JPH0161220B2 - - Google Patents

Info

Publication number
JPH0161220B2
JPH0161220B2 JP23413082A JP23413082A JPH0161220B2 JP H0161220 B2 JPH0161220 B2 JP H0161220B2 JP 23413082 A JP23413082 A JP 23413082A JP 23413082 A JP23413082 A JP 23413082A JP H0161220 B2 JPH0161220 B2 JP H0161220B2
Authority
JP
Japan
Prior art keywords
electrode
potential
diameter
lens
main lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23413082A
Other languages
Japanese (ja)
Other versions
JPS59123140A (en
Inventor
Hiroshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP23413082A priority Critical patent/JPS59123140A/en
Priority to EP19830113068 priority patent/EP0113113B1/en
Priority to DE8383113068T priority patent/DE3373746D1/en
Publication of JPS59123140A publication Critical patent/JPS59123140A/en
Publication of JPH0161220B2 publication Critical patent/JPH0161220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/488Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高輝度時においても高い解像度が得
られるように構成した受像管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a picture tube device configured to provide high resolution even at high brightness.

従来例の構成とその問題点 一般に、受像管の解像度は絵素となるビームス
ポツト(輝点)の大きさに依存し、ビームスポツ
ト径が小さいほど高い解像度が得られる。一方、
ビームスポツトはビーム電流の増大に伴つて径大
化するので、比較的大きいビーム電流が流れる高
輝度時にブルーミングを生じて解像度が低下す
る。
Conventional Structure and Problems Therein Generally, the resolution of a picture tube depends on the size of a beam spot (bright spot) serving as a picture element, and the smaller the diameter of the beam spot, the higher the resolution can be obtained. on the other hand,
Since the diameter of the beam spot increases as the beam current increases, blooming occurs at high brightness times when a relatively large beam current flows, resulting in a decrease in resolution.

これを図面により説明すると、第1図にはバイ
ポテンシヤル形電子銃の電極構成が示されてお
り、第2図には同電子銃の軸上電位分布が示され
ている。陰極1から放射された熱電子は、陰極
1、制御電極としてのG1電極2および加速電極
としてのG2電極3からなる三極部で生成される
いわゆるカソードレンズ4によりクロスオーバ5
をつくり、G2電極3と集束電極たるG3電極6と
の間に生成されるプリフオーカスレンズ7で予備
集束作用を受ける。そしてG3電極6と最終加速
電極たるG4電極8との間に生成されるメインレ
ンズ9で最終的な集束作用を受け、螢光体スクリ
ーン面10に射突してビームスポツト11を生成
するのであり、ビームスポツト11はクロスオー
バ5の投影像である。
To explain this with the drawings, FIG. 1 shows the electrode configuration of a bipotential electron gun, and FIG. 2 shows the axial potential distribution of the electron gun. Thermionic electrons emitted from the cathode 1 are passed through a crossover 5 by a so-called cathode lens 4 generated in a triode consisting of the cathode 1, the G1 electrode 2 as a control electrode, and the G2 electrode 3 as an accelerating electrode.
A prefocusing lens 7 is formed between the G2 electrode 3 and the G3 electrode 6, which is a focusing electrode, to perform a prefocusing action. The main lens 9 formed between the G3 electrode 6 and the G4 electrode 8, which is the final accelerating electrode, receives the final focusing action and impinges on the phosphor screen surface 10 to generate a beam spot 11. The beam spot 11 is a projected image of the crossover 5.

陰極1からG3電極6にいたる軸上電位分布は
ゆるやかに上昇し、これによりカソードレンズ4
およびプリフオーカスレンズ7が生成されるが、
両レンズ4,7は明確に区別し難いので、以下の
説明ではこの両レンズ領域をビーム形成部と呼称
する。G3電極6内における軸上電位分布はVfpc
略一定であるが、G3電極6とG4電極8との間に
おける軸上電位は高電位Vaへと急激に上昇し、
ここにメインレンズ9が生成される。
The axial potential distribution from the cathode 1 to the G3 electrode 6 rises gradually, and this causes the cathode lens 4 to
and prefocus lens 7 is generated,
Since both lenses 4 and 7 are difficult to clearly distinguish, in the following description, these two lens regions will be referred to as a beam forming section. The axial potential distribution within the G 3 electrode 6 is approximately constant at V fpc , but the axial potential between the G 3 electrode 6 and the G 4 electrode 8 rapidly increases to a high potential V a .
The main lens 9 is generated here.

前記ビーム形成部での熱電子の挙動は非常に複
雑であるが、大ビーム電流時には第3図に数本の
線でもつて代表的に示す電子軌道12〜17を通
る。電子軌道12〜17がすべて一点で交差すれ
ば理想的な径小のクロスオーバおよびビームポツ
トが生成されるのであるが、実際には陰極1の中
央部から放射された熱電子の軌道12,13は陰
極1からもつとも遠い位置18で交差し、陰極1
の周辺部から放射された熱電子の軌道16,17
は陰極1に近い位置19で交差する。これは前記
ビーム形成部でのレンズに球面収差が伴つている
からで、実際上のクロスオーバの径は、理論的限
界値に比べて著しく大きい値となる。
The behavior of the thermoelectrons in the beam forming section is very complicated, but when the beam current is large, the electrons pass through electron trajectories 12 to 17, which are representatively shown by several lines in FIG. If the electron trajectories 12 to 17 all intersect at one point, an ideal small-diameter crossover and beam spot will be generated, but in reality, the trajectories 12 and 13 of the hot electrons emitted from the center of the cathode 1 are It intersects at the farthest position 18 from the cathode 1, and the cathode 1
Trajectories 16, 17 of thermionic electrons emitted from the periphery of
intersect at position 19 close to cathode 1. This is because the lens in the beam forming section is accompanied by spherical aberration, and the actual diameter of the crossover is significantly larger than the theoretical limit value.

そして、このクロスオーバがメインレンズ9に
よつて螢光体スクリーン面10上に投影されるの
であるが、正確にはプリフオーカスレンズ7が存
在するために、第3図に示すように実際に投影さ
れるものはクロスオーバ(径d)の虚像であり、
この虚像クロスオーバは第3図中に破線で示した
ように電子軌道12〜17を逆方向へ延長させた
ときの交点として求められる。
Then, this crossover is projected onto the phosphor screen surface 10 by the main lens 9, but precisely because of the presence of the prefocus lens 7, it is actually projected as shown in FIG. What is projected is a virtual image of crossover (diameter d),
This virtual image crossover is obtained as the intersection point when the electron trajectories 12 to 17 are extended in opposite directions, as shown by broken lines in FIG.

いま、虚像クロスオーバの直径をdpとすると、
螢光体スクリーン面10に生じるビームスポツト
11の径dsは次の関係式で表わすことができる。
Now, if the diameter of the virtual image crossover is d p , then
The diameter ds of the beam spot 11 produced on the phosphor screen surface 10 can be expressed by the following relational expression.

ds=dp×M+1/4CsD3 ……(1) ここでMはメインレンズの倍率、Csはメインレ
ンズの球面収差係数、Dはメインレンズでの電子
ビームの拡がり径を示し、Mは次式で表わされ
る。
d s = d p × M + 1/4 C s D 3 ...(1) Here, M is the magnification of the main lens, C s is the spherical aberration coefficient of the main lens, D is the spread diameter of the electron beam at the main lens, M is expressed by the following formula.

M=2L・a/D√Vfpc/Va ……(2) ただし、aはビーム形成部から出る電子ビーム
の最大発散角、Lはメインレンズaの中心と螢光
体スクリーン面10との間の距離、VfpcはG3電極
電位、VaはG4電極電位を示す。
M=2L・a/D√V fpc /V a ...(2) However, a is the maximum divergence angle of the electron beam emitted from the beam forming section, and L is the angle between the center of the main lens a and the phosphor screen surface 10. The distance between them, V fpc is the G 3 electrode potential, and V a is the G 4 electrode potential.

(2)式を(1)式に代入すると ds=a・dp/D(2L√Vfpc/Va)+1/4CsD3
…(3) となる。
Substituting equation (2) into equation (1), d s = a・d p /D (2L√V fpc /V a ) + 1/4C s D 3 ...
…(3) becomes.

この式の( )内は受像管のサイズと動作条件
とによつて決まり、Csは使用するレンズの口径に
よつて決まる。
The value in parentheses in this equation is determined by the size of the picture tube and the operating conditions, and C s is determined by the aperture of the lens used.

電子ビームの拡がり径Dは、第1項ではD-1
第2項ではD3のかたちで入つているから、ds
最小となるようなDの値が存在し、通常はその値
に選ばれる。そして、このような制約のもとでds
を小さくしようとすると、第1項のa・dpを小さ
くしなければならないことになる。
The spread diameter D of the electron beam is D -1 in the first term,
In the second term, it is entered in the form of D 3 , so there is a value of D that minimizes d s , and that value is usually selected. Then, under these constraints, d s
If you try to make it smaller, you will have to make the first term a・d p smaller.

本発明者らの研究結果によると、G2電極とG3
電極との間の電位の上昇を急峻にするとa・dp
小さくすることができる。第4図はG2電極とG3
電極との間隔を小さくしたときにa・dpが減少す
る様子を示したもので、aとdpとが単独でどのよ
うに変化するかがわかる。G2電極とG3電極との
間隔を小さくするとdpは著しく減少し、aは逆に
増大するが、dpの減少度合がより著しいので両者
の積a・dpは減少する。dpがこのように減少する
のは、電位の上昇が急峻になるとビーム形成部に
おけるレンズの球面収差が減少するためである。
According to the research results of the present inventors, G 2 electrode and G 3
By making the rise in potential between the electrodes steeper, a·d p can be reduced. Figure 4 shows G 2 electrode and G 3
This figure shows how a·d p decreases when the distance between the electrodes is reduced, and it can be seen how a and d p change independently. When the distance between the G 2 electrode and the G 3 electrode is reduced, d p decreases significantly and a increases, but since the degree of decrease in d p is more significant, the product a·d p of both decreases. The reason why d p decreases in this way is that the spherical aberration of the lens in the beam forming section decreases when the potential rises steeply.

このような効果がはつきりと現われるのは、電
位傾度で約105V/cmからであり、この値が大き
いほど大電流時におけるビームスポツトの径小化
に有利である。しかし小電流時ビームスポツト径
は逆に大きくなる。また、電位傾度が大きくなり
過ぎると、G2電極の表面から電界放出による電
子放射が起り、これが螢光体スクリーン面に射突
して不本意な発光を生じる。
Such an effect clearly appears at a potential gradient of about 10 5 V/cm, and the larger this value is, the more advantageous it is to reducing the diameter of the beam spot when a large current is applied. However, when the current is small, the beam spot diameter becomes larger. Furthermore, if the potential gradient becomes too large, electron emission occurs from the surface of the G 2 electrode due to field emission, which impinges on the phosphor screen surface and causes unwanted light emission.

このように実用可能な電位傾度には上限があ
り、その値は実験結果によると約5×105V/cm
である。G2電極とG3電極との電位差を8KVとす
ると、前記値の電位傾度を与えうるG2電極とG3
電極との間隔は0.8mmから0.16mmとなる。
In this way, there is an upper limit to the practical potential gradient, and according to experimental results, the value is approximately 5 × 10 5 V/cm.
It is. If the potential difference between the G 2 electrode and the G 3 electrode is 8KV, the G 2 electrode and the G 3 electrode can give a potential gradient of the above value.
The distance between the electrodes is 0.8 mm to 0.16 mm.

しかし、このような電位傾度を従来の受像管電
子銃のビーム形成部にそのまま適用しても、螢光
体スクリーン面上でのビームスポツト径を縮小さ
せ得ない。それは、G2−G3間電位傾度を高める
とビーム発散角aが増大するためである。ビーム
発散角aが増大すると、メインレンズ9での電子
ビーム径Dが増大し、(3)式右辺第2項のメインレ
ンズ収差による寄与分が増大する。そして同第2
項はDの三乗に比例するので、電子ビーム径Dの
わずかな増大でも影響が大きく、(3)式第1項の
a・dpをせつかく減小させても、ビームスポツト
径dsはかえつて増大する結果となる。
However, even if such a potential gradient is directly applied to the beam forming section of a conventional picture tube electron gun, the beam spot diameter on the phosphor screen surface cannot be reduced. This is because increasing the potential gradient between G 2 and G 3 increases the beam divergence angle a. When the beam divergence angle a increases, the electron beam diameter D at the main lens 9 increases, and the contribution of the main lens aberration in the second term on the right side of equation (3) increases. And the second
Since the term is proportional to the cube of D, even a slight increase in the electron beam diameter D has a large effect, and even if a・d p in the first term of equation (3) is reduced, the beam spot diameter d On the contrary, the result is an increase.

電子ビーム径Dの増大は、G3電極の長さを小
さくすることによつて避けられるが、フオーカス
条件を満すためにG3電極を短かくした分だけメ
インレンズ集点距離を短かくすることが必要とな
り、そのためにはG3電極電位を下げなければな
らない。そうすると、G2−G3間電位傾度が下つ
てしまい、電極間隔をせつかく狭めたにもかかわ
らずa・dpの低減効果は失われてしまう。
An increase in the electron beam diameter D can be avoided by reducing the length of the G3 electrode, but in order to satisfy the focus condition, the main lens focusing distance should be shortened by the length of the G3 electrode. This requires lowering the G 3 electrode potential. In this case, the potential gradient between G 2 and G 3 decreases, and the effect of reducing a·d p is lost even though the electrode spacing is diligently narrowed.

発明の目的 本発明は、前述のような従来の不都合を除去す
るためになされたもので、低輝度域から高輝度域
まで略一定径のビームスポツトが得られる受像管
装置を提供するものである。
Purpose of the Invention The present invention was made to eliminate the above-mentioned conventional disadvantages, and provides a picture tube device that can obtain a beam spot with a substantially constant diameter from a low brightness region to a high brightness region. .

発明の構成 本発明の受像管装置は、制御電極としてのG1
電極側から最終加速電極としてのG6電極側へと
順次に配設されたG2電極、G3電極、G4電極およ
びG5電極を備え、G3電極は平板状となされ、G2
電極とG3電極との間隔をこの2電極間電位傾度
が105V/cm〜5×105V/cmとなるように設定さ
れる。そして、G4電極にはG3電極およびG5電極
に対するフオーカス電位よりも低い電位を与える
のであり、軸上電位分布はG3電極領域で極大値
をとつたあとG4電極領域にかけ漸減して極小値
をとり、G4電極からG6電極にいたる領域で連続
的に上昇して、G3電極ないしG6電極電位の関与
により実質的に単一の厚肉メインレンズを生成さ
せるのであり、これを以下図面に示した実施例と
ともに詳しく説明する。
Structure of the Invention The picture tube device of the present invention has G 1 as a control electrode.
The G 2 electrode, the G 3 electrode, the G 4 electrode, and the G 5 electrode are arranged sequentially from the electrode side to the G 6 electrode side as the final accelerating electrode .
The distance between the electrode and the G 3 electrode is set so that the potential gradient between the two electrodes is 10 5 V/cm to 5×10 5 V/cm. Then, a potential lower than the focus potential for the G 3 and G 5 electrodes is applied to the G 4 electrode, and the axial potential distribution reaches a maximum value in the G 3 electrode region and then gradually decreases toward the G 4 electrode region. It takes a minimum value, rises continuously in the region from the G 4 electrode to the G 6 electrode, and substantially generates a single thick main lens due to the involvement of the G 3 electrode to the G 6 electrode potential. This will be explained in detail below along with embodiments shown in the drawings.

実施例の説明 第5図に示す電子銃は、制御電極としてのG1
電極2側から最終加速電極としてのG6電極21
側へと順次に配設されたG2電極3、G3電極22、
G4電極23およびG5電極24を備えている。G2
電極3は従来の電子銃における加速電極と同様の
構造を有しており、G2電極3に隣接する平板状
のG3電極22は、G2電極3に対し105V/cm〜5
×105V/cmの電位傾度となるように近接配置さ
れている。
DESCRIPTION OF EMBODIMENTS The electron gun shown in FIG.
G6 electrode 21 as the final acceleration electrode from the electrode 2 side
G 2 electrode 3, G 3 electrode 22 arranged sequentially toward the side;
A G 4 electrode 23 and a G 5 electrode 24 are provided. G 2
The electrode 3 has a structure similar to the accelerating electrode in a conventional electron gun, and the flat G 3 electrode 22 adjacent to the G 2 electrode 3 has a voltage of 10 5 V/cm to 5
They are placed close together so that the potential gradient is ×10 5 V/cm.

G4電極23、G5電極24およびG6電極21は
いずれも円筒状のもので、G3電極22とG5電極
24とは管内で相互に接続されていて6KV〜
10KV程度のフオーカス電位(Vfpc)が与えられ
る。また、G4電極23にはフオーカス電位
(Vfpc)よりも低い電位が与えられ、G6電極21
には約30KVの高電位(Va)が与えられる。
The G 4 electrode 23, the G 5 electrode 24, and the G 6 electrode 21 are all cylindrical, and the G 3 electrode 22 and the G 5 electrode 24 are connected to each other inside the tube and have a voltage of 6KV~
A focus potential (V fpc ) of about 10 KV is applied. Further, a potential lower than the focus potential (V fpc ) is applied to the G 4 electrode 23, and a potential lower than the focus potential (V fpc ) is applied to the G 6 electrode 21.
A high potential (V a ) of approximately 30 KV is applied to the

このような構成によると、ビーム形成部におけ
る軸上電位分布は急峻に上昇し、大ビーム電流時
のa・dpが著しく減少する一方、ビーム発散角a
が増大する。すなわち、第6図に示すように軸上
電位分布はG3電極22の電子ビーム通過孔25
内でフオーカス電位(Vfpc)まで上昇し、その後
G4電極23にかけて漸減する。そして、G4電極
23、G5電極24およびG6電極21の3電極に
またがる領域で連続的に上昇し、G6電極21内
で高電位(Va)に達する。このため、G3電極2
2、G4電極23、G5電極24およびG6電極21
の電位が関与して広い範囲にわたりレンズ電界が
生じるのであるが、G3電極は平板状であるので、
実質的に単一の厚肉のメインレンズ26が生成さ
れる。
With such a configuration, the axial potential distribution in the beam forming section rises steeply, and a・dp decreases markedly at the time of large beam current, while the beam divergence angle a
increases. That is, as shown in FIG. 6, the axial potential distribution is
rises to the focus potential (V fpc ) within
It gradually decreases toward the G4 electrode 23. Then, it rises continuously in a region spanning the three electrodes of the G 4 electrode 23, the G 5 electrode 24, and the G 6 electrode 21, and reaches a high potential (V a ) within the G 6 electrode 21. For this reason, G 3 electrode 2
2. G 4 electrode 23, G 5 electrode 24 and G 6 electrode 21
A lens electric field is generated over a wide range due to the potential involved, but since the G3 electrode is flat,
A substantially single thick main lens 26 is produced.

G4電極23内の軸上電位はフオーカス電位
(Vfpc)よりも低いから、従来の電子銃構成に比
して集点距離が短小となる。このことは、ビーム
形成部における電位上昇を急峻に保ちながら虚像
クロスオーバとメインレンズとの相互間距離を短
小化できることを意味し、ビーム発散角aが増大
してもメインレンズ26でのビーム径Dを適正値
に保つことが可能となる。そして、これを(3)式に
照らしてみると、ビーム径Dを増すことなくa・
dpを減少させ得るのであるから、ビームスポツト
径dsを縮小化しうることが判かる。
Since the axial potential within the G 4 electrode 23 is lower than the focus potential (V fpc ), the focal point distance is shorter than in the conventional electron gun configuration. This means that the distance between the virtual image crossover and the main lens can be shortened while maintaining a steep potential rise in the beam forming section, and even if the beam divergence angle a increases, the beam diameter at the main lens 26 It becomes possible to maintain D at an appropriate value. If we compare this with equation (3), we can see that without increasing the beam diameter D, a.
Since d p can be reduced, it is understood that the beam spot diameter d s can be reduced.

また、メインレンズ26のレンズ電界が広い範
囲にわたつてゆるやかに分布するため、メインレ
ンズの球面収差は少なく、これは(3)式の第2項の
収差係数Csが小さくなることを意味するから、こ
の効果によつてもビームスポツト径dsは小さくな
る。
Furthermore, since the lens electric field of the main lens 26 is distributed gently over a wide range, the spherical aberration of the main lens is small, which means that the aberration coefficient C s in the second term of equation (3) becomes small. Therefore, this effect also reduces the beam spot diameter ds .

発明の効果 以上のように本発明の受像管装置によると、ビ
ーム形成部におけるレンズ球面収差の減小、虚像
クロスオーバの径小化およびメインレンズ球面収
差の減少という効果があいまつて、大ビーム電流
時においても径小のビームスポツトが得られ、良
好な解像度特性を得ることができる。
Effects of the Invention As described above, according to the picture tube device of the present invention, the effects of reducing lens spherical aberration in the beam forming section, reducing the diameter of the virtual image crossover, and reducing the main lens spherical aberration can be achieved, and a large beam current can be achieved. Even at times, a beam spot with a small diameter can be obtained, and good resolution characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の受像管装置の電子銃電極構成を
示す図、第2図は同電子銃の軸上電位分布図、第
3図は同電子銃のビーム形成部における動作態様
説明図、第4図はG2電極とG3電極との相互間距
離に対するビーム発散角および虚像クロスオーバ
径の関係を示す特性図、第5図は本発明を実施し
た受像管装置の電子銃の電極構成を示す図、第6
図は同電子銃の軸上電位分布図である。 1……陰極、2……G1電極、3……G2電極、
21……G6電極、22……G3電極、23……G4
電極、24……G5電極。
FIG. 1 is a diagram showing the electron gun electrode configuration of a conventional picture tube device, FIG. 2 is an axial potential distribution diagram of the electron gun, and FIG. 3 is an explanatory diagram of the operation mode in the beam forming section of the electron gun. Figure 4 is a characteristic diagram showing the relationship between the beam divergence angle and the virtual image crossover diameter with respect to the mutual distance between the G 2 electrode and the G 3 electrode, and Figure 5 shows the electrode configuration of the electron gun of the picture tube device in which the present invention is implemented. Figure shown, No. 6
The figure is an axial potential distribution diagram of the electron gun. 1... cathode, 2... G 1 electrode, 3... G 2 electrode,
21...G 6 electrodes, 22...G 3 electrodes, 23...G 4
Electrode, 24...G 5 electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 制御電極としてのG1電極側から最終加速電
極としてのG6電極側へと順次に配設されたG2
極、G3電極、G4電極およびG5電極を備え、G3
極は平板状のもので、G2電極とG3電極との間隔
はこの2電極間電位傾度が105V/cm〜5×
105V/cmとなるように設定され、G4電極にはG3
電極およびG5電極に対するフオーカス電位より
も低い電位が与えられ、軸上電位分布はG3電極
領域で極大値をとつたあとG4電極領域にかけ漸
減して極小値をとり、G4電極からG6電極にいた
る領域で連続的に上昇してG3電極ないしG6電極
電位の関与により実質的に単一の厚肉メインレン
ズを生成することを特徴とする受像管装置。
1 Equipped with a G2 electrode, a G3 electrode, a G4 electrode , and a G5 electrode arranged sequentially from the G1 electrode side as a control electrode to the G6 electrode side as a final acceleration electrode, and the G3 electrode is a flat plate. The distance between the G 2 electrode and the G 3 electrode is such that the potential gradient between the two electrodes is 10 5 V/cm ~ 5 ×
10 5 V/cm, and the G 4 electrode has a G 3
A potential lower than the focus potential is applied to the electrode and the G5 electrode, and the axial potential distribution reaches a maximum value in the G3 electrode area, then gradually decreases to a minimum value in the G4 electrode area, and from the G4 electrode to the G5 electrode. A picture tube device characterized in that the potential of the G3 electrode or the G6 electrode increases continuously in the region up to the 6th electrode to generate a substantially single thick main lens.
JP23413082A 1982-12-29 1982-12-29 Picture tube device Granted JPS59123140A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23413082A JPS59123140A (en) 1982-12-29 1982-12-29 Picture tube device
EP19830113068 EP0113113B1 (en) 1982-12-29 1983-12-23 Cathode ray tube
DE8383113068T DE3373746D1 (en) 1982-12-29 1983-12-23 Cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23413082A JPS59123140A (en) 1982-12-29 1982-12-29 Picture tube device

Publications (2)

Publication Number Publication Date
JPS59123140A JPS59123140A (en) 1984-07-16
JPH0161220B2 true JPH0161220B2 (en) 1989-12-27

Family

ID=16966102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23413082A Granted JPS59123140A (en) 1982-12-29 1982-12-29 Picture tube device

Country Status (1)

Country Link
JP (1) JPS59123140A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799673B2 (en) * 1983-07-22 1995-10-25 株式会社東芝 Electron gun for cathode ray tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489472A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron gun for cathode-ray tube
JPS5472667A (en) * 1977-11-22 1979-06-11 Toshiba Corp Electron gun for cathode ray tube

Also Published As

Publication number Publication date
JPS59123140A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
EP0117475B1 (en) Cathode ray tube
JPH0161220B2 (en)
JPH0158823B2 (en)
JPH0419661B2 (en)
US5434471A (en) Electron gun having focusing electrode and anode with a plurality of straight line segments
JPH0415977B2 (en)
EP0113113B1 (en) Cathode ray tube
JP3672390B2 (en) Electron gun for color cathode ray tube
JPS6226140B2 (en)
JPH0118536B2 (en)
JPS63198241A (en) Color cathode tube
KR910003949Y1 (en) Multi-step focusing electron gun
JP3735378B2 (en) Cathode ray tube
JPH056656U (en) Cathode ray tube
JPH04366533A (en) Electron gun for color cathode-ray tube
JPS5815901B2 (en) Denshijiyuusouchi
JP3673024B2 (en) Electron gun
JPH0138347B2 (en)
JPS6321084Y2 (en)
JPH0132622B2 (en)
JPH0146985B2 (en)
JPS5815900B2 (en) Denshijiyuusouchi
JPH09134680A (en) Color picture tube device
JP2000306522A (en) Electron gun structure
JPH0564410B2 (en)