
不活性化しながら20℃で装入した。激しく攪拌しなが
ら、Co(n) i7.7.rを1モルのCaCA2溶
液の形で滴加した。次いで、水2501nl中に溶かし
たNaOH40fを添加した。次いで、該反応混合物を
攪拌しながら30分間以内で95℃に加熱しかるこの温
度で10分間保持した。緑色調への僅かな変色が観察さ
れたてすぎない。明確なCod、Fe 04形成は確認
することができなかった。
Comparative Experiment I In a 2 t glass vessel with reflux condenser and stirrer, 750 rnl of water, orange γ-Fe00H,5
1J? The mixture was charged at 20° C. with stirring and inertization by purging the vessel with nitrogen. While stirring vigorously, add Co(n) i7.7. r was added dropwise in the form of a 1 molar CaCA2 solution. Then 40f of NaOH dissolved in 2501 nl of water was added. The reaction mixture was then heated to 95° C. within 30 minutes with stirring and kept at this temperature for 10 minutes. A slight discoloration to a green tone was observed. Clear formation of Cod and Fe 04 could not be confirmed.

比較実験2 実施例1に記載した6tのガラス容器内で、γ−FeO
OH150f及びNaOH1,2OS’を水3t、10
0 m12中に懸濁ないしは溶解させた。次いで、攪拌
しながら1時間以内で84℃に加熱した。既に加熱中に
、容器を窒素で掃気して、不活性ガス雰囲気を形成させ
、該雰囲気を後続工程でも維持した。84℃の温度が達
成された後、FeCl2 53.4 V及びCoCt2
153.4 fを両者とも水金部で500mt中に溶か
して徐々に6時間以内で84℃のγ−FeOOH懸濁液
に滴加した。1時間毎に試料を取出しかつ磁気的に調査
した。測定値は第1表に示す。
Comparative Experiment 2 In the 6t glass container described in Example 1, γ-FeO
OH150f and NaOH1,2OS' in water 3t, 10
It was suspended or dissolved in 0 ml of water. It was then heated to 84° C. within 1 hour while stirring. Already during heating, the vessel was purged with nitrogen to form an inert gas atmosphere, which was maintained in the subsequent steps. After a temperature of 84 °C was achieved, FeCl2 53.4 V and CoCt2
153.4 f, both dissolved in 500 mt of water, were gradually added dropwise within 6 hours to the γ-FeOOH suspension at 84°C. Samples were removed every hour and examined magnetically. The measured values are shown in Table 1.

第1表 1 1 30.1 7 1 0.94 2 2 3tJ、4 7 ]、0.933 3 30.
4 7 1 U、95 4 4 31.1 7 1 U、92 5 5 29.7 7 1 LJ、946 6 31.
3 7 1 0.96 比較実験3 容積]、Lの加熱及び攪拌可能なガラス容器内で、γ−
FeOOH100?を水280 yd及びNH4OH(
25%)16〇−中に懸濁させかつ窒素で不活性化しか
つ攪拌しながら90℃に加熱した6次いで、Fe([)
 32 tを90℃に予熱したF e Ct2溶液の形
で加熱可能な滴下ロートから2分間以内で装入した。該
反応混合物は瞬間的に黒色に変色した、すなわちγ−F
eOOH+Fe(OH)2 →Fe3O4+ 2 H2
Oに基づ(Fe3O4形成はβ−FeOOHのために記
載と同様に急速に開始する。
Table 1 1 1 30.1 7 1 0.94 2 2 3tJ, 4 7 ], 0.933 3 30.
4 7 1 U, 95 4 4 31.1 7 1 U, 92 5 5 29.7 7 1 LJ, 946 6 31.
3 7 1 0.96 Comparative Experiment 3 Volume], in a glass container that can be heated and stirred, γ-
FeOOH100? 280 yd of water and NH4OH (
25%) 160-6, inertized with nitrogen and heated to 90°C with stirring.
32 t was charged within 2 minutes from the heatable addition funnel in the form of a F e Ct2 solution preheated to 90°C. The reaction mixture instantly turned black, i.e. γ-F
eOOH+Fe(OH)2 →Fe3O4+ 2 H2
Based on O (Fe3O4 formation starts rapidly as described for β-FeOOH.

F e’c t2溶液の添加後、5分、15分及び30
分間後に中間試料を取出し、1時間後加熱を停止しかつ
反応混合物を22℃に冷却した。該磁鉄鉱の磁気特性及
び滴定法で測定したF、e(n)含有率を第2表に示す
5 minutes, 15 minutes and 30 minutes after addition of Fe'ct2 solution
After a minute, an intermediate sample was removed, and after 1 hour heating was stopped and the reaction mixture was cooled to 22°C. Table 2 shows the magnetic properties of the magnetite and the F, e(n) content measured by titration.

第2表 1 5 12.6 83 250.82 15.42 
15 12.2 80 23 0.81 14.23 
30 12.3 79 23 U、87 14.54 
最終生成物 12.4 82 24 0.82 16.
0実施例1 試料1 他の装備は比較実験lの2を容積と同じである6tガラ
ス容器内で、オレンジ色のγ−Fe00H粉末150 
tを攪拌しながら水225〇−中に懸濁させかつ該容器
な望素流で不活性化した。次いで、室温でまずFe(I
I) 37.8 t (1モルのFeCt2%液677
−液相77、次いでlO分後Co(II) 13.3 
f (1モルのCo Ct2溶液225−に相当)を加
えた。次いで更に攪拌しながら、゛水750−に溶かし
たNaOH1202をio分間以内で装入した。引続き
、30分間以内で該反応混合物を沸点まで加熱しかつ還
流で1時間保持した。22℃に冷却した後、濾過しかつ
r液が中性になるまで水で洗浄した。次いで、洗浄した
フィルタケーキを低い窒素分圧下(約50mmHg)で
真空中50℃で乾燥した。
Table 2 1 5 12.6 83 250.82 15.42
15 12.2 80 23 0.81 14.23
30 12.3 79 23 U, 87 14.54
Final product 12.4 82 24 0.82 16.
0 Example 1 Sample 1 The other equipment was 150 ml of orange γ-Fe00H powder in a 6 t glass container with the same volume as 2 of Comparative Experiment 1.
The mixture was suspended in 225 ml of water with stirring and inactivated with a stream of water. Then, first Fe(I
I) 37.8 t (1 mol of FeCt 2% solution 677
- liquid phase 77 then after 10 min Co(II) 13.3
f (equivalent to 1 mol of Co Ct2 solution 225-) was added. Then, with further stirring, 1202 ml of NaOH dissolved in 750 ml of water was charged within io minutes. The reaction mixture was subsequently heated to the boiling point within 30 minutes and kept at reflux for 1 hour. After cooling to 22°C, it was filtered and washed with water until the liquid was neutral. The washed filter cake was then dried in vacuo at 50° C. under low nitrogen partial pressure (approximately 50 mm Hg).

試料2 試料lと同様に操作したが、但しFe(If) 25.
21を1モルのFeC42溶液の形でかつC0(II)
 z6.6s’1モルのCoCt2溶液の形で使用した
Sample 2 The same procedure as Sample 1 was performed, except that Fe(If) 25.
21 in the form of a 1 molar FeC42 solution and C0(II)
z6.6s' was used in the form of a 1 molar CoCt2 solution.

試料3 試料lにおけると同様に操作したが、但しFe(11)
18.9 fを1モルのF e Ct2溶液の形でかつ
Co(II)33.29を1モルのCo Ct2溶液の
形で使用した。
Sample 3 The same procedure as in sample 1 was performed, except that Fe(11)
18.9 f in the form of a 1 molar F e Ct2 solution and 33.29 f of Co(II) in the form of a 1 molar Co Ct2 solution were used.

試料4 試料1におけると同様に操作したが、pe(II)12
.6 rを1モルのF e C12溶液の形でかつC,
(II)39.9 fを1モルのCo C12溶液の形
で使用した。
Sample 4 The same procedure as in sample 1 was performed, but pe(II)12
.. 6 r in the form of a 1 molar F e C12 solution and C,
(II) 39.9 f was used in the form of a 1 molar Co C12 solution.

該試料1〜4の磁気特性釜ひにその組成は第3表に示す
The magnetic properties and compositions of Samples 1 to 4 are shown in Table 3.

比較実験4 実施例1の試料1におけると同様に操作したが、但しF
e(II)イオンの添加を行なわなかった。そのために
Co(11) 53.29を1モルのCo Ct2溶液
の形で使用した。該試料は実施例1の試料1〜4とは異
なり還流で4時間保持した、それというのも一般に急速
に起る懸濁液の黒色化が極く遅延してかつ極く僅かに生
じたにすぎないからである。最終生成物は暗褐色であり
かつ大きな割合で黄色の粒子を含有していた。X線回析
分析では、初期のγ−Fe00H(オレンジ色)が一部
分α−Fe00H(黄色)に転化していることが判明し
た。磁性酸化物は極めて僅かに生成していたにすぎなか
った。従って、この方法ではCoO,Fe2O4は注目
すべきほどに製造されなかった。この結果は第3表に示
ず。
Comparative Experiment 4 The same operation as in Sample 1 of Example 1 was carried out, except that F
No addition of e(II) ions was performed. For this purpose Co(11) 53.29 was used in the form of a 1 molar Co Ct2 solution. This sample, unlike Samples 1-4 of Example 1, was held at reflux for 4 hours, since the blackening of the suspension, which generally occurs rapidly, was delayed and occurred only slightly. This is because it is not too much. The final product was dark brown and contained a large proportion of yellow particles. X-ray diffraction analysis revealed that the initial γ-Fe00H (orange color) was partially converted to α-Fe00H (yellow color). Only a very small amount of magnetic oxide was produced. Therefore, CoO and Fe2O4 were not produced to a remarkable extent by this method. This result is not shown in Table 3.

第3表 実施例1 1 51 37 0.77 6.8 0.2
82 88 38 0.6613.I O,52390
300,6716,U (1,64実施例2 他の装備は実施例1の装置と同じである5tのガラス容
器に、FeCl2 2.2モル30.9%のFeC/4
溶液の形でかつ水2334 mlを20℃で窒素雰囲気
(200Nt/h )下に装入した。次いで、激しく混
合しながら(450rpm )、NaOH2,73モル
を5分間以内で加えかつ次いでなお10分間攪拌した。
Table 3 Example 1 1 51 37 0.77 6.8 0.2
82 88 38 0.6613. IO, 52390
300,6716,U (1,64 Example 2 The other equipment is the same as the apparatus of Example 1. In a 5 ton glass container, 2.2 moles of FeCl2 30.9% FeC/4
2334 ml of water in the form of a solution and at 20° C. were introduced under a nitrogen atmosphere (200 Nt/h). Then, with vigorous mixing (450 rpm), 2.73 mol of NaOH were added within 5 minutes and stirring was continued for 10 minutes.

次いで窒素200 Nt/hの代りに空気400 Nt
/hを懸濁液に貫流させた。170分間後、γ−FeO
OH芽晶形成は終了した。該懸濁液のpHは4未満であ
りかつ次いで空気導入を開始しかつ新たにNz 200
 NL/hで反応混合物を不活性化した。窒素導入の開
始10分間後、15%のNaOH水溶液でpl(値を1
2に調整した。この際なお反応しなかったFe(II)
’(初期に装入した量の38%)がFe(OH)zとし
て析出した。次いで、該懸濁を105分間以内で80℃
に加熱した。この温度が達成されてから10分間後(試
料2/IA)、1時間後(試料2/IB)及び3時間後
(試料2/le)、中間試料を取出した。80℃で計3
時間後に、加熱を止めかつ容器内容物を22℃に冷却し
た(試料2/ID、)該懸濁液を濾過し、水で洗浄しか
つ洗浄したフィルタケーキを真空乾燥棚中50℃で乾燥
した。得られたFe3O4試料2./IA −27ID
の粉末特性は第4表に示す。
Then, 400 Nt/h of air was replaced with 200 Nt/h of nitrogen.
/h was allowed to flow through the suspension. After 170 minutes, γ-FeO
OH sprout formation was completed. The pH of the suspension was below 4 and then the introduction of air was started and a new Nz 200
The reaction mixture was inerted with NL/h. 10 minutes after the start of nitrogen introduction, pl (value 1
Adjusted to 2. Fe(II) that did not react at this time
' (38% of the initially charged amount) was precipitated as Fe(OH)z. The suspension was then heated to 80°C for no more than 105 minutes.
heated to. Intermediate samples were taken 10 minutes (sample 2/IA), 1 hour (sample 2/IB) and 3 hours (sample 2/le) after this temperature was achieved. Total 3 at 80℃
After an hour, the heating was stopped and the container contents were cooled to 22°C (sample 2/ID). The suspension was filtered, washed with water and the washed filter cake was dried at 50°C in a vacuum drying cabinet. . Obtained Fe3O4 sample 2. /IA-27ID
The powder properties of are shown in Table 4.

試料2/2A〜2/2D 実施例2/1におけると同じ装置 以下の点を変更して2/lと同様に操作:装入: 3U
、9%のF e Ct2溶液の形でFeCl2273.
52及び水2347−0更に、γ−FeO01(芽晶形
成の終了後に、CoC62・6HzO(水1OOrnl
中に溶解)15.741を加えた。この結果は第4表に
示す。
Samples 2/2A to 2/2D Same equipment as in Example 2/1, but operated in the same manner as 2/1 with the following changes: Charge: 3U
, FeCl2273. in the form of a 9% F e Ct2 solution.
52 and water 2347-0 Furthermore, after the completion of γ-FeO01 (bud formation), CoC62.6HzO (water 1OOrnl
15.741 (dissolved in the solution) was added. The results are shown in Table 4.

実施例2/1におけると同じ装置 以下の点を変更して2/1と同様に操作:装入: 30
.8%のF e Ct2溶液の形でFeC/4 258
 f及び水2356 m。γ−FeOOH芽晶形成の終
了後に、更にCoC42・6H20(水100 ml中
に溶解) 31.5 fを加えた。結果は第4表に示す
Same apparatus as in Example 2/1. Operated in the same manner as in Example 2/1 with the following changes: Charge: 30
.. FeC/4 258 in the form of 8% F e Ct2 solution
f and water 2356 m. After completion of γ-FeOOH sprout formation, an additional 31.5 f of CoC42.6H20 (dissolved in 100 ml of water) was added. The results are shown in Table 4.

試料2/4A〜2/4D 実施例2/1におけると同じ装置 装入: 30.8%のF e Ct2溶液の形でFeC
l2 25Bft及び水2383 m10r−FeOO
H芽晶形成の終了後に、更にCoCA2・6HzO(水
100−中に溶解)631を加えた。結果は第4表に示
す。
Samples 2/4A to 2/4D Same equipment charge as in Example 2/1: FeC in the form of 30.8% FeCt2 solution
l2 25Bft and water 2383 m10r-FeOO
After completion of H sprout formation, 631 of CoCA2.6HzO (dissolved in 100% water) was further added. The results are shown in Table 4.

試料215 実施例V1におけると同じ装置 以下の点を変更して実施例2/lにおけると同様に操作
: 装入: 30.8%のF e Ct2溶液の形でFeC
74245を及び水2412−0芽晶形成の終了後、更
にCo Ct2・□H20(水200−中に溶解) 9
4.79を加えた。中間試料を取出した。結果は第4表
に示す。
Sample 215 Same apparatus as in Example V1 Proceed as in Example 2/l with the following changes: Charge: FeC in the form of a 30.8% FeCt2 solution
74245 and water 2412-0 after completion of sprout crystal formation, further Co Ct2・□H20 (dissolved in water 200-) 9
4.79 was added. An intermediate sample was taken out. The results are shown in Table 4.

試料2/6 実施例Vlにおけると同じ装置 以下の点を変更して実施例2/lにおけると同様に操作
: 装入: 30.8%のF e C12溶液の形でFeC
t2234f及び水1439−0芽晶形成の終了後、更
にCo Ct2−612’O(水20〇−中に溶解) 
126.3 fを加えた。
Sample 2/6 Same apparatus as in Example Vl Proceed as in Example 2/l with the following changes: Charge: FeC in the form of a 30.8% FeC12 solution
After completion of t2234f and water 1439-0 sprout formation, further Co Ct2-612'O (dissolved in water 200-)
126.3 f was added.

中間試料は取出さなかった。結果は第4表に示す。No intermediate samples were taken. The results are shown in Table 4.

試料V7 実施例2/]におけると同じ装置 以下の点を変更して実施例2/lと同様に操作:装入:
 30.8%のF e C4溶液の形でFeC4223
f及び水2479rn1.o芽晶形成の終了後、更にC
oCA2・6H20(水20〇−中に溶解) 157.
91を加えた。
Sample V7 Same apparatus as in Example 2/] Operated in the same manner as in Example 2/l with the following changes: Charge:
FeC4223 in the form of 30.8% FeC4 solution
f and water 2479rn1. o After the completion of bud formation, further C
oCA2・6H20 (dissolved in 200ml of water) 157.
91 was added.

中間試料は取出さなかった。結果は第4衣に示す。No intermediate samples were taken. The results are shown in Figure 4.

試料2/8 試料2/4Dと同様に操作、但し反応温度は60℃にす
ぎなかった。中間試料は取出さなかった。結果は第4表
に示す。
Sample 2/8 Operated as sample 2/4D, except that the reaction temperature was only 60°C. No intermediate samples were taken. The results are shown in Table 4.

試料2/9 試料2/4Dと同様に操作、但し反応温度は40℃にす
ぎなかった。中間試料は取出さなかった。結果は第4表
に示す。
Sample 2/9 Operated as sample 2/4D, except that the reaction temperature was only 40°C. No intermediate samples were taken. The results are shown in Table 4.

実施例3゛ 試料2/ID 、 2/2D 、 2/3D及び2/4
D夫々701を回転管型炉中100 Nt/hの空気流
内で350℃で30分間酸化した。得られた試料2/1
DOX〜2/4DOXの測定結果は夫々第4表に出発試
料の欄に示す。
Example 3 Sample 2/ID, 2/2D, 2/3D and 2/4
D701 was oxidized in a rotating tube furnace in an air flow of 100 Nt/h at 350° C. for 30 minutes. Obtained sample 2/1
The measurement results for DOX to 2/4DOX are shown in the starting sample column of Table 4, respectively.

実施例4 試料2/3D 80 fを、予め60℃の水を貫通させ
た50 Nt/hの水素流中で350℃で30分分間光
しかつ引続き同様に350℃で100 N4/hの空気
流中で30分間酸化させた。得られた試料2/3EOX
の測定結果は第4表に示す。
Example 4 Sample 2/3D 80 f was exposed for 30 minutes at 350° C. in a flow of 50 Nt/h of hydrogen previously passed through water at 60° C. and subsequently exposed to air at 100 N4/h also at 350° C. Oxidation was carried out for 30 minutes in flowing water. Obtained sample 2/3 EOX
The measurement results are shown in Table 4.

第4表(実IfA例2) 磁性粉末イ直2/IB 14
.1 93 34 0.742/Ic U 13.8 
94 34 0.722/ID 13.3 95 34
 0.742/2B 21.0 91 31 0.82
2/2CO,09120,393310,872/2D
 20.0 91 30 0.822/3B 32.7
 93 50 υ、602/3CO,1732,693
490,612/3D 31.9 91 49 U、5
72/3D Ox、 57.0 79 64 0.42
2/4B 50.9 89 50 0.642/4CU
、35 51.8 87 49 Ll、61V4D 5
2.6 86 49 0.63実施例5 実施例2に記載した5tのガラス容器に、FeCl22
79vを30.8チの溶液の形でかつ水2363 nに
を20℃で20ON4/hの窒素算囲気下に装入した。
Table 4 (Actual IfA example 2) Magnetic powder straight 2/IB 14
.. 1 93 34 0.742/Ic U 13.8
94 34 0.722/ID 13.3 95 34
0.742/2B 21.0 91 31 0.82
2/2CO, 09120, 393310, 872/2D
20.0 91 30 0.822/3B 32.7
93 50 υ, 602/3CO, 1732, 693
490,612/3D 31.9 91 49 U, 5
72/3D Ox, 57.0 79 64 0.42
2/4B 50.9 89 50 0.642/4CU
, 35 51.8 87 49 Ll, 61V4D 5
2.6 86 49 0.63 Example 5 FeCl22 was added to the 5t glass container described in Example 2.
79 V in the form of a solution of 30.8 g and 2363 N of water were charged at 20 DEG C. under a nitrogen atmosphere of 20 ON4/h.

これに水10Ll+++e中圧溶かしたCoC42・6
I(2039,4f を加えた。次し・で、激しく攪拌
しながら、Na0I+、 2.73モルを15.5%の
カセイソーダ水溶液の形で6分間以内で加え、引続き1
0分間1毘拌しかつ次いで窒素の代りに空気’100 
N4/hを導入した。11.tJ分間の反し時間後にコ
バルト含有のγ−F’ e OOI(芽晶が形成されて
おりかつp H直は4未満に低下した。次いで、空気の
代りに新たにN22(10NL/hを導入しかつ10分
間後に15%のNa01lでpl(Iiffiを12に
調整した。次いで、コバルトを含有したγ−FeOOH
及び新たに沈殿したFll(OH)2から成る懸濁液を
100分間内で80℃に加熱した。この温度が達成され
て10分間、1 u、¥間及び3時間後に、中間試料(
試料3/l 、3/2及び3/3)を取出した。80℃
で!13時間後、加熱を停止しかつ容器内容物を22℃
に冷却した。il”l過及び水で洗浄した後、湿ったフ
ィルタケーキな真空乾燥棚中50℃で乾燥させた(試料
3/4)。該試料の測定値は第5表に示す。
CoC42.6 dissolved in this with 10L+++e of water under medium pressure
Then, with vigorous stirring, 2.73 mol of Na0I+ in the form of a 15.5% aqueous solution of caustic soda was added within 6 minutes, followed by 1.
Stir for 1 minute and then replace nitrogen with air
N4/h was introduced. 11. After an incubation time of tJ minutes, cobalt-containing γ-F' e OOI (bud crystals were formed and the pH value decreased to less than 4.N22 (10 NL/h) was then newly introduced in place of air. And after 10 minutes, pl (Iiffi was adjusted to 12 with 15% Na01L. Then, cobalt-containing γ-FeOOH
and freshly precipitated Fl(OH)2 was heated to 80° C. within 100 minutes. After 10 min, 1 u, and 3 h after this temperature was achieved, the intermediate sample (
Samples 3/l, 3/2 and 3/3) were taken out. 80℃
in! After 13 hours, stop heating and bring the contents of the container to 22°C.
It was cooled to After filtration and washing with water, the moist filter cake was dried at 50° C. in a vacuum drying cabinet (sample 3/4). The measured values for the sample are given in Table 5.

次いで、試料3/470rを回転管型炉内で突気100
N4/hを導入しながら350℃で30分間内で酸化さ
せた(試料3/410x/l )。更に、同様圧して夫
々試料374 12.5 Fを回転炉内で空気5ONt
/hで第5表に記載した温度で30分間以内で酸化した
(試料3/410 x/2〜Ox/6 )。結果は同様
に第5表に示す。
Next, sample 3/470r was subjected to 100 gusts of air in a rotary tube furnace.
Oxidation was carried out within 30 minutes at 350° C. while introducing N4/h (sample 3/410×/l). Furthermore, each sample was heated to 5ONt of air in a rotary furnace under the same pressure.
/h for up to 30 minutes at the temperatures listed in Table 5 (sample 3/410 x/2 to Ox/6). The results are also shown in Table 5.

第5表 3/l 44.584490.61 3/2 42.991 52 0.61 (Coo23
Fe、、、、)O[Fe、o3]3/3 42.281
490.60 3/4 42.891520.62 実施例6 実施例2に記録した5tのガラス容器内で、FeC62
・4H20447,75f及び水から容量1500 m
lを有する溶液を製造した。20℃で攪拌しながら、N
aOH(水で同様に1500−の容量に溶解した)90
2を加えた。次いで、窒素の代りに20UNt/hの空
気流を懸濁液に導入した。2時間後、γ−Fe00H芽
晶形成は終了し、pH値は4未満に低下した。次いで、
30分間以内で40℃に加熱しかつ5.5の一定のpT
l値でγ−Fe00H成長をNa1l((、NaOH9
2,4fの水溶液1400 rnI!、)の添加により
開始させかつ3.75時間後に終了した。
Table 5 3/l 44.584490.61 3/2 42.991 52 0.61 (Coo23
Fe,,,,)O[Fe,o3]3/3 42.281
490.60 3/4 42.891520.62 Example 6 In the 5t glass container recorded in Example 2, FeC62
・Capacity 1500 m from 4H20447, 75f and water
A solution with 1 was prepared. While stirring at 20°C, N
aOH (also dissolved in water to a volume of 1500-90%)
Added 2. An air flow of 20 UNt/h was then introduced into the suspension instead of nitrogen. After 2 hours, γ-Fe00H sprout formation was completed and the pH value decreased to less than 4. Then,
heated to 40°C within 30 minutes and constant pT of 5.5
γ-Fe00H growth at l value Na1l((,NaOH9
Aqueous solution of 2,4f 1400 rnI! , ) and ended after 3.75 hours.

次いで、得られたr−FeOOH懸濁液3tに、窒素1
00N2/hで不活性化しながら25℃でFeCj2’
4H20152,6fをCoC62・6HzO33,1
5f (両者とも水で500 ml!の容量に溶解した
)を攪拌下に加えた。更に攪拌しながら、45分間で8
0 ℃に加熱し、次いで窒素流を50 Nt/hに抑制
しかっNnOH(水で容量500−に溶解した) 72
.51 yを加えた。次いで、該反応混合物を80℃で
1時間保持した。冷却後に濾過し、水で洗浄しかつ該フ
ィルタケーキを150℃で不活性ガス下に4時間で乾燥
させた(試料V1(Co Fe )0[Fe O3)。
Next, 1 ton of nitrogen was added to 3 t of the obtained r-FeOOH suspension.
FeCj2' at 25℃ while inactivating at 00N2/h.
4H20152,6f CoC62・6HzO33,1
5f (both dissolved in water to a volume of 500 ml!) were added under stirring. 8 in 45 minutes while stirring further.
NnOH (dissolved to a volume of 500 in water) was heated to 0 °C and then the nitrogen flow was reduced to 50 Nt/h.
.. Added 51 y. The reaction mixture was then held at 80°C for 1 hour. After cooling, it was filtered, washed with water and the filter cake was dried at 150° C. under inert gas for 4 hours (Sample V1 (Co Fe 2 ) 0 [Fe O 3 ).

測定結果は第6表に示015 085 23 ず。The measurement results are shown in Table 6.015 085 23 figure.

実施例7 試料4/4.77Fを回転プラストコ中250 ℃で3
0分間以内で空気100N4/hを用いて酸化した(試
料4/2)。測定結果は第6表に示す。
Example 7 Sample 4/4.77F was heated at 250 °C in a rotating Plastco.
Oxidation was carried out using 100 N4/h of air within 0 min (sample 4/2). The measurement results are shown in Table 6.

実施例8 組成(Co Fe )0[FeO3の試料4/l 74
.51i’015085 23 をドイツ連邦共和国特許出願公開第2646348号明
細書に基づいて2tのビーカブラス内で激しく混合しな
がら85%のH3PO4U、35 rnl及びシュウ酸
0.75 ii’を有する水1125−中に混入した。
Example 8 Composition (Co Fe ) 0 [Sample of FeO3 4/l 74
.. 51i'015085 23 in water 1125- with 85% H3PO4U, 35 rnl and 0.75 ii' oxalic acid with vigorous mixing in a 2 t beaker brass according to DE 26 46 348. It got mixed in.

該懸濁液を濾過しかつ乾燥させた。次いで、得られた材
料を回転管型炉内370℃でio時間以内で200 N
t/hの水素流内でコバルト含有鉄顔料に還元した(試
料4/4(発火性))。回転フラスコ中22℃で空気5
 N4/h及びN2100 Nl/hから成る混合物を
用いて発火性生成物4/4を18時間不動態化した後、
窒素を排出して空気2ONt/hを用いてなお30分間
更に不動態化した。
The suspension was filtered and dried. The resulting material was then heated to 200 N in a rotary tube furnace at 370° C. within io hours.
It was reduced to a cobalt-containing iron pigment in a hydrogen flow of t/h (sample 4/4 (pyrophoric)). Air 5 at 22°C in a rotating flask
After passivating the pyrophoric product 4/4 for 18 hours with a mixture consisting of N4/h and N2100 Nl/h,
The nitrogen was removed and passivation was continued for another 30 minutes using 2 ONt/h of air.

その後、該金属顔料は20℃で空気に接触させてもはや
自己発火性でなかった。測定結果は第6表に示1−8 第6表 4/2 68.3 77 60 0.66 <0.1 
発火性金属顔料実施例9 鋼球(直径2 mm ) 100部を充填した、充填容
積250谷量部を有1−るボールミル内に、夫々第7表
に記載した磁性酸化鉄 50部、シリコーン油0.05
部及び流動点く5℃を有する異性体のカルボン酸混合物
0.5部、K値61(テトラヒドロフラン中の1%の溶
液として測定)を有する、アジピン酸、ブタンジオール
−1,4及び4,4−ジシアネートジフェニルメタンか
ら成る市販のインシアネート不含のポリエステルウレタ
ン6.6部及びに値59(同様にテトラヒドロフラン中
の1%の溶液として測定)を有する塩化ビニル/マレイ
ン酸エチルエステル共重合体25部、並びに同じ部のテ
トラヒドロフラン及び1,4−ジオキサンから成る混合
物78部を装入した。この場合は、上記結合剤は前記溶
剤混合物中の溶液の形で装入した。3.5時間の分散時
間後に、磁性分散液を濾過しかつ引続き常用の塗布装置
で厚さ12μmのポリエチレンテレフタレートフィルム
に流展させ、乾燥通路内で乾燥させかつ引続き80’C
K加熱した多軸ロールカレンダで平滑処理した後に層厚
さ4.1μmが得られた。
Thereafter, the metal pigment was no longer self-igniting on contact with air at 20°C. The measurement results are shown in Table 6 1-8 Table 6 4/2 68.3 77 60 0.66 <0.1
Pyrophoric Metallic Pigment Example 9 A ball mill having a filling volume of 250 parts filled with 100 parts of steel balls (diameter 2 mm) was charged with 50 parts of magnetic iron oxide listed in Table 7 and silicone oil. 0.05
Adipic acid, butanediol-1,4 and 4,4 with a K value of 61 (measured as a 1% solution in tetrahydrofuran) 6.6 parts of a commercially available incyanate-free polyester urethane consisting of dicyanate diphenylmethane and 25 parts of a vinyl chloride/maleic acid ethyl ester copolymer having a value of 59 (also determined as a 1% solution in tetrahydrofuran) , and equal parts of tetrahydrofuran and 1,4-dioxane. In this case, the binder was introduced in the form of a solution in the solvent mixture. After a dispersion time of 3.5 hours, the magnetic dispersion was filtered and subsequently spread on a 12 μm thick polyethylene terephthalate film in a conventional coating device, dried in a drying channel and subsequently heated at 80°C.
A layer thickness of 4.1 μm was obtained after smoothing with a K-heated multi-roll calender.

該磁性層に関して測定した磁気特性は第7表に記載7表 実施例 磁性材料 Hc M r M r〔□A/m]
(mT) ’□ 810 9a 2/3D 31.6 158’ 0.68 U、
479b 2/3Dox 54.2 161 0.85
 0.239c 2/4D 48.2 152 0.8
7 0.549d2/4Dox 9U、5 165 U
、88 0.31特許出願人 バス7 ァクチェンゲゼ
ルシャフト代理人弁理士田代黒治 第1頁の続き @発明者 ラスッロ、マロズイ ド ロ イッ連邦共和国、6700.ルードヴイヒス ハーフェ
ンイシュナーシュトラーセ、32
The magnetic properties measured for the magnetic layer are listed in Table 7 Table 7 Example Magnetic material Hc Mr M r [□A/m]
(mT) '□ 810 9a 2/3D 31.6 158' 0.68 U,
479b 2/3Dox 54.2 161 0.85
0.239c 2/4D 48.2 152 0.8
7 0.549d2/4Dox 9U, 5 165U
, 88 0.31 Patent Applicant Bus 7 Patent Attorney Kuroji Tashiro, Patent Attorney, Continued from Page 1 @ Inventor Lasullo, Maroszy Federal Republic of Droit, 6700. Ludwigs Hafenischnerstrasse, 32

Claims (5)

【特許請求の範囲】[Claims] (1)式: %式%] 〔式中、x ハ0.08〜0.8の値を表わす〕で示さ
れるコバルト含有、等方性の磁性酸化鉄を製造する方法
において、γ−Fe00Hを水性分散液中でC,(II
)イオン及びFe(If)イオンと8よりも高いpHで
不活性ガス下に35℃と懸濁液の沸点との間の温度で常
圧で反応させることを特徴とする、コバルト含有、等方
性の磁性酸化鉄の製法。
(1) Formula: % Formula %] [In the formula, x represents a value of 0.08 to 0.8] In a method for producing cobalt-containing isotropic magnetic iron oxide, γ-Fe00H is C, (II
) ions and Fe(If) ions at a pH higher than 8 under an inert gas at normal pressure at a temperature between 35 °C and the boiling point of the suspension. Production method of magnetic iron oxide.
(2)コバルト不含のγ−F e OOHを水性懸濁液
中でco(II)イオン及びFe(U)イオンと8より
も高いpH値で不活性ガス下に35℃と懸濁液の沸点と
の間の温度で常圧で反応させる、特許請求の範囲第1項
記載の方法。
(2) Cobalt-free γ-F e OOH was mixed with co(II) ions and Fe(U) ions in an aqueous suspension at a pH value higher than 8 at 35 °C and the suspension under inert gas. 2. The method according to claim 1, wherein the reaction is carried out at a temperature between the boiling point and normal pressure.
(3)コバルト含有γ−FeOOHを水性懸濁液中でF
e(IDイオン及び場合により付加的にco(II)イ
オンと8よりも高いpi(値で不活性ガス下に35℃と
懸濁液の沸点との間の温度で常圧で反応させる、特許請
求の範囲第1項記載の方法。
(3) Cobalt-containing γ-FeOOH in an aqueous suspension
e(ID ions and optionally additionally co(II) ions) under an inert gas at a temperature between 35° C. and the boiling point of the suspension at atmospheric pressure with a pi (value of higher than 8), patent The method according to claim 1.
(4)新たに製造したコバルト不含のγ−FeOOHを
その塩含有製造懸濁液中でCo (If )イオン及び
Fe(II)イオンと8よりも高いpH値で不活性ガス
下に35℃と懸濁液の沸点との間の温度で常圧で反応さ
せる、特許請求の範囲第1項記載の方法。
(4) Freshly prepared cobalt-free γ-FeOOH was incubated with Co(If) ions and Fe(II) ions in its salt-containing prepared suspension at a pH value higher than 8 at 35 °C under inert gas. 2. The method according to claim 1, wherein the reaction is carried out at normal pressure at a temperature between and the boiling point of the suspension.
(5)新たに製造したコバルト含有γ−F’eOOHを
その塩含有製造懸濁液中でFe(If)イオン及び場合
により付加的にCo(1)イオンと8よりも高いpH値
で不活性ガス下に35℃と懸濁液の沸点との間の温度で
常圧で反応させる、特許請求の範囲第1項記載の方法。
(5) Inert the freshly produced cobalt-containing γ-F'eOOH in its salt-containing production suspension with Fe(If) ions and optionally additionally Co(1) ions at pH values higher than 8. 2. The process according to claim 1, wherein the reaction is carried out under gas at a temperature between 35 DEG C. and the boiling point of the suspension at normal pressure.
JP59264670A 1983-12-16 1984-12-17 Manufacture of cobalt-containing isotropic magnetic iron oxide Granted JPS60151228A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833345532 DE3345532A1 (en) 1983-12-16 1983-12-16 METHOD FOR PRODUCING COBALTIC, ISOTROPPER MAGNETIC IRON OXIDES
DE3345532.5 1983-12-16

Publications (2)

Publication Number Publication Date
JPS60151228A true JPS60151228A (en) 1985-08-09
JPH0567572B2 JPH0567572B2 (en) 1993-09-27

Family

ID=6217116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264670A Granted JPS60151228A (en) 1983-12-16 1984-12-17 Manufacture of cobalt-containing isotropic magnetic iron oxide

Country Status (3)

Country Link
EP (1) EP0146100B1 (en)
JP (1) JPS60151228A (en)
DE (2) DE3345532A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263407A (en) * 1989-04-04 1990-10-26 Showa Denko Kk Continuous manufacture of magnetic iron oxide powder for magnetic recording and device therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790376A (en) * 1971-10-27 1973-02-15 Ampex Cobalt doped magnetic iron oxide particles
DE2325925A1 (en) * 1973-05-22 1974-12-12 Bayer Ag Process for the preparation of acicular cobalt-containing ferrimagnetic iron oxides
DE2508155A1 (en) * 1974-02-25 1975-08-28 Montedison Spa Equiaxial magnetite powder prodn. - by two-stage pptn and oxidn of ferrous hydroxide

Also Published As

Publication number Publication date
DE3345532A1 (en) 1985-06-27
EP0146100A3 (en) 1987-06-03
EP0146100A2 (en) 1985-06-26
EP0146100B1 (en) 1988-07-13
JPH0567572B2 (en) 1993-09-27
DE3472727D1 (en) 1988-08-18

Similar Documents

Publication Publication Date Title
US5466306A (en) Spindle-shaped magnetic iron based alloy particles
US4178171A (en) Manufacture of acicular ferromagnetic iron particles
US3897354A (en) Cobalt-containing acicular ferrimagnetic iron oxide of improved remanence stability
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JP5711086B2 (en) Magnetic powder for magnetic recording, method for producing the same, and magnetic recording medium
US4650597A (en) Preparation of finely divided isotropic cobalt-containing ferrite powder
JPS60151228A (en) Manufacture of cobalt-containing isotropic magnetic iron oxide
US4437881A (en) Acicular ferromagnetic alloy particles and process for producing said particles
US4755315A (en) Preparation of cobalt-containing isotropic magnetic iron oxides
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
US4018882A (en) Manufacture of gamma-iron (III) oxide
US5047161A (en) Preparation of isometric cobalt- and titanium-containing magnetic iron oxides
JPS6197805A (en) Ferri magnetic particle and making thereof
US5989516A (en) Spindle-shaped geothite particles
JPH0517171B2 (en)
JP3512053B2 (en) Lepidocrocite particle powder for non-magnetic underlayer of magnetic recording medium, substrate of magnetic recording medium, and magnetic recording medium
JP2910813B2 (en) Nonmagnetic black-brown hydrated iron hydroxide particles, method for producing the same, and underlayer for magnetic recording media using the powder
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JPH0120201B2 (en)
JPH07126704A (en) Metal magnetic particle powder essentially consisting of iron and having spindle shape and its production
JPH06263449A (en) Non-magnetic blackish brown hydrated iron oxide particle powder, production thereof and substrate for magnetic recording medium using the powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS638224A (en) Production of ferro magnetic powder for magnetic recording
JPH0774081B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles