JPS6014733A - Picture tube device - Google Patents

Picture tube device

Info

Publication number
JPS6014733A
JPS6014733A JP12251483A JP12251483A JPS6014733A JP S6014733 A JPS6014733 A JP S6014733A JP 12251483 A JP12251483 A JP 12251483A JP 12251483 A JP12251483 A JP 12251483A JP S6014733 A JPS6014733 A JP S6014733A
Authority
JP
Japan
Prior art keywords
electrode
potential
voltage
diameter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12251483A
Other languages
Japanese (ja)
Other versions
JPH0158823B2 (en
Inventor
Hiroshi Suzuki
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP12251483A priority Critical patent/JPS6014733A/en
Priority to EP19830113068 priority patent/EP0113113B1/en
Priority to DE8383113068T priority patent/DE3373746D1/en
Publication of JPS6014733A publication Critical patent/JPS6014733A/en
Publication of JPH0158823B2 publication Critical patent/JPH0158823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/488Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes

Abstract

PURPOSE:To obtain the beam spot in a constant diameter by obtaining the maximal value of voltge distribution on the axis of electron gun in the G3 electrode rigion, the minimal value through gradual reduction in the G4 electrode region and by increasing the voltage continuously in the regions from the G4 electrode to the G5 electrode. CONSTITUTION:Crossover 5 is formed by a cathode lens 4 consisting of a cathode 1, G1 electrode 2 and G2 electrode 3, a potential inclination of about 10<5>V/ cm-5X10<5>V/cm is given by connecting the G3 electrode plate 22 adjacent to the G2 electrode 3 to the G5 electrode 21, and moreover a variable focus voltage is applied to the G4 electrode 23, while a high voltage to the G5 electrode 21. Voltage distribution on the axis is increased up to the maximum value in the beam passing hole 24, it is gradually decreased toward the G4 electrode 23 and then it is increased continuously and finally it is kept to a constant value. Therefore, spheric aberration can be lowered and imaginary picture crossover diameter can also be reduced by increasing voltage inclination at the beam forming area and a high resolution can be obtained even under the high luminance condition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高輝度時においても高い解像度が得られるよ
うに構成した受像管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a picture tube device configured to provide high resolution even at high brightness.

従来例の構成とその問題点 一般に、受像管の解像度は絵素となるビームスポット(
輝点)の大きさに依存し、ビームスポット径が小さいほ
ど高い解像度が得られる。一方、ビームスポットはビー
ム電流の増大に伴って径大化するので、比較的大きいビ
ーム電流が流れる高輝度時にブルーミングを生じて解像
度が低下する。
Conventional configuration and its problems In general, the resolution of a picture tube is determined by the beam spot (which becomes a picture element).
The smaller the beam spot diameter, the higher the resolution can be obtained. On the other hand, since the diameter of the beam spot increases as the beam current increases, blooming occurs at high brightness times when a relatively large beam current flows, resulting in a decrease in resolution.

これを図面により説明すると、第1図にはパイポテンシ
ャル形電子銃の電極構成が示されており、第2図には同
電子銃の軸上電位分布が示されている。陰極1から放射
された熱電子は、陰極1.制御電極としての01電極2
および加速電極としてのG2電極3からなる三極部で生
成されるいわゆるカソードレンズ4によりクロスオーバ
6をつくり、G2電極3と集束電極たるG3電極6との
間に生成されるブリフォーカスレンズ7で予備集束作用
を受ける。そしてG3電極6と最終加速電極たるG4電
極8との間に生成されるメインレンズ9で最終的な集束
作用を受け、螢光体スクリーン面10に射突してビーム
スポット11を生成するのであり、ビームスポット11
はクロスオーバ6の投影像である。
To explain this with the drawings, FIG. 1 shows the electrode configuration of a pi-potential type electron gun, and FIG. 2 shows the axial potential distribution of the electron gun. Thermionic electrons emitted from the cathode 1 are transferred to the cathode 1. 01 electrode 2 as control electrode
A crossover 6 is created by a so-called cathode lens 4 generated at the triode consisting of the G2 electrode 3 as an accelerating electrode, and a brifocus lens 7 generated between the G2 electrode 3 and the G3 electrode 6 as a focusing electrode. Receives pre-focusing action. The main lens 9 formed between the G3 electrode 6 and the G4 electrode 8, which is the final accelerating electrode, receives the final focusing action and impinges on the phosphor screen surface 10 to generate a beam spot 11. , beam spot 11
is a projected image of the crossover 6.

陰極1からG3電極6にいたる軸上電位分布はゆるやか
に上昇し、これによりカソードレンズ4およびプリフォ
ーカスレンズ7が生成されるが、両レンズ4,7は明確
に区別し難いので、以下の説明ではこの両レンズ領域を
ビーム形成部と呼称する。G3電極6内における軸上電
位分布はVfoc と略一定であるが、Cr3電極6と
04電極8との間における軸上電位は高電位V、へと急
激に上昇し、ここにメインレンズ9が生成される。
The axial potential distribution from the cathode 1 to the G3 electrode 6 gradually rises, thereby creating a cathode lens 4 and a prefocus lens 7, but since it is difficult to clearly distinguish between the two lenses 4 and 7, the following explanation will be given. Hereinafter, both lens regions will be referred to as beam forming sections. The axial potential distribution within the G3 electrode 6 is approximately constant at Vfoc, but the axial potential between the Cr3 electrode 6 and the 04 electrode 8 rapidly rises to a high potential V, where the main lens 9 generated.

前記ビーム形成部での熱電子の挙動は非常に複べて一点
で交差すれば理想的な径小のクロスオーバおよびビーム
スポットが生成されるのであるが、実際には陰極1の中
央部から放射された熱電子の軌道12.13は陰極1か
らもっとも遠い位置18で交差し、陰極1の周辺部から
放射された熱電子の軌道16.17は陰極1に近い位置
19で交差する。これは前記ビーム形成部でのレンズに
球面収差が伴っているからで、実際上のクロスオーバの
径は、理論的限界値に比べて著しく大きい値となる。
The behavior of the thermoelectrons in the beam forming section is very complex, and if they intersect at one point, an ideal small-diameter crossover and beam spot will be generated, but in reality, they are emitted from the center of the cathode 1. Trajectories 12 and 13 of the thermoelectrons emitted from the cathode 1 intersect at a position 18 farthest from the cathode 1, and trajectories 16 and 17 of the thermoelectrons emitted from the periphery of the cathode 1 intersect at a position 19 close to the cathode 1. This is because the lens in the beam forming section is accompanied by spherical aberration, and the actual diameter of the crossover is significantly larger than the theoretical limit value.

そして、このクロスオーバがメインレンズ9によって螢
光体スクリーン面10上に投影されるのであるが、正確
にはプリフォーカスレンズ7が存在するために、第3図
に示すように実際に投影されるものはクロスオーバ(径
d)の虚像であり、この虚像クロスオーバは第3図中に
破線で示したように電子軌道12〜17を逆方向へ延長
させたときの交点としてめられる。
This crossover is then projected onto the phosphor screen surface 10 by the main lens 9, but precisely because of the presence of the prefocus lens 7, it is actually projected as shown in FIG. This is a virtual image of a crossover (diameter d), and this virtual image crossover is seen as an intersection point when electron trajectories 12 to 17 are extended in opposite directions, as shown by broken lines in FIG.

いま、虚像クロスオーバの直径をdOとすると、螢光体
スクリーン面10に生じるビームスポット11の径ds
は次の関係式で表わすことができる。
Now, if the diameter of the virtual image crossover is dO, then the diameter ds of the beam spot 11 generated on the phosphor screen surface 10 is
can be expressed by the following relational expression.

1 。1.

ds 二doxM+ C15D ・・・・・・・・・・
・・・・・・・・・・(1)ここではMはメインレンズ
の倍率、O5はメインレンズの球面収差係数、Dはメイ
ンレンズでの電子ビームの拡がり径を示し、Mi4次式
で表わされる。
ds 2doxM+ C15D ・・・・・・・・・・・・
・・・・・・・・・・・・(1) Here, M is the magnification of the main lens, O5 is the spherical aberration coefficient of the main lens, and D is the spread diameter of the electron beam at the main lens, which is expressed by the Mi quartic equation. It will be done.

ただし、aはビーム形成部から出る電子ビームの最大発
散角、Lはメインレンズ9の中心と螢光体スクリーン面
10との間の距離、V、sはG5電極電位、va は0
4電極電位を示す。
However, a is the maximum divergence angle of the electron beam emitted from the beam forming section, L is the distance between the center of the main lens 9 and the phosphor screen surface 10, V and s are the G5 electrode potentials, and va is 0
4 electrode potentials are shown.

(2)式を(1)式に代入すると となる。Substituting equation (2) into equation (1), we get becomes.

この式のに)内は受像管のザイズと動作条件とによって
決まり、C8は使用するレンズの口径によって決まる。
The value in () in this equation is determined by the size of the picture tube and the operating conditions, and C8 is determined by the aperture of the lens used.

1 電子ビームの拡がり径りは、第1項ではD 、第2項で
はD のかたちで入っているから、dsが最小となるよ
うなりの値が存在し、通常はその値に選ばれる。そして
、このような制約のもとでds を小さくしようとする
と、第1項のa−dOを小さくしなければならないこと
になる。
1. Since the spread radius of the electron beam is in the form D in the first term and D in the second term, there exists a value that minimizes ds, and that value is usually selected. If one attempts to reduce ds under such constraints, the first term a−dO must be reduced.

本発明者らの研究結果によると、G2電極と03電極と
の間の電位の上昇を急峻にするとa−doを小さくする
ことができる。第4図はG2電極と03電極との間隔を
小さくしたときにa−doが減少する様子を示したもの
で、aとdoとが単独でどのように変化するかがわかる
。G2電極と05電極との間隔を小さくするとdoは著
しく減少し、aは逆に増大するが、doの減少度合がよ
り著しいので両者の積a−d(、は減少する。doがこ
のように減少するのは、電位の上昇が急峻になるとビー
ム形成部におけるレンズの球面収差が減少するためであ
る。
According to the research results of the present inventors, a-do can be reduced by making the potential rise between the G2 electrode and the 03 electrode steeper. FIG. 4 shows how a-do decreases when the distance between the G2 electrode and the 03 electrode is reduced, and it can be seen how a and do change independently. When the distance between the G2 electrode and the 05 electrode is reduced, do decreases significantly and a increases, but since the degree of decrease in do is more remarkable, the product a−d(, decreases. The reason for this decrease is that the spherical aberration of the lens in the beam forming section decreases as the potential rises steeply.

このような効果がはっきりと現われるのは、電位傾度で
約10” V/cmからであり、この値が大きいほど大
電流時ビームスポットの径小化に有利である。しかし小
電流時ビームスポット径は逆に大きくなる。また、電位
傾度が大きくなり過ぎると、G2電極の表面から電界放
出による電子放射が起こり、これが螢光体スクリーン面
に射突して不本意な発光を生じる。
Such an effect clearly appears at a potential gradient of about 10" V/cm, and the larger this value is, the more advantageous it is to reduce the beam spot diameter at high currents. However, the beam spot diameter at small currents decreases. On the other hand, when the potential gradient becomes too large, electron emission occurs from the surface of the G2 electrode due to field emission, and this impinges on the phosphor screen surface, causing unwanted light emission.

このように実用可能な電位傾度には上限があり、その値
は実験結果によると約6×105v/Cmであ隔は0.
8 朋から0.16間となる。
In this way, there is an upper limit to the practical potential gradient, and according to experimental results, the value is about 6 x 105 v/Cm, with a distance of 0.
8 It will be 0.16 meters from Tomo.

しかし、このような電位傾゛度を従来の受像管電子銃の
ビーム形成部にそのまま適用しても、螢光体スクリーン
面上でのビームスポット径を縮小させ得ない。それは、
G2−G、間電位傾度を高めるとビーム発散角aが増大
するためである。ビーム発散角aが増大すると、メイン
レンズ9での電子ビーム径りが増大し、(3)式右辺第
2項のメインレンズ収差による寄与分が増大する。そし
て同第2項はDの三乗に比例するので、1[子ビーム径
りのわずかな増大でも影響が大きく 、(3)式第1項
のa・doをせっかく減少させても、ビームスポット径
dsはかえって増大する結果となる。
However, even if such a potential gradient is directly applied to the beam forming section of a conventional picture tube electron gun, the beam spot diameter on the phosphor screen surface cannot be reduced. it is,
This is because increasing the potential gradient between G2 and G increases the beam divergence angle a. When the beam divergence angle a increases, the radius of the electron beam at the main lens 9 increases, and the contribution of the main lens aberration in the second term on the right side of equation (3) increases. Since the second term is proportional to the cube of D, even a slight increase in the child beam diameter has a large effect. Even if a and do in the first term of equation (3) are decreased, the beam spot This results in an increase in the diameter ds.

電子ビーム径りの増大は、G5電極の長さを小さくする
ことによって避けられるが、フォーカス条件を満すため
に05電極を短かくした分だけメインレンズ焦点距離を
短かくすることが必要となり、そのためにはG3電極電
位を下げなければならない。
An increase in the electron beam diameter can be avoided by reducing the length of the G5 electrode, but in order to satisfy the focus condition, it is necessary to shorten the main lens focal length by the length of the 05 electrode. For this purpose, the G3 electrode potential must be lowered.

そうすると、G2−G3間電位傾度が下ってしまい、電
極間隔をせっかく狭めたにもかかわらずa−doの低減
効果は失われてしまう。
In this case, the potential gradient between G2 and G3 decreases, and the effect of reducing a-do is lost even though the electrode interval is narrowed.

発明の目的 本発明は、前述のような従来の不都合を除去するために
なされたもので、低輝度域から高輝度域まで略一定径の
ビームスポットが得られる受像管装置を提供するもので
ある。
Purpose of the Invention The present invention was made in order to eliminate the above-mentioned conventional disadvantages, and provides a picture tube device that can obtain a beam spot with a substantially constant diameter from a low brightness region to a high brightness region. .

発明の構成 本発明の受像管装置は、制御電極としての01電極側か
ら最終加速電極としての05電極側へと順次に配設され
た02電極、板状の03電極および円筒状の04電極を
備える。そして、G3電極は管内で05電極に接続され
て高電位が与えられ、G4電極には前記高電位よりも低
い数KV 以下の電位が与えられる。そして軸上電位分
布は、G3電極領域で極大値をとったあとCr4電極領
域にかけ漸減して極小値をとり、G4電極からG5電極
にいたる領域で連続的に上昇して、03電極ないしG5
電極の電位の関与により実質的に単一の厚肉メインレン
ズを生成するのであり、これを以下図面に示した実施例
とともに詳しく説明する。
Structure of the Invention The picture tube device of the present invention includes an 02 electrode, a plate-shaped 03 electrode, and a cylindrical 04 electrode, which are sequentially arranged from the 01 electrode side as a control electrode to the 05 electrode side as a final acceleration electrode. Be prepared. The G3 electrode is connected to the 05 electrode within the tube and given a high potential, and the G4 electrode is given a potential of several KV or less, which is lower than the high potential. The axial potential distribution takes a maximum value in the G3 electrode region, then gradually decreases to a minimum value in the Cr4 electrode region, rises continuously in the region from the G4 electrode to the G5 electrode, and then increases from the 03 electrode to the G5 electrode.
Through the involvement of the electrode potentials, a substantially single thick main lens is produced, which will be explained in detail below in conjunction with the embodiments shown in the drawings.

実施例の説明 第6図に示す電子銃は、制御電極としての01電極2側
から最終加速電極としての05電極21側へと順次に配
設されたG2電極3.G5電極22およびG4電極23
を備えている。G2電極3は従来の電子銃における加速
電極と同様の構造を有しており、G2電極3に隣接する
板状のG3電極22はG5電極21に接続されており、
G2電極3に対し1o5v/Cm〜5 X 105V/
cm の電位傾度となるように近接配置されている。G
4電極23およびG5電極21はいずれも円筒状のもの
で、G4電極23にはOV近くから数KVまでの比較的
低い可変フォーカス電位vf0゜が与えられ、G5電極
21には約30 KVの高電位vaが与えられる。第6
図にはG4電極23とG5電極21とが同一径として示
されているが、相互に異なる直径を有していてもよい。
DESCRIPTION OF THE EMBODIMENTS The electron gun shown in FIG. 6 includes G2 electrodes 3. G5 electrode 22 and G4 electrode 23
It is equipped with The G2 electrode 3 has a structure similar to the accelerating electrode in a conventional electron gun, and the plate-shaped G3 electrode 22 adjacent to the G2 electrode 3 is connected to the G5 electrode 21.
1o5v/Cm~5 x 105V/ for G2 electrode 3
They are placed close together so that the potential gradient is cm 2 . G
Both the 4th electrode 23 and the G5 electrode 21 are cylindrical, and the G4 electrode 23 is given a relatively low variable focus potential vf0° from near OV to several KV, and the G5 electrode 21 is given a high variable focus potential of about 30 KV. A potential va is applied. 6th
Although the G4 electrode 23 and the G5 electrode 21 are shown to have the same diameter in the figure, they may have different diameters.

とくにvfOCをOv近傍で使用する場合には、G4電
極径はG5電極径よりも大きいことが望ましい。
In particular, when using the vfOC near Ov, it is desirable that the G4 electrode diameter be larger than the G5 electrode diameter.

このような構成によると、ビーム形成部における軸上電
位分布は急峻に上昇し、大ビーム電流時のa−doが著
しく減少する一方、ビーム発散角aが増大する。すなわ
ち、第6図に示すように軸上電位分布はG3電極22の
電子ビーム通過孔24内で極大値まで上昇し、G4電極
23にかけて漸減する。そして、G4電極23およびG
5電極24の領域で連続的に上昇し、G5電極21内に
いたって高電位V、に達(〜、一定となる。このため、
G5電極22、G4電極23およびG5電極21の電位
の関与により複合レンズ電界が生じ、実質的に単一の厚
肉のメインレンズ25が生成される。
According to such a configuration, the axial potential distribution in the beam forming section rises steeply, and while the a-do at the time of a large beam current decreases significantly, the beam divergence angle a increases. That is, as shown in FIG. 6, the axial potential distribution rises to a maximum value within the electron beam passage hole 24 of the G3 electrode 22, and gradually decreases toward the G4 electrode 23. Then, the G4 electrode 23 and the G
The voltage rises continuously in the region of the G5 electrode 24 and reaches a high potential V within the G5 electrode 21 (~, becomes constant. For this reason,
A complex lens electric field is generated due to the involvement of the potentials of the G5 electrode 22, the G4 electrode 23, and the G5 electrode 21, and a substantially single thick main lens 25 is generated.

G4電極23内の軸上電位は従来の電子銃構成における
G3電極電位Vg3よりも低くなしうるから、焦点距離
を短小となしうる。このことは、ビーム形成部における
電位上昇を急峻に保ちながら虚像クロスオーバとメイン
レンズとの相互間距離を短小化できることを意味し、ビ
ーム発散角aが増大してもメインレンズ25でのビーム
径りを適正値に保つことが可能となる。そして、これを
(3)式に照らしてみると、ビーム径りを増すことなく
a−a(1を減少させ得るのであるから、ビームスポッ
ト径ds を縮小化しうろことが判かる。
Since the axial potential within the G4 electrode 23 can be made lower than the G3 electrode potential Vg3 in the conventional electron gun configuration, the focal length can be made short. This means that the distance between the virtual image crossover and the main lens can be shortened while maintaining a steep potential rise in the beam forming section, and even if the beam divergence angle a increases, the beam diameter at the main lens 25 This makes it possible to maintain the temperature at an appropriate value. If we compare this with equation (3), we can see that the beam spot diameter ds can be reduced because a-a(1) can be decreased without increasing the beam diameter.

発明の効果 以上のように本発明の受像管装置によると、ビーム形成
部における電位傾度を増大させたので、回部における球
面収差の低減および虚像クロスオーバ径の縮少効果が得
られ、しかも、メインレンズ電界はG3電極、G4電極
およびG5電極の3電極が関与して短焦点となるので、
ビーム発散角が増大するにもかかわらずメインレンズで
の電子ビーム径を適正値に保ち得るのであり、大ビーム
電流が流れる高輝度時においても径小のビームスポット
が生成され、良好な解像度特性を得ることができる。ま
た、電子銃が短小となるので、管の全長を短縮できると
いう利点がある。
Effects of the Invention As described above, according to the picture tube device of the present invention, since the potential gradient in the beam forming section is increased, it is possible to reduce the spherical aberration in the gyral section and the virtual image crossover diameter, and further, The main lens electric field involves three electrodes: G3 electrode, G4 electrode, and G5 electrode, and has a short focus.
Even though the beam divergence angle increases, the electron beam diameter at the main lens can be maintained at an appropriate value, and a beam spot with a small diameter is generated even at high brightness when a large beam current flows, resulting in good resolution characteristics. Obtainable. Furthermore, since the electron gun is short and small, there is an advantage that the total length of the tube can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の受像管装置の電子銃の電極構成図、第2
図は同電子銃の軸上電位分布図、第3図は同電子銃のビ
ーム形成部における動作態様説明図、第4図は02電極
と05電極との相互間距離に対するビーム発散角および
虚像クロスオーバ径の関係を示す特性図、第6図は本発
明を実施した受像管装置の電子銃の電極構成図、第6図
は同電子銃の軸上電位分布図である。 1・・・・・・陰極、2・・・・・・G1電極、3・・
・・・・G2電極、21・・・・・・G5電極、22・
・・・・・G3電極、23・・・・・・G4電極。
Figure 1 is a diagram of the electrode configuration of an electron gun in a conventional picture tube device;
The figure is an axial potential distribution diagram of the electron gun, Figure 3 is an explanatory diagram of the operation mode in the beam forming section of the electron gun, and Figure 4 is the beam divergence angle and virtual image cross with respect to the mutual distance between the 02 and 05 electrodes. FIG. 6 is a characteristic diagram showing the relationship between over diameters, FIG. 6 is an electrode configuration diagram of an electron gun of a picture tube device embodying the present invention, and FIG. 6 is an axial potential distribution diagram of the electron gun. 1... cathode, 2... G1 electrode, 3...
...G2 electrode, 21...G5 electrode, 22.
...G3 electrode, 23...G4 electrode.

Claims (1)

【特許請求の範囲】[Claims] 制御電極としての01 電極側から最終加速電極として
の05電極側へと順次に配設されたG2電極、G3電極
およびG4電極を備え、板状の05電極は高電位が与え
られるc−5電極に管内で接続され、筒状の04電極に
は前記高電位よりも低い数KV以下の電位が与えられ、
軸上電位分布はG3電極領域で極大値をとったあと04
電極領域にかけ漸減して極小値をとり、G4電極からG
5電極にいたる領域で連続的に上昇して、G5電極ない
し一電極の電位の関与により実質的に単一の厚肉メイン
レンズを生成することを特徴とする受像管装置。
G2, G3, and G4 electrodes are sequentially arranged from the 01 electrode as a control electrode to the 05 electrode as the final accelerating electrode, and the plate-shaped 05 electrode is a c-5 electrode to which a high potential is applied. is connected in the tube to the cylindrical 04 electrode, which is given a potential of several KV or less lower than the high potential,
The axial potential distribution reached its maximum value in the G3 electrode region, and then
It gradually decreases over the electrode area and reaches a minimum value, and
1. A picture tube device characterized in that the voltage rises continuously in the region up to the 5th electrode, and generates substantially a single thick main lens through the involvement of the potential of the G5 electrode or one electrode.
JP12251483A 1982-12-29 1983-07-05 Picture tube device Granted JPS6014733A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12251483A JPS6014733A (en) 1983-07-05 1983-07-05 Picture tube device
EP19830113068 EP0113113B1 (en) 1982-12-29 1983-12-23 Cathode ray tube
DE8383113068T DE3373746D1 (en) 1982-12-29 1983-12-23 Cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12251483A JPS6014733A (en) 1983-07-05 1983-07-05 Picture tube device

Publications (2)

Publication Number Publication Date
JPS6014733A true JPS6014733A (en) 1985-01-25
JPH0158823B2 JPH0158823B2 (en) 1989-12-13

Family

ID=14837730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12251483A Granted JPS6014733A (en) 1982-12-29 1983-07-05 Picture tube device

Country Status (1)

Country Link
JP (1) JPS6014733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337858B1 (en) * 1994-10-31 2002-10-25 삼성에스디아이 주식회사 Electron gun for color cathode ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337858B1 (en) * 1994-10-31 2002-10-25 삼성에스디아이 주식회사 Electron gun for color cathode ray tube

Also Published As

Publication number Publication date
JPH0158823B2 (en) 1989-12-13

Similar Documents

Publication Publication Date Title
JPS59148242A (en) Picture tube device
US4427917A (en) Television camera tube with electrostatic focusing
JPS6014733A (en) Picture tube device
JPH01258346A (en) Electron gun for cathode-ray tube
JPH0161220B2 (en)
JPS6226140B2 (en)
JPH0419661B2 (en)
EP0113113B1 (en) Cathode ray tube
JPH0415977B2 (en)
US5965973A (en) Electron gun for color cathode ray tube
JPS63198241A (en) Color cathode tube
JPS6051775B2 (en) cathode ray tube
KR910003949Y1 (en) Multi-step focusing electron gun
JPH04366533A (en) Electron gun for color cathode-ray tube
JPH08212938A (en) Electron gun for color cathode-ray tube
KR910005089B1 (en) Multi-step focusing electron gun
JPH056656U (en) Cathode ray tube
JPH09219156A (en) Electron gun for color cathode-ray tube
JPH04111141U (en) Electron gun for cathode ray tube
JP3053822B2 (en) Electron gun for picture tube
JPH0132622B2 (en)
JPH0237651A (en) Electron gun
JPH06162956A (en) Color cathode-ray tube
JP2001307655A (en) Color cathode-ray tube device
JPH076705A (en) Electron gun for cathode-ray tube