JPS60149173A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS60149173A
JPS60149173A JP480984A JP480984A JPS60149173A JP S60149173 A JPS60149173 A JP S60149173A JP 480984 A JP480984 A JP 480984A JP 480984 A JP480984 A JP 480984A JP S60149173 A JPS60149173 A JP S60149173A
Authority
JP
Japan
Prior art keywords
film
stress
adhered
layer
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP480984A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Mori
森 光廣
Naoyuki Matsuoka
直之 松岡
Atsushi Kurokawa
敦 黒川
Nobuo Kodera
小寺 信夫
Takahiro Kobashi
小橋 隆裕
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP480984A priority Critical patent/JPS60149173A/en
Publication of JPS60149173A publication Critical patent/JPS60149173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the stress in a film to be controlled to the neighborhood of zero with good reproducibility by a method wherein the first film showing the compression or tensile stress in a film is adhered on a compound semiconductor substrate, and next the second film showing the stress reverse to that in the first film is adhered. CONSTITUTION:An N type ion implanted layer 24 is formed in the GaAs semi- insulation substrate 21 by using a photo resist 22 and an SiO2 23 as a masking material. Next, the resist 22 and the SiO2 23 are removed, and thereafter W 25 is adhered by means of an electron beam vapor deposition device. At this time, the stress in the film in tensile stress. Then, W 26 is adhered by means of a sputter vapor deposition device. At this time, the stress in the film is compression stress. This manner enables the two layers of W 25 and 26 to be adhered at a low stress in the film. After adhesion of an SiO2 27, the W's 25 and 26 are processed into a gate electrode 28. An N<+> layer 29 is formed by Si ion implantation with the W's 25 and 26 and the SiO2 27 as a mask, thus making the electrode 28 and the layer 29 into the self-alignment type. This manner improves the gate electrode in heat resistance and causes no exfoliation even by annealing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、QaAsなど化合物半導体ショットキ障壁ゲ
ート電界効果トランジスタ(以下MBSFETと略す)
とそのショットキ電極形成法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a compound semiconductor Schottky barrier gate field effect transistor (hereinafter abbreviated as MBSFET) such as QaAs.
and its Schottky electrode formation method.

〔発明の背景〕[Background of the invention]

ゲート電極をマスクとしてn0層をイオン打込みによっ
て形成する自己整合型GaAsMESFETでは、ショ
ットキ電極に対して高耐熱性が要求される。第1図にそ
の製作工程の一例の概略を示す。
In a self-aligned GaAs MESFET in which the n0 layer is formed by ion implantation using the gate electrode as a mask, the Schottky electrode is required to have high heat resistance. FIG. 1 shows an outline of an example of the manufacturing process.

(11半絶縁性GaAs基板11にn層1”2としてS
iイオン打込み後、ゲート電極13を形成する(第1図
(11) 、 12R(7)ゲート成極13及U CV
D8 fOi膜1膜管4スクとしてn+層16をSiイ
オン打込みによって形成する(第1図(2))。(3)
キャップ材17として810*CVD膜又は5i−Nプ
ラズマCVD膜を被着して表面保護膜となしH2雰囲気
中でアニールする(第1図(3))。(4)ソース・ド
レインt4 (AuGe/Ni/Au)18 を形成り
、 てGaAsME8F’gTを完成する(第1図(4
))。
(11 Semi-insulating GaAs substrate 11 with n layer 1”2)
After i ion implantation, gate electrode 13 is formed (Fig. 1 (11), 12R (7) gate polarization 13 and U CV
D8 An n+ layer 16 is formed by Si ion implantation using one fOi film and four film tubes (FIG. 1(2)). (3)
An 810*CVD film or a 5i-N plasma CVD film is deposited as a cap material 17 to serve as a surface protection film, and annealed in an H2 atmosphere (FIG. 1 (3)). (4) Form source/drain t4 (AuGe/Ni/Au) 18 to complete GaAsME8F'gT (Fig. 1 (4)
)).

今この製造工程で必要とされる要件は (1)イオン打込み後のH2アニール(sooc近傍)
によってGaAs基板からはく離することがないこと。
The requirements required for this manufacturing process are (1) H2 annealing after ion implantation (near SOOC)
It must not peel off from the GaAs substrate due to

(2) ショットキ電極が熱処理によって電気的特性、
理想指数(n値)、ショットキ障壁高さくφ農)等が劣
化しないこと。
(2) The electrical properties of the Schottky electrode are improved by heat treatment.
The ideal index (n value), Schottky barrier height (φ), etc. should not deteriorate.

である。It is.

この熱処理による劣化を防ぐため、’rニーw(チタン
タングステン)シリサイド、W(タングステン)シリサ
イドの組成を最適化することによって膜内応力を減少さ
せる方法がある。(大西他″′超高速uaAsVL8I
を指向したWシリサイド・ゲートセルフアライメント技
術”電子通信学会研究資料ED82−107)この方法
で制御する場合、安定した二元スパッタ蒸着装置が必要
であシ、その組成制御の再現性が重要な問題であった。
In order to prevent deterioration due to this heat treatment, there is a method of reducing the stress in the film by optimizing the composition of titanium tungsten silicide and tungsten silicide. (Onishi et al.''Ultra high speed uaAsVL8I
"W silicide gate self-alignment technology aimed at Met.

〔発明の目的〕[Purpose of the invention]

本発明の目的は膜内応力の少ない高融点金属又は高融点
金属化合物をゲート電極に用いたQaA8MESFE’
l’の製作方法を提供することにある。
The object of the present invention is to produce a QaA8MESFE' in which a high melting point metal or a high melting point metal compound with low internal stress is used for the gate electrode.
The object of the present invention is to provide a method for manufacturing l'.

〔発明の概要〕 一般に金属薄膜を基板上に被層すると、膜自身が内部応
力を持つ。この膜内応力は基板のそシを薄膜の被着前後
で測定して次式からめる。
[Summary of the Invention] Generally, when a metal thin film is coated on a substrate, the film itself has internal stress. This internal stress in the film is calculated from the following equation by measuring the warp of the substrate before and after the thin film is applied.

ここで、σ;膜内応力 Es;基板のヤング率 D;基板厚さ r;基板の曲率半径 t;薄膜の膜厚 シ;ポアッソン比 である。Here, σ; intramembrane stress Es; Young's modulus of the substrate D; Substrate thickness r; Radius of curvature of the substrate t: Thin film thickness C; Poisson's ratio It is.

膜内応力は被着方法、例えばスパッタ蒸着膜、EB蒸着
膜、クラスタイオンビーム蒸着膜の相違によって異なる
。一般にEB蒸着膜は引張シ応力に、スパッタ膜は圧縮
応力が得られやすい。さらに被着条件、例えば基板温度
、被着時Ar圧、被着速度、被着時Ar圧等によって膜
内応力は変化する。Wのスパッタ膜については、ガラス
板上にスパッタ膜を被着し、膜内応力を検討した例とし
てはR,8,Wagner他の−TL1ngst6Hm
etallization for LSI appl
ications’J、vac、Sci、Techno
l、 11.582 (1974)がある。それによれ
ばAt圧、RFノ(ワ、基板/(イアスを変えることに
よって膜内応力を圧縮から引張シまで変えることができ
る。しかし膜内応力は上記条件に対して、応力上口近傍
で急激に変イヒするため、その再現性の良い制御は困難
であった。
The stress in the film differs depending on the deposition method, for example, sputter-deposited film, EB-deposited film, or cluster ion beam-deposited film. Generally, EB vapor deposited films tend to have tensile stress, and sputtered films tend to have compressive stress. Furthermore, the stress within the film changes depending on deposition conditions, such as substrate temperature, Ar pressure during deposition, deposition speed, Ar pressure during deposition, and the like. Regarding the sputtered film of W, an example in which the sputtered film was deposited on a glass plate and the stress in the film was investigated is as follows: -TL1ngst6Hm by R, 8, Wagner et al.
etallization for LSI appl
cations'J, vac, Sci, Techno
11.582 (1974). According to this, it is possible to change the stress in the film from compressive to tensile by changing the At pressure, RF pressure, substrate/earth. It has been difficult to control it with good reproducibility because the

そこで本方法はGaAsMEiSFE’l’ のゲート
電極形成にあたって()aA8基板上に安定した条件で
圧縮又は引張りの膜内応力を示す第1の膜を被着し、次
に第1の膜と反対の応力を示す第2の膜を被層して、全
体として所望の膜厚を得るとともに、膜内応力を再現性
良く上口近傍に制御することである。さらに三層以上の
多層膜を用いることも原理的に可能である。
Therefore, in forming the gate electrode of GaAsMEiSFE'l', the present method (1) deposits a first film exhibiting compressive or tensile internal stress on the aA8 substrate under stable conditions, and then deposits the first film exhibiting compressive or tensile internal stress on the aA8 substrate, and then deposits the first film exhibiting compressive or tensile internal stress on the aA8 substrate. The purpose is to coat the second film exhibiting stress to obtain a desired film thickness as a whole, and to control the stress within the film to be near the upper opening with good reproducibility. Furthermore, it is also possible in principle to use a multilayer film of three or more layers.

〔発明の実施列〕[Implementation sequence of the invention]

以下、本発明の実施例を図を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

[実施fill] 第2図はGaAsMESFETの製造工程を示して^る
[Implementation Fill] Figure 2 shows the manufacturing process of GaAs MESFET.

(1) クロム<cr)ドープしたGaA3半絶縁性基
板21にホトレジスト22をSiQ、23 をマスク材
として、n型不純物Siをドース量4X1012Crl
l−” %打込みエネルギ75KeVの条件で打込みイ
オン打込み層24を形成する(第2図(1))。
(1) Chromium<cr) doped GaA3 semi-insulating substrate 21 is coated with photoresist 22 of SiQ, 23 is used as a mask material, and n-type impurity Si is applied at a dose of 4X1012Crl.
The ion implantation layer 24 is formed under conditions of implantation energy of 75 KeV (FIG. 2(1)).

(2) ホトレジスト22 、8i0i 23 のマス
ク材を除去後、まずW25をEB蒸着装置で被着する(
第2図12))。膜厚200nmを基板温度300Cで
被着する。この時膜内応力はσ==3xlO’dyne
/(−の引張シ志力であった。次にW26ヲスパツク蒸
層装置で被層する。膜厚200 nmを基板温度250
Cでスパッタ中アルゴン圧28wTOrr被着する。こ
の時膜内応力はσ=3X” ” dYne/crl の
圧縮応力であった。全体厚さ4 Q Q nmの二層W
25.26を低い膜内応力で被着することができる。一
般に高融点金属薄膜形成にEB蒸着を前いれば、安定し
て引張り応力が得られ、スパッタ蒸着を用いれば圧縮応
力が得られやすい。この性質を利用すればW以外のTa
等の高融点金属も膜内応力の小さい安定した膜を得るこ
とができる。
(2) After removing the photoresists 22 and 8i0i 23 mask materials, first deposit W25 using an EB evaporator (
Figure 2 12)). A film thickness of 200 nm is deposited at a substrate temperature of 300C. At this time, the stress in the film is σ==3xlO'dyne
The tensile force was /(-.Next, the film was coated with a W26 spacing evaporator.The film thickness was 200 nm and the substrate temperature was 250 nm.
The film was deposited using C at an argon pressure of 28 wTOrr during sputtering. At this time, the stress in the film was a compressive stress of σ=3X'' dYne/crl. Two layers W with total thickness 4 Q Q nm
25 and 26 can be deposited with low intra-film stress. Generally, if EB evaporation is used before forming a high melting point metal thin film, tensile stress can be stably obtained, and if sputter evaporation is used, compressive stress can easily be obtained. Using this property, Ta other than W
A stable film with low internal stress can also be obtained using high melting point metals such as.

(31SiO*27 を300nm被着後通常ノホトリ
ソグラフィー技術を用いてゲート電極28に加工する(
第2図(3))。
(After depositing 31SiO*27 to a thickness of 300 nm, it is processed into the gate electrode 28 using normal photolithography technology (
Figure 2 (3)).

(4)W25.26及びS10*27 をマスク材とし
て、Siをイオン打込みしてn9層29を形成し、ゲー
ト電極28とn+層29を自己整合型にする。この時所
望の領域以外はホトレジスト30を用いてBiイオンが
打込まれないようにしておく(第2図(4))。
(4) Using W25.26 and S10*27 as mask materials, Si is ion-implanted to form the n9 layer 29, making the gate electrode 28 and the n+ layer 29 self-aligned. At this time, a photoresist 30 is used to prevent Bi ions from being implanted in areas other than the desired areas (FIG. 2 (4)).

(5) ホトレジスト30 、5j0227 を除去後
、H2雰囲気で80(1,2・0分間アニールしnノー
及びn7層の活性化を行なう。この時GaASの熱分解
を防ぐため、あらかじめキャップ拐axとt、csi−
NプラズマCVD膜、8102CVD膜を被着しておく
(第2図(5))。
(5) After removing the photoresists 30 and 5j0227, annealing is performed in an H2 atmosphere for 80 minutes (1, 2.0 minutes) to activate the n-no and n7 layers. At this time, in order to prevent thermal decomposition of GaAS, remove the cap and ax beforehand. t, csi-
An N plasma CVD film and an 8102CVD film are deposited (FIG. 2 (5)).

(6)最後に通常のリフトオフ技術を用いてソース・ド
レイン電極32をAuGe/N i/Au 三層膜によ
シ形成する(第2図(6))。
(6) Finally, source/drain electrodes 32 are formed using a three-layer film of AuGe/Ni/Au using a normal lift-off technique (FIG. 2 (6)).

なお、本発明によればシリサイドは抵抗がρ=7130
μΩ1 と高く、ゲート抵抗が大きくなシ、高速変調が
不利となっていたが、Wではρ=20μΩ−m程度で変
調に有利である。
According to the present invention, the resistance of silicide is ρ=7130.
W has a high gate resistance of μΩ1, which is disadvantageous for high-speed modulation, but W has a value of about 20 μΩ−m, which is advantageous for modulation.

このようにして作製したQaAsFETの特性は、ソー
ス・ドレイン間電圧V8D=2v%グートノ(イアス0
■の条件でソース・ドレイン間電流I 4g=34±4
mAが得られた。またゲート幅1μm当りIdg=0.
5μAの条件でピンチオフ電圧を測定したところ、V、
=−1,8±0.1■ を得た。また相互コンダクタ7
スもgm=100〜125m5/+m という良好な結
果を得た。
The characteristics of the QaAsFET manufactured in this way are as follows: source-drain voltage V8D=2v%
Source-drain current I 4g = 34±4 under the conditions of ■
mA was obtained. Also, Idg per 1 μm of gate width is 0.
When the pinch-off voltage was measured under the condition of 5 μA, V,
=-1.8±0.1■ was obtained. Also, mutual conductor 7
Good results were obtained with gm=100 to 125 m5/+m.

[実施例2] 実施例1はEB蒸着膜とスパッタ蒸着膜の二層構造を用
いたが、スパッタ蒸着膜のみを用いても可能である。半
絶縁性GaAS基板にスノ(ツタ中のアルゴン圧14m
T o r rの条件でタングステン(VV)シリサイ
ドを200 nm被層する。膜内応力は圧縮応力でσ=
2×IO’d)’ne/iであった。次に第2層として
アルゴン圧24II111TOrrの条件でWシリサイ
ドを20011m被着する。(’=−2X 10’ d
yne/cydの引張シ応力であった。この膜全体とし
ては極めて応力が小さく、ゲート電極の耐熱性の向上が
みられ、80(I’のHaアニールによっても剥離は起
こらなかった。
[Example 2] Although Example 1 used a two-layer structure of an EB vapor-deposited film and a sputter-deposited film, it is also possible to use only a sputter-deposited film. Snow on a semi-insulating GaAS substrate (argon pressure in ivy 14 m)
Tungsten (VV) silicide is coated to a thickness of 200 nm under conditions of T or r. The stress in the film is compressive stress and σ=
2×IO'd)'ne/i. Next, as a second layer, 20011 m of W silicide is deposited under an argon pressure of 24 II 111 Torr. ('=-2X 10' d
The tensile stress was yne/cyd. The stress of this film as a whole was extremely small, the heat resistance of the gate electrode was improved, and no peeling occurred even after Ha annealing at 80 (I').

この他スパッタ中に基板バイアスを印加することによっ
ても膜内応力の制御ができる。この方法との組合わせに
よっても膜内応力の低減は可能であった。
In addition, the stress in the film can also be controlled by applying a substrate bias during sputtering. In combination with this method, it was also possible to reduce the stress within the film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート電極となる高融点金属あるいは
尚融点金属セラミックス(たとえば高融点金属シリサイ
ド)の膜内応力を小さくすることが再現性良くできる。
According to the present invention, it is possible to reduce the stress in the film of a high melting point metal or a high melting point metal ceramic (for example, a high melting point metal silicide) serving as a gate electrode with good reproducibility.

これによればGa As等化合物半導体MESFET製
作の除行なうイオン打込み不純物の活性化、即ちH2雰
囲気中での高温アニールによって剥離することがなくな
る。
This eliminates the possibility of peeling off due to the activation of ion-implanted impurities, that is, high-temperature annealing in an H2 atmosphere when manufacturing a compound semiconductor MESFET such as GaAs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、GaAsMESFE’l” の製造工程を示
す装置の断面図、第2図は応力を小さくするために二層
膜構造としたゲート電極を用いたGa AsMBSFE
Tの製造工程を示す装置の断面図である。 11.21・・・半絶縁性GaA3基板、12,24−
・・nj−125,26・・・高融点金属又は高融点金
属セラミックス、13.28・・・ゲート電極、17゜
31・・・キャップ材、18.32・・・ソース・ドレ
イ第 1 図 Y2 図 第1頁の続き @発明者 小橋 降格 国峙市刺 央研究所内 0発 明 者 高 橋 進 国分寺市刺央研究所内
Figure 1 is a cross-sectional view of a device showing the manufacturing process of GaAsMESFE'1'', and Figure 2 is a GaAsMBSFE using a gate electrode with a double-layer structure to reduce stress.
It is a sectional view of the apparatus showing the manufacturing process of T. 11.21...Semi-insulating GaA3 substrate, 12,24-
...nj-125,26...Refractory metal or refractory metal ceramic, 13.28...Gate electrode, 17゜31...Cap material, 18.32...Source/dray No. 1 Figure Y2 Continuation of figure 1 page @ Inventor Kobashi demoted Kunichi City Shio Research Institute 0 Inventor Takahashi Susumu Kokubunji City Shio Research Institute

Claims (1)

【特許請求の範囲】[Claims] 1.711M内応力が圧縮応力又は引張り応力を示す高
融点金属、高融点金属シリサイドを第1層に、第1層と
逆向きの応力を示す高融点金属、高融点金属シリサイド
を第2層として重ね合わせたショットキ電極が化合物半
導体上に形成されており、少なくとも該ショットキ電極
をマスクとしてイオン打込み法により不純物を導入し、
その後熱処理によシn+層を形成されたことを特徴とす
る化合物半導体装置の製造方法。
1.711M High melting point metal and high melting point metal silicide exhibiting compressive stress or tensile stress are used as the first layer, and high melting point metal and high melting point metal silicide exhibiting stress in the opposite direction to the first layer are used as the second layer. Overlapping Schottky electrodes are formed on a compound semiconductor, and impurities are introduced by ion implantation using at least the Schottky electrodes as a mask,
A method for manufacturing a compound semiconductor device, characterized in that an n+ layer is formed by subsequent heat treatment.
JP480984A 1984-01-17 1984-01-17 Manufacture of compound semiconductor device Pending JPS60149173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP480984A JPS60149173A (en) 1984-01-17 1984-01-17 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP480984A JPS60149173A (en) 1984-01-17 1984-01-17 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS60149173A true JPS60149173A (en) 1985-08-06

Family

ID=11594079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP480984A Pending JPS60149173A (en) 1984-01-17 1984-01-17 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS60149173A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257255A (en) * 1985-09-06 1987-03-12 Agency Of Ind Science & Technol Manufacture of compound semiconductor device
JPS6271281A (en) * 1985-09-24 1987-04-01 Nec Corp Compound semiconductor device
JPS63179579A (en) * 1987-01-20 1988-07-23 Nec Corp Manufacture of compound semiconductor device
JPH02228034A (en) * 1989-02-28 1990-09-11 Oki Electric Ind Co Ltd Semiconductor device and manufacture thereof
US5583074A (en) * 1987-07-27 1996-12-10 Texas Instruments Incorporated Semiconductor circuit
GB2328793B (en) * 1997-08-26 2000-06-07 Lg Electronics Inc Thin-film transistor and method of making same
USRE45579E1 (en) 1997-03-04 2015-06-23 Lg Display Co., Ltd. Thin-film transistor and method of making same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257255A (en) * 1985-09-06 1987-03-12 Agency Of Ind Science & Technol Manufacture of compound semiconductor device
JPS6271281A (en) * 1985-09-24 1987-04-01 Nec Corp Compound semiconductor device
JPS63179579A (en) * 1987-01-20 1988-07-23 Nec Corp Manufacture of compound semiconductor device
US5583074A (en) * 1987-07-27 1996-12-10 Texas Instruments Incorporated Semiconductor circuit
JPH02228034A (en) * 1989-02-28 1990-09-11 Oki Electric Ind Co Ltd Semiconductor device and manufacture thereof
USRE45579E1 (en) 1997-03-04 2015-06-23 Lg Display Co., Ltd. Thin-film transistor and method of making same
USRE45841E1 (en) 1997-03-04 2016-01-12 Lg Display Co., Ltd. Thin-film transistor and method of making same
GB2328793B (en) * 1997-08-26 2000-06-07 Lg Electronics Inc Thin-film transistor and method of making same

Similar Documents

Publication Publication Date Title
US6723624B2 (en) Method for fabricating n-type carbon nanotube device
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
US6558986B1 (en) Method of crystallizing amorphous silicon thin film and method of fabricating polysilicon thin film transistor using the crystallization method
JPS60149173A (en) Manufacture of compound semiconductor device
JPH05218083A (en) Manufacture of thin-film transistor
EP0082783A2 (en) Process for manufacturing silicon thin-film transistors on an insulating substrate
WO2018195761A1 (en) Transistor based on two-dimensional material and preparation method therefor, and transistor array device
JPS6092663A (en) Field effect transistor
JPH07118482B2 (en) Method for manufacturing semiconductor device
JP3419072B2 (en) Method for manufacturing compound semiconductor device
JPH04258139A (en) Fabrication of semiconductor device
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JPS61111525A (en) Forming method for electrode of semiconductor element
JPH07135319A (en) Thin film transistor and its fabrication
JPS60249320A (en) Electrode wiring
JP2550495B2 (en) Method for manufacturing semiconductor device
JPS63283067A (en) Manufacture of thin-film transistor
JPS6163063A (en) Manufacture of semiconductor device
JPH0521469A (en) Manufacture of semiconductor device
JPH0346271A (en) Mis type field effect transistor
JPH01149474A (en) Manufacture of thin film transistor
JPS6196771A (en) Manufacture of semiconductor device
JPS6258555B2 (en)
JPS6329593A (en) Superconducting transistor and manufacture thereof
JPS60225477A (en) Formation of electrode