JPS60148670A - High-speed plasma arc welding method - Google Patents

High-speed plasma arc welding method

Info

Publication number
JPS60148670A
JPS60148670A JP59005332A JP533284A JPS60148670A JP S60148670 A JPS60148670 A JP S60148670A JP 59005332 A JP59005332 A JP 59005332A JP 533284 A JP533284 A JP 533284A JP S60148670 A JPS60148670 A JP S60148670A
Authority
JP
Japan
Prior art keywords
keyhole
welding
plasma arc
arc welding
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005332A
Other languages
Japanese (ja)
Inventor
Manabu Oi
大井 学
Takao Ko
高 隆夫
Nobuyuki Yamauchi
山内 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59005332A priority Critical patent/JPS60148670A/en
Publication of JPS60148670A publication Critical patent/JPS60148670A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To maintain a normal keyhole at an exceptionally high welding speed and to obtain a stable penetration bead by performing plasma arc welding while irradiating a laser beam over the entire length or part in the thickness direction on the front surface of the keyhole. CONSTITUTION:Plasma arc welding is accomplished by forming a keyhole 7 to a material 1 to be welded by a plasma torch 5. The device is so constituted in this stage that a laser beam 12 can be irradiated over the entire length in the thickness direction of the front surface 81 of the keyhole by the vertical oscillation of a laser oscillator 11. The oscillator 11 is moved to follow up synchronously the mevement of the torch 5 according to progression (a) of welding. The object focal length, oscillating width and oscillating time of the laser beam 12 to be irradiated are controlled according to the thickness of the material 1 in the stage of high-speed welding. The normal keyhole is thus maintained at the welding speed much higher than in the prior art and the stable penetration bead is obtd.

Description

【発明の詳細な説明】 この発明は、高速でのキーホール式プラズマアーク溶接
を可能にする溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding method that enables high-speed keyhole plasma arc welding.

周知のとおシキーホール式プラズマアーク溶接は、第1
図(イ)、(ロ)((イ)は平面図、(ロ)は縦断側面
図)に示す如く被溶接材(1)(1)の被溶接線(2)
に沿ってプラズマトーチ(5)を走行させ、この際該ト
ーチ(5)からのプラズマ気流(6)によって、溶接先
端位置(4)に被溶接材(1)を厚み方向に貫通する、
いわゆるキーホー/L/(8)を保ちながら表面、裏面
の両方にビード(3)(、%)を連続的に形成して溶接
を行うものである。
The well-known Toshiki Hall plasma arc welding is the first
As shown in Figures (A) and (B) ((A) is a plan view and (B) is a vertical cross-sectional side view), welding line (2) of welded material (1) (1)
A plasma torch (5) is run along the line, and at this time, the plasma airflow (6) from the torch (5) penetrates the material to be welded (1) in the thickness direction at the welding tip position (4).
Welding is performed by continuously forming a bead (3) (%) on both the front and back surfaces while maintaining the so-called Kehoe /L/(8).

溶接先端位置(4)に形成する上記キーホー/L/(7
)は、同図に示す如くホールの上口(9υと下口(9,
)の中心位置が略々互いに一致し、つまり略々同一鉛直
線上にあってホール前面(8ρと後面(82)の傾斜が
均衡した漏斗形状をなすのが正常で、この正常なキーホ
ールを維持してやれば、プラズマ気流(6)がキーホー
/l/ (7)内を略り垂直方向に通り抜ける形となり
、その結果表面ビード(3)とともに正常な裏波ビード
(81)が形成され、良好な溶接が実現されるのであ。
The above keyhole /L/(7) formed at the welding tip position (4)
) are the upper entrance (9υ) and the lower entrance (9υ,
It is normal for the center positions of the keyholes to approximately coincide with each other, that is, to be on the same vertical line, forming a funnel shape in which the inclinations of the front surface of the hole (8ρ) and the slope of the rear surface (82) are balanced, and this normal keyhole is maintained. If this is done, the plasma airflow (6) will pass through the Kehoe/l/ (7) in a substantially vertical direction, and as a result, a normal uranami bead (81) will be formed along with the surface bead (3), resulting in good welding. will be realized.

さて、このようなキーホール溶接は、裏波ビードが得ら
れるメリットを有する反面、高速溶接が不可能という不
利がある。すなわち溶接速度を高速にすると、溶接の進
行に対しプラズマ気流による被溶接材(1)の溶融が遅
れ勝ちとなり、そのためキーホール(7)が第2図に示
すように前面(8ρが後方へ流れ下口(9ρが上口(9
,)に対し後方に位置ずれした異形の漏斗形状を呈し、
これに伴いプラズマ気流の向きが後方側へ傾く格好にな
る。プラズマ気流にこのような傾きが生じると、その気
流の動圧の作用でキーホーiv (7)内の溶融金属が
裏面側を後方へ吹き流され、ビード裏面にコブ状のかた
まりα1の形成がみられ、正常な裏波ビードが得られな
くなるのである。
Now, while such keyhole welding has the advantage of producing a deep bead, it has the disadvantage of not being able to perform high-speed welding. In other words, when the welding speed is increased, the melting of the material to be welded (1) by the plasma air flow tends to lag behind the progress of welding, and as a result, the keyhole (7) is in the front direction (8ρ flows backwards) as shown in Figure 2. Lower mouth (9ρ is upper mouth (9
,), exhibiting an irregular funnel shape that is displaced backwards.
As a result, the direction of the plasma airflow tends to tilt toward the rear. When such an inclination occurs in the plasma airflow, the molten metal in the keyhole IV (7) is blown backwards on the back side by the action of the dynamic pressure of the airflow, and a lump-shaped lump α1 is formed on the back side of the bead. As a result, a normal Uranami bead cannot be obtained.

本発明者らは、この問題を解決しキーホール溶接の高速
化を可能にする方法について鋭意実験・研究の結果、キ
ーホール溶接時キーホールの前面側に向けてレーザ照射
を行うようにすれば、従来法では倒底望めない高速溶接
において正常なキーホールが維持でき安定した裏波ビー
ドの形成が実現できるという知見を得だ。
The inventors of the present invention have conducted extensive experiments and research on a method to solve this problem and speed up keyhole welding, and found that it is possible to irradiate the laser toward the front side of the keyhole during keyhole welding. We obtained the knowledge that a normal keyhole can be maintained and stable Uranami bead formation can be achieved during high-speed welding, where conventional methods cannot achieve bottoming out.

すなわち本発明は、キーホール式プラズマアーク溶接に
おいて、キーホール前面の厚み方向の全長または一部に
レーザビームを照射しながら溶接を行うことを特徴とす
る高速プラズマアーク溶接法を要旨とする。
That is, the gist of the present invention is a high-speed plasma arc welding method characterized in that, in keyhole type plasma arc welding, welding is performed while irradiating the entire length or part of the front surface of the keyhole in the thickness direction with a laser beam.

キーホール式プラズマアーク溶接において溶接速度を高
速化した場合、プラズマ気流の熱量が一定であるので溶
接先端部におけるキーホールの形成に当っては、キーホ
ール前面の厚み方向への溶融の進行がプラズマ気流の熱
量不足によって不可避的に遅れ勝ちになシ、ためにキー
ホール前面の傾きが緩やかになってくる。
When the welding speed is increased in keyhole type plasma arc welding, the amount of heat in the plasma airflow is constant, so when forming the keyhole at the welding tip, the progress of melting in the thickness direction of the front surface of the keyhole is controlled by the plasma. The inclination of the front of the keyhole becomes gentle as the airflow inevitably lags behind due to the lack of heat.

キーホール前面の溶融の進行を促進して傾きの緩やかに
なるのを防止するためには、プラズマ気流の熱量不足を
補うだめの何等かの熱源が必要であり、しかもその熱源
としては次の2点の性能が要求される。
In order to promote the progress of melting in front of the keyhole and prevent the slope from becoming gentle, some kind of heat source is required to compensate for the lack of heat in the plasma airflow, and the following two heat sources are required. performance is required.

0) キーホール径よりも幅の狭い線熱源であること。0) It must be a linear heat source with a width narrower than the keyhole diameter.

点熱源ではキーホール前面の傾きの拡大を厚み方向の全
長に亘って防止することが不可能である。
With a point heat source, it is impossible to prevent the inclination of the front surface of the keyhole from expanding over the entire length in the thickness direction.

■ プラズマ気流に影響を与えるような動圧をもってい
ないこと。
■ There should be no dynamic pressure that would affect plasma airflow.

上記■■の要求性能を満足する熱源としては、熱量の高
い光の線熱源で動圧をもたないレーザビームが最も適切
である。レーザビームはプラズマ気流を横断してキーホ
ール前面に照射してもプラズマ気流を乱すことがなく、
また、板厚の厚い場合でも例えばレーザ発振器に振れを
与えてレーザビームを所要の振幅、回数で振れさせる(
以下し一ザビームのオシレートという)ようにすればキ
ーホール前面の厚み方向全長に亘っての照射が可能で、
簡単にキーホール前面の熱量不足を補うことができるか
らである。
As a heat source that satisfies the required performance in (1) above, the most suitable is a laser beam, which is a linear heat source of light with a high calorific value and has no dynamic pressure. Even if the laser beam crosses the plasma airflow and irradiates the front of the keyhole, it will not disturb the plasma airflow.
In addition, even when the plate thickness is thick, for example, by giving a deflection to the laser oscillator, the laser beam can be deflected with the required amplitude and number of times (
(hereinafter referred to as one-the-beam oscillation), it is possible to irradiate the entire length of the front surface of the keyhole in the thickness direction.
This is because it can easily compensate for the lack of heat in the front of the keyhole.

また上記要求性能を満足するものとしては電子ビームも
考えられるが、電子ビームはX線を発生するから、これ
を遮蔽して安全を確保するには多大な設備費用を要し実
用的でない。
An electron beam may also be considered as a device that satisfies the above-mentioned performance requirements, but since electron beams generate X-rays, shielding them to ensure safety requires a large amount of equipment cost and is not practical.

次に本発明方法を図面に基いて詳細に説明する第3図は
本発明方法を実施する一例を模式的に示した説明図で、
第1図(ロ)にレーザ発振器を設けた例を示したもので
ある。
Next, the method of the present invention will be explained in detail based on the drawings. FIG. 3 is an explanatory diagram schematically showing an example of implementing the method of the present invention.
FIG. 1(b) shows an example in which a laser oscillator is provided.

図において、α◇はレーザ発振器、αのはレーザ発振器
(11)よりキーホール前面に照射されたレーザビーム
である。
In the figure, α◇ is a laser oscillator, and α is a laser beam irradiated from the laser oscillator (11) to the front surface of the keyhole.

レーザ発振器0])は、被溶接材(1)の上方のプラズ
マトーチ(5)の後方で、レーザビーム0のがレーザ発
振器0υの上下の振れによってキーホール前面(8I)
を厚み方向全長に亘って照射し得る位置に設けられ、こ
れは溶接の進行(矢印α)方向)に伴ってプラズマトー
チ(5)の移動に同調して追従移動するようにしである
The laser oscillator 0]) is located behind the plasma torch (5) above the workpiece (1), and the laser beam 0 hits the front surface of the keyhole (8I) due to the vertical swing of the laser oscillator 0υ.
The plasma torch (5) is placed at a position where it can irradiate the entire length in the thickness direction, and is configured to follow the movement of the plasma torch (5) as welding progresses (in the direction of arrow α).

高速溶接時、とのレーザ発振器α1)から、キーホール
前面(81)に向けてレーザビームαりを照射し当該部
位の溶融を促進してやり、これにより常に正常のキーホ
ールを保ち々がら安定した裏波溶接を行うものである。
During high-speed welding, a laser beam α is irradiated from the laser oscillator α1) toward the front surface of the keyhole (81) to promote melting of the area, thereby maintaining a stable keyhole while always maintaining a normal keyhole. It performs wave welding.

なお、溶接材の厚みによっては必要に応じオシレートを
与えることによりキーホール前面の厚み方向の広い領域
を照射範囲としてカバーするようにする。
Note that depending on the thickness of the welding material, an oscillation is applied as necessary to cover a wide area in the thickness direction of the front surface of the keyhole as the irradiation range.

次に実施例を掲げて本発明の詳細な説明する。Next, the present invention will be described in detail with reference to Examples.

板厚6酊のSUS 804ステンレス板を被溶接材とし
て用い、これに従来法のプラズマアーク溶接単独の場合
と本発明法によるプラズマアーク溶接+レーザ照射の2
方法について、下記の溶接条件で溶接速度を種々に変え
てビードオンプレートのキーホール式の溶接実験を行い
、それぞれ裏面側にコブ状の溶融金属のかたまシのない
正常な裏波ビードが得られる最大の溶接速度(以下Vm
axという)をめた。
A SUS 804 stainless steel plate with a thickness of 6 mm was used as the material to be welded, and it was subjected to two methods: plasma arc welding by the conventional method and plasma arc welding + laser irradiation by the method of the present invention.
Regarding the method, we conducted bead-on-plate keyhole welding experiments under the following welding conditions and varying the welding speed, and in each case a normal uranami bead without a lump-like lump of molten metal on the back side was obtained. Maximum welding speed (hereinafter referred to as Vm
called ax).

なお上記本発明法による実験は、プラズマアーク溶接条
件は一定にして、レーザ溶接の条件の内出力、焦点−照
射物体間距離、オシレート幅、オシレート回数の各条件
を種々に変えて行った。
The experiments using the method of the present invention were conducted while keeping the plasma arc welding conditions constant and varying the laser welding conditions such as the internal output, the distance between the focal point and the irradiated object, the oscillation width, and the number of oscillations.

溶接条件 A〈プラズマアーク溶接〉 オリフィス径 φ8闘 電 流 250A プラズマガス Arl プラズマガス流量 8 l/龜 シールドガヌ 10%H290%Ar シールドガス流量 101/Tl1lIIL速度 可変 B〈レーザ照射〉 出力 1〜8KW レンズの焦点距離 190順 焦点゛−照射物体間距離 0〜8H オリフイス径 4 an+ センターガヌ(Ar)流量 80(1/限オシレ一ト幅
 2〜6顛 オシレ一ト回数 20〜60 cpm 速 度 可 変 上記実験の結果としては、プラズマアーク溶接単独の場
合のVmaxは5 Q tM/l1lfl+であった。
Welding conditions A〈Plasma arc welding〉 Orifice diameter φ8 Fighting current 250A Plasma gas Arl Plasma gas flow rate 8 l/Shield Ganu 10%H290%Ar Shield gas flow rate 101/Tl1lIIL Speed Variable B〈Laser irradiation〉 Output 1~8KW Lens Focal length 190 Forward focal point - Distance between irradiation object 0 to 8H Orifice diameter 4 an+ Center Ganu (Ar) flow rate 80 (1/limit oscillation width 2 to 6 oscillation times 20 to 60 cpm Speed Variable Above experiment As a result, Vmax in the case of plasma arc welding alone was 5 Q tM/l1lfl+.

これに対し本発明法の場合は第4図〜第7図に示す通シ
となった。
On the other hand, in the case of the method of the present invention, the results were as shown in FIGS. 4 to 7.

第4図は照射物体に焦点を合わせ(以下ジャストフォー
カスという)、オシレート巾6闘、オシレート回数60
cpmとした場合における出力とVmaxの関係を示し
た図、第5図は出力3KW、オシレート巾6闘、オシレ
ー)回数6o eynトシfc場合における焦点−照射
物体間距離とVmaxとの関係を示した図、第6図は出
力8KW、オシレート回数60 cpm 、ジャヌトフ
ォーカスとした場合におけるオシレート巾とVmaxと
の関係を示した同第7図は出力8KW、オシレート巾6
ff、ジャヌトフォーカスとした場合におけるオシレー
ト回数とVmaxとの関係を示しだ図である。
Figure 4 shows focusing on the irradiation object (hereinafter referred to as just focus), oscillation width of 6, and number of oscillations of 60.
Figure 5 shows the relationship between the output and Vmax in the case of cpm, and Figure 5 shows the relationship between the distance between the focal point and the irradiated object and Vmax in the case of an output of 3 KW, an oscillation width of 6, and a frequency of 6 o'clock (fc). Figure 6 shows the relationship between the oscillation width and Vmax when the output is 8KW, the number of oscillations is 60 cpm, and Januto focus is used.
ff is a diagram showing the relationship between the number of oscillations and Vmax in the case of Januto focus.

同図の結果から、レーザ照射条件を適正に選択して本発
明法により溶接を行えば、従来法の約8倍の速度での溶
接が可能であることが理解される以上の説明よりして本
発明は、キーホール式プラズマアーク溶接において従来
法の溶接可能速度よりも格段に高い溶接速度まで正常な
キーホールを保ち安定な裏波ビードを得ることを可能な
らしめるものであり、したがって裏波溶接の各種溶接作
業の能率改善に大きな効果を発揮する。
From the results shown in the figure, it is understood that if the laser irradiation conditions are appropriately selected and welding is performed using the method of the present invention, it is possible to weld at a speed approximately 8 times faster than the conventional method. The present invention makes it possible to maintain a normal keyhole and obtain a stable Uranami bead in keyhole plasma arc welding at a welding speed much higher than that possible with conventional methods. It is highly effective in improving the efficiency of various welding operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)(ロ)は従来のキーホール式プラズマアー
ク溶接における溶接先端部付近の概要を模式的に示した
説明図で(イ)は平面図、(ロ)は溶接線を切断した断
面図、第2図はキーホール式プラズマアーク 。 溶接において溶接速度を高速とした場合のキーホールの
形状を示した断面図、第8図は本発明法によるキーホー
ル式プラズマアーク溶接における溶接先端部付近の概要
を模式的に示した説明図、第4図はレーザ出力とV m
 a xとの関係を示した図、第5図は焦点−照射物体
間距離とVmaxとの、関係を示した図、第6図はレー
ザビームのオシレート巾とVmaxとの関係を示【−だ
図、第7図はレーザビームのオシレート回数とV m 
a xとの関係を示した図である。 1:被溶接材、2:溶接線、8:ビード、81:裏波ビ
ード、4:溶接先端部、5:プラズマ) −チ、6:プ
ラズマ気流、7:キーホール、81:キーホール前面、
82:キーホール後面、9I:キーホール上口、92:
キーホール下口、10:コブ状のかたまり、11:レー
ザ発振器、12:レーザビーム出 願 人 住友金属工
業株式会社 第 1 図 2471 第 2 図 第 3 図 uIIAI/LLIり xn山八へ−
Figure 1 (a) and (b) are explanatory diagrams schematically showing the outline of the welding tip area in conventional keyhole plasma arc welding, (a) is a plan view, and (b) is a cutaway of the weld line. The cross-sectional view, Figure 2, shows a keyhole type plasma arc. A cross-sectional view showing the shape of the keyhole when the welding speed is high in welding, FIG. 8 is an explanatory view schematically showing the outline of the vicinity of the welding tip in keyhole type plasma arc welding according to the method of the present invention, Figure 4 shows the laser output and V m
Figure 5 shows the relationship between the focal point and the irradiation object distance and Vmax, Figure 6 shows the relationship between the oscillation width of the laser beam and Vmax. Figure 7 shows the number of oscillations of the laser beam and V m
It is a figure showing the relationship with ax. 1: Material to be welded, 2: Welding line, 8: Bead, 81: Uranami bead, 4: Welding tip, 5: Plasma) -chi, 6: Plasma airflow, 7: Keyhole, 81: Keyhole front,
82: Keyhole rear, 9I: Keyhole top, 92:
Keyhole lower opening, 10: Knot-shaped mass, 11: Laser oscillator, 12: Laser beam Applicant: Sumitomo Metal Industries, Ltd. No. 1 Fig. 2471 Fig. 2 Fig. 3 Fig. uIIAI/LLI xn To Yamahachi -

Claims (1)

【特許請求の範囲】[Claims] (1) キーホール式プラズマアーク溶接において、キ
ーホール前面の厚み方向の全長または一部にレーザビー
ムを照射しながら溶接を行うことを特徴とする高速プラ
ズマアーク溶接法。
(1) In keyhole type plasma arc welding, a high-speed plasma arc welding method is characterized in that welding is performed while irradiating the entire length or part of the front surface of the keyhole in the thickness direction with a laser beam.
JP59005332A 1984-01-13 1984-01-13 High-speed plasma arc welding method Pending JPS60148670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005332A JPS60148670A (en) 1984-01-13 1984-01-13 High-speed plasma arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005332A JPS60148670A (en) 1984-01-13 1984-01-13 High-speed plasma arc welding method

Publications (1)

Publication Number Publication Date
JPS60148670A true JPS60148670A (en) 1985-08-05

Family

ID=11608281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005332A Pending JPS60148670A (en) 1984-01-13 1984-01-13 High-speed plasma arc welding method

Country Status (1)

Country Link
JP (1) JPS60148670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102591A2 (en) 2004-04-08 2005-11-03 Alcoa Inc. Laser-hybrid welding with beam oscillation
JP2011045920A (en) * 2009-08-28 2011-03-10 Honda Motor Co Ltd Welding method
DE102012207201B3 (en) * 2012-04-30 2013-04-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for laser-assisted plasma cutting or plasma welding and apparatus therefor
WO2015086194A1 (en) * 2013-12-10 2015-06-18 Siemens Aktiengesellschaft Oscillating welding method
CN105618933A (en) * 2016-02-19 2016-06-01 广东省焊接技术研究所(广东省中乌研究院) High-efficiency and high-quality laser-micro-plasma hybrid welding method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154065B2 (en) * 2002-05-24 2006-12-26 Alcon Inc. Laser-hybrid welding with beam oscillation
WO2005102591A2 (en) 2004-04-08 2005-11-03 Alcoa Inc. Laser-hybrid welding with beam oscillation
EP1737607A2 (en) * 2004-04-08 2007-01-03 Alcoa Inc. Laser-hybrid welding with beam oscillation
EP1737607A4 (en) * 2004-04-08 2008-12-17 Alcoa Inc Laser-hybrid welding with beam oscillation
JP2011045920A (en) * 2009-08-28 2011-03-10 Honda Motor Co Ltd Welding method
DE102012207201B3 (en) * 2012-04-30 2013-04-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for laser-assisted plasma cutting or plasma welding and apparatus therefor
US9849545B2 (en) 2012-04-30 2017-12-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laser-supported plasma processing
WO2015086194A1 (en) * 2013-12-10 2015-06-18 Siemens Aktiengesellschaft Oscillating welding method
CN105618933A (en) * 2016-02-19 2016-06-01 广东省焊接技术研究所(广东省中乌研究院) High-efficiency and high-quality laser-micro-plasma hybrid welding method

Similar Documents

Publication Publication Date Title
US7154065B2 (en) Laser-hybrid welding with beam oscillation
US4507540A (en) Welding method combining laser welding and MIG welding
US3965328A (en) Laser deep cutting process
KR920002445B1 (en) Laser beam welding
US8884183B2 (en) Welding process and a welding arrangement
US20060255019A1 (en) Apparatus and methods for conducting laser stir welding
JP2003088968A (en) Welding method for workpiece
AU2005201860A1 (en) Laser or laser/arc hybrid welding process with formation of a plasma on the backside
EP1534460A4 (en) Laser welding with beam oscillation
CN104907696B (en) A kind of laser-arc hybrid welding in industry method considering welding current value
Zhang et al. Effects of heat source arrangements on Laser-MAG hybrid welding characteristics and defect formation mechanism of 10CrNi3MoV steel
JP2022517713A (en) Methods for spatter-free welding, especially with solid-state lasers
JPS60148670A (en) High-speed plasma arc welding method
Glumann et al. Welding with combination of two CO2-lasers-Advantages in processing and quality
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JP2002273588A (en) Laser cutting processing method
JPS60106688A (en) Laser working device
JPS61232079A (en) Laser welding method
JPH02263585A (en) Combined heat source welding equipment
JP2880061B2 (en) Laser processing
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel
JP2017209700A (en) Joining method of metal plate
JPH0451271B2 (en)
SU1579682A1 (en) Method of welding by means of concentrated source of heating
Romminger et al. High‐power Full Penetration Welding Behavior: A comparison between CO2 lasers and high‐brilliance solid‐state lasers