JPS60144601A - Multidimensional measuring machine - Google Patents

Multidimensional measuring machine

Info

Publication number
JPS60144601A
JPS60144601A JP64584A JP64584A JPS60144601A JP S60144601 A JPS60144601 A JP S60144601A JP 64584 A JP64584 A JP 64584A JP 64584 A JP64584 A JP 64584A JP S60144601 A JPS60144601 A JP S60144601A
Authority
JP
Japan
Prior art keywords
measured
axial
axis
support surface
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP64584A
Other languages
Japanese (ja)
Inventor
Yukihiro Sakata
幸寛 坂田
Norinaga Fujii
宣良 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP64584A priority Critical patent/JPS60144601A/en
Publication of JPS60144601A publication Critical patent/JPS60144601A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To fix a body to be measured by a fixing means and to take a measurement of size in various directions by supporting the body at the upper side of a horizontal base movably in three dimensions and detecting the extent of the movement displacement. CONSTITUTION:The body 13 to be detected is supported at the upper side of the horizontal base 11 movable in three dimensions through a moving mechanism 12. An X-axial slider 16 is supported movably on an X-axial rail 14 arranged on the horizontal base 11 in the X-axial direction. Both ends of a perpendicular base 21 stood fixedly on the X-axial slider 16 support an Y-axial rail 22, and an Y- axial slider 23 is supported on its round shaft material movably in the Y-axial direction. The body moves on a Z-axial rail 31 in the Z-axial direction by operating a feed handle 34 fitted to the Y-axial slider 23. Three-dimensional detection signals of the detected body 13 from respective displacement detectors 18, 25, and 35 are sent to a data processor 38 through a cord 37 and the data processor 38 display the measured values.

Description

【発明の詳細な説明】 [技術分野] 本発明は、被測定物の種々の方向の寸法等を測定する多
次元測定機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a multidimensional measuring machine that measures the dimensions of an object to be measured in various directions.

[背景技術] 各種分野における高精度化の請求に伴ない、各種部品類
等も益々多種多用化しており、これら多用な部品類の検
査に際しては、1次元的検査(測定)から2次元、更に
は3次元へと多次元的検査に重点が移行されつつある。
[Background technology] With the demand for higher precision in various fields, various types of parts are being used more and more, and when inspecting these widely used parts, it is necessary to move from one-dimensional inspection (measurement) to two-dimensional and even more. The focus is now shifting to three-dimensional and multidimensional examinations.

このような・多次元的検査の要請に応するため、タッチ
信号プa−ブや光学的センサ等の被測定物を検知する検
知体を多次元的に移動させ、その際の移動変位にを機械
的、電気的、或いは光学的等の各種の変位検出器で検出
し、これにより被測定物の所望の寸法等を得ることので
きる多次元測定機が従来より知られている。
In order to meet the demands for such multidimensional inspection, we move the sensing object that detects the object to be measured, such as a touch signal probe or an optical sensor, multidimensionally, and take into account the displacement at that time. 2. Description of the Related Art Multidimensional measuring machines that can detect desired dimensions of an object to be measured using various types of displacement detectors, such as mechanical, electrical, or optical, have been known.

ところで、第1図には従来の多次元測定機としての3次
元測定機の最も一般的な構造が示されている。この図に
おいて、検知体lは2軸スピンドル2に2軸方向に沿っ
て移動自弁に支持され、2軸スピンドル2はX軸レール
3にX軸方向に沿って移動自在に支持され、このX軸レ
ール3はその両端側においてy軸レール4にyM力方向
沿って移動自在に支持され、これにより、検知体1は互
いに直交する3軸方向に沿って移動自在に支持され恒い
る。また、y軸レール4は4木のコラム5により支持さ
れるとともに、これら4本のコラム5により基台6の周
囲が取り囲まれ、基台6上には被測定物7が載置される
支持台(定盤)8が支持されている。しかしながら、こ
のような従来構造にあっては次のような問題点が指摘さ
れる場合。
By the way, FIG. 1 shows the most general structure of a three-dimensional measuring machine as a conventional multidimensional measuring machine. In this figure, the sensing body 1 is supported by a self-valve movable along two axes on a two-axis spindle 2, and the two-axis spindle 2 is supported on an X-axis rail 3 so as to be movable along the X-axis direction. The rail 3 is supported at both ends by the y-axis rail 4 so as to be movable along the yM force direction, so that the sensing body 1 is supported movably along three axial directions orthogonal to each other. In addition, the y-axis rail 4 is supported by four wooden columns 5, and a base 6 is surrounded by these four columns 5, and a support on which an object to be measured 7 is placed is placed on the base 6. A stand (surface plate) 8 is supported. However, in such a conventional structure, the following problems may be pointed out.

があった。was there.

1)支持台8上に被測定物7を水平に載置させるととも
に被測定物7の四方にコラム5が被測定物7を取り囲む
ようにして配置された構造であるため、被測定物7の大
ぎさに対して装置全体が過大となり、別言すれば、装置
全体の大きさの割には小さな被測定物7しか測定できな
い。
1) The object to be measured 7 is placed horizontally on the support stand 8, and the columns 5 are arranged on all sides of the object to be measured 7 so as to surround the object to be measured. In other words, the entire device becomes too large compared to the size of the device, and in other words, only the object 7 to be measured can be measured, which is small compared to the size of the entire device.

(≧)被測定物7がコラム5により取り囲まれ、更に、
被測定物7の上方にはX軸レール3やy゛ 軸レール4
が覆い被さるような構成であるため、被測定物7の支持
台8への取り付けや取り外し、更には、測定姿勢等にも
大きな制約を受けるなど、使用に際しての不利不便が生
ずる場合がある。
(≧) The object to be measured 7 is surrounded by the column 5, and further,
Above the object to be measured 7 are the X-axis rail 3 and the y-axis rail 4.
Since the structure is such that the object to be measured 7 is covered, there may be disadvantages and inconveniences during use, such as severe restrictions on attachment and removal of the object to be measured 7 from the support base 8, as well as on the measurement posture.

■被測定物7を水平にして支持台8上に載置するもので
あるため、また、前述のように被測i物7に対して測定
者が必ずしも自由側と近づいて自由な角度から測定を行
なうことが;きない□場合があるため、測定箇所の目視
確認等に劣る。
■Since the object to be measured 7 is placed horizontally on the support stand 8, as mentioned above, the measurer does not necessarily approach the object to be measured 7 from the free side and measure from a free angle. This method is inferior to visual confirmation of the measurement location because it may not be possible to do so.

(船、測定精度を確保するためにX軸レール3、y軸レ
ール4、コラム5等を堅牢なものとしなければならず、
高価であり、大型化し易く、経済的・或いは設置場所の
確保上不利である。
(In order to ensure measurement accuracy on ships, the X-axis rail 3, y-axis rail 4, column 5, etc. must be made robust,
It is expensive, tends to be large-sized, and is disadvantageous in terms of economy and securing a space for installation.

従って、被測定物7が板金製品、プリント基板等の偏平
で比較的面積の広いものである場合には、極めて大きな
問題であった。
Therefore, this is a very serious problem when the object 7 to be measured is a flat object having a relatively large area, such as a sheet metal product or a printed circuit board.

し発明の目的] 本発明の(」的は、被測定物の大きさに対して装置゛全
体が過大とならず、構造が簡単であり、測定姿勢や設置
場所等についての大きな制約を受けることか少なく、特
に、板金等の偏平で比較的面積の広い被測定物の測定に
好適な多次元測定機を提供することにある。 □ ・ 
□ [発明の構成] ゛そのため、本発明は、水平基台と、被測定物を検知す
る検知体を萌配水平基台の上部側において3次元方向に
移動可能に支持する移動機構と、検知体の移動変位量を
検出′する。変位検出器と、被測定物を支持する垂直な
支持面を有・するとともに、前記移動機構(i対向配設
された被測定物支持台と、前記支持面に被測定物を固定
する被測定物固定手段と、を備えさせ、板金等の偏平で
比較的面積の広い形状等の被測定物を前記被測定物固定
手段を介して前記支持面上に垂直に固定させた状態で、
前記移動機構により検知体を移動させながら被測定物の
適宜位置に当接させる等して被測定物の所望の寸法を得
ることを可゛能に′して前記目的を達成しようとするも
のである。
OBJECT OF THE INVENTION] The object of the present invention is that the entire device does not become too large for the size of the object to be measured, that the structure is simple, and that there are no major restrictions on measurement posture, installation location, etc. The object of the present invention is to provide a multidimensional measuring machine suitable for measuring objects with a relatively large surface area, such as sheet metal, which are flat and relatively large in area.
□ [Structure of the Invention] ゛Therefore, the present invention comprises a horizontal base, a moving mechanism that supports a sensing body that detects an object to be measured so that it can move in three dimensions on the upper side of the horizontal base; The amount of displacement of the body is detected. It has a displacement detector, a vertical support surface for supporting the object to be measured, and the moving mechanism (i) includes an object support stand arranged opposite to the object to be measured, and a object to be measured for fixing the object to the support surface. an object fixing means, and a measured object such as a flat and relatively large-area sheet metal object is vertically fixed onto the support surface via the measured object fixing means,
The object is to be achieved by making it possible to obtain the desired dimensions of the object to be measured by moving the sensing body using the moving mechanism and bringing it into contact with an appropriate position of the object to be measured. be.

[実施例の説明] 以下、本発明の実施例を図面に基づいて説明する。[Explanation of Examples] Embodiments of the present invention will be described below based on the drawings.

第2図には本発明に係る多次元測定機の一実施例が示さ
れ、図中、水平基台11の上部側には移動機構12を介
して検知体13が3次元方向に移動可能に支持されてい
る。
FIG. 2 shows an embodiment of the multidimensional measuring machine according to the present invention, and in the figure, a sensing body 13 is mounted on the upper side of a horizontal base 11 via a moving mechanism 12 so as to be movable in three-dimensional directions. Supported.

前記移動機構12はX軸レール14を有し、こ ゛のX
軸レール14は水平基台ll上にX軸方向に沿って配置
されている。X軸レール14は互いに千1テな2本の丸
軸材等よりなり、これら丸軸材は固定ブロフク15を介
して水平基台11の上端面に固定されている。 −−−
− これらX軸レール14にはX軸スライダ16が移動自在
に支持されるとともに、X軸レール14を構成する一方
の丸軸材には送りラックが刻設され、また、X軸スライ
ダ16にはこの送りラックに噛合するピニオン(図示せ
ず)が回転自在に内蔵され、送り/\ントル17を操作
して11j記ピニオンを回転させることによりX軸スラ
イタI6をXも11シール14に“沿つ゛て移動させ得
るよう1こなっている。また、X輔スライタ16にはX
軸変位検出器18か内蔵され、このX軸変位検出器18
jこよりX輔スライタ16の移動変位量が検出されるよ
うになっている。このX軸変位検出器lBl±、例えは
ロータリ式の光1に型、磁気型等のエンコータであり、
前記他力の丸軸材に刻設された検出器用う、りに噛合す
るロータリ用ピニオンにより前記エンコータが駆動され
てX軸スライグ16の移動変位端が高精度検出され得る
ようになってむ)る。
The moving mechanism 12 has an X-axis rail 14, and this
The shaft rail 14 is placed on the horizontal base 11 along the X-axis direction. The X-axis rail 14 is made up of two round shaft members, etc., which are 1,100 degrees apart from each other, and these round shaft members are fixed to the upper end surface of the horizontal base 11 via a fixed block 15. ---
- An X-axis slider 16 is movably supported on these X-axis rails 14, and a feed rack is carved on one of the round shafts constituting the X-axis rail 14, and the X-axis slider 16 is A pinion (not shown) that meshes with this feed rack is rotatably built in, and by operating the feed/\\torque 17 and rotating the pinion 11j, the X-axis slider I6 is moved along the X-axis seal 14. In addition, the X slider 16 has an
An axis displacement detector 18 is built-in, and this X-axis displacement detector 18
The amount of displacement of the X-slider 16 is detected from this point. This X-axis displacement detector lBl± is, for example, a rotary optical type encoder, a magnetic type encoder, etc.
The encoder is driven by a rotary pinion that meshes with a detector groove carved on the externally-powered round shaft material, so that the displacement end of the X-axis slig 16 can be detected with high precision.) Ru.

X輔スライグ16には鉛直台21か立設固定され、鉛直
台21の両端にはY軸シール22かY軸方向に沿って支
持されている。このY軸シール22は、Ij−いに平行
な2木の丸軸材より構成され、これら丸軸材にはY軸ス
ライタ23かY軸方同に沿って移動Bf能に支持されて
いる。このY軸スラ・イタ23は、前記X軸スライグ1
6と同様に、送りハンドル24の操作により移動変位さ
れるとともに、−その移動変位量がY軸変位検出器25
iこより高精度検出され得るよう構成されている。
A vertical stand 21 is erected and fixed on the X slig 16, and Y-axis seals 22 are supported at both ends of the vertical stand 21 along the Y-axis direction. This Y-axis seal 22 is composed of two round shaft members parallel to Ij, and a Y-axis slider 23 is supported on these round shaft members so as to be movable along the Y-axis direction. This Y-axis sliver 23 is connected to the X-axis sliver 1.
6, the feed handle 24 is moved and displaced by the operation of the feed handle 24, and the amount of the movement is detected by the Y-axis displacement detector 25.
It is configured so that it can be detected with higher accuracy than i.

Y輔スライタ23にはZ軸シール31かZ軸方向に向け
られて装着され、このZ輔し−ル311−iな−いに平
行な一2本の丸軸材等よりなり、これら丸軸材の両端部
は連結部材32.33により!Lいに連結されている。
A Z-axis seal 31 is attached to the Y-slider 23 so as to face in the Z-axis direction. Both ends of the material are connected by connecting members 32 and 33! It is connected to L.

一方の連結部材32には、前記検知体13が取伺けられ
るとともに、Y軸スライグ23に取伺けられた送り/\
ンドル34の操作によりZ軸シール31が移動されて前
記検知体13がZ軸方向に移動されるようになっている
。この際のZ軸方向の移動量はY軸スライグ23jこ内
蔵されたX軸変位検出器35により検出されるよう。
One of the connecting members 32 has the sensing body 13 attached thereto, and the Y-axis slig 23 has the feed/\\
By operating the handle 34, the Z-axis seal 31 is moved, and the sensing body 13 is moved in the Z-axis direction. The amount of movement in the Z-axis direction at this time is detected by the X-axis displacement detector 35 built into the Y-axis sligh 23j.

になっている。また、各変位検出器1B、’25゜35
により検出された検知体13の3次元方向(X、Y、Z
軸方向)の検出信号はコート37を介してデータ処理装
置38に送られ、このデータ処理装置38において測定
値が表示されるようになっている。
It has become. In addition, each displacement detector 1B, '25°35
The three-dimensional direction (X, Y, Z
The detection signal (in the axial direction) is sent to the data processing device 38 via the coat 37, and the measured value is displayed on the data processing device 38.

前記移動機構12の検知体13が向けられた側には、垂
面な支持面41を有する被測定物支持台42か移動機構
12と夕、j向配設されている。前記支持面41は垂直
(鉛直)方向に向けられ[1一つXY方向の中面とされ
、更に、平坦に研磨什」−げされている。また、前記被
測定物支持台42は比較的rbい線状に形成されるとと
もに、その背面側には補強用のリブ43が形成されてい
る。
On the side of the moving mechanism 12 toward which the detection body 13 is directed, an object support stand 42 having a vertical support surface 41 is arranged in the direction opposite to the moving mechanism 12. The support surface 41 is oriented in the vertical direction and serves as the middle surface in the X and Y directions, and is further polished flat. Further, the object-to-be-measured support base 42 is formed into a relatively thick linear shape, and a reinforcing rib 43 is formed on the back side thereof.

また、被測定物支持台42は磁性材料より形成され、そ
の支持面41には、電磁石による或いは一水久唇イ・に
よする、またはこれらの組合わせによる磁力作用−を有
するal“1わゆるマグネットタイプの被測定物固定手
段44が適宜な配置状fミ;で複数磁力国定(磁力吸着
)されている。
The support base 42 for the object to be measured is made of a magnetic material, and its support surface 41 is equipped with an aluminum plate having a magnetic force effected by an electromagnet, by a single droplet, or by a combination thereof. A plurality of measuring object fixing means 44 of a loose magnet type are magnetically fixed (magnetically attracted) in an appropriate arrangement.

これら被A11l定物固定手段44は、Ijいに高さの
等しい例えば円柱体形状等であるとともに、−これら被
測定物固定手段44には偏平で薄肉な板金等の磁性月料
よりなる被4111定物45か磁力固定され?するよう
になっている。各被測定物固定手段44は、支持面41
1−1にiliに磁力により固定されているだけであり
、その配置位置は自由に選択される。なお、被測定物固
定手段44の磁力作用は、支持面41と被測定物固定手
段44Jの間においては強く、月つ、、被測定物固定手
段4,4と被測定物45との間においては比較的弱くさ
れており、従って、被測定物45を支持面411:から
取り外すに際しては、被測定物45を引張れば被測定物
45は被ff1ll定物固定手段44あ)ら取り外され
るが、各被測定物固定手段44は支持面41に磁力吸着
したまま支持面41」二に残されるようになっているこ
七が望ましい。
These fixed object fixing means 44 have the same height as Ij, and have a cylindrical shape, for example. Fixed item 45 or magnetically fixed? It is supposed to be done. Each measured object fixing means 44 has a support surface 41
1-1 is simply fixed to ili by magnetic force, and the arrangement position thereof can be freely selected. The magnetic force of the object fixing means 44 is strong between the support surface 41 and the object fixing means 44J, and is strong between the object fixing means 4, 4 and the object 45. is made relatively weak, and therefore, when removing the object to be measured 45 from the support surface 411, by pulling the object to be measured 45, the object to be measured 45 can be removed from the fixed object fixing means 44a). Preferably, each object-to-be-measured fixing means 44 is left on the support surface 41 while being magnetically attracted to the support surface 41.

前記被測定物45の適宜位置には、例えば被測定箇所と
しての丸穴46が形成されており、この丸穴46内に前
記検知体13の先端の接触子47が接触され得るように
なっている。
For example, a round hole 46 is formed at an appropriate position on the object 45 to be measured, and a contact 47 at the tip of the sensing body 13 can be brought into contact with the round hole 46. There is.

また、被4111定物45の一側縁および下端縁には夫
々複数の位置基準突起部材51が当接されている。位置
基準突起部材51は、被411定物45の一側縁および
下端縁の夫々に沿って複数所定間隔を隔てて並べられ、
且つ、支持面41J−にZ軸方向に沿って突設固定され
た段付きの円柱体よりなリ これら段イ+jきの円柱体
は、前記被測定物固定手段44と等しい高さに形成され
たノ′(さ部51Aと、この大径部51Aより突設され
た小径部51Bと、からなっている。これら位置基準突
起部材51の段部りに被測定物45が載置されるととも
に、小径部51Bの側面に被測定物45の一側縁および
ド端縁が夫々当接されて被測定物45の支持面41Fに
おける配置位置が規制されるようになっている。
Further, a plurality of position reference protrusions 51 are abutted on one side edge and the lower edge of the fixed object 45 of the cover 4111, respectively. A plurality of position reference protruding members 51 are arranged at predetermined intervals along each of one side edge and lower edge of the object 411 fixed object 45,
In addition, the stepped cylindrical body is fixed to the supporting surface 41J- in a protruding manner along the Z-axis direction. It consists of a ridge portion 51A and a small diameter portion 51B protruding from the large diameter portion 51A.The object to be measured 45 is placed on the stepped portion of the position reference projection member 51. , one side edge and one end edge of the object to be measured 45 are brought into contact with the side surface of the small diameter portion 51B, respectively, so that the arrangement position of the object to be measured 45 on the support surface 41F is regulated.

この際 前記被斂の位置基準突起部材51はその一部に
ついては取付ねし52により中・し軸部において支持面
41に固定され、他の一部については中・D軸位置から
偏在した偏心位置において取付ねし52を介して支持面
41上に固定され、この偏心位置において固定された位
置基準突起部材51を回転調整すれば被測定物45の基
準位置が(微)調整され得るように構成されている。
At this time, a part of the position reference protrusion member 51 to be deflected is fixed to the support surface 41 at the center/distance shaft part by a mounting screw 52, and the other part is fixed to the support surface 41 at the middle/D axis position. The reference position of the object to be measured 45 can be (finely) adjusted by rotating and adjusting the position reference projection member 51 which is fixed on the support surface 41 via the mounting screw 52 at this eccentric position. It is configured.

このような本実施例によれば、垂直方向(XY方向)に
向けられた支持面41上に被測定物45を垂直に固定し
て測定するものであり、また、支持面41や被測定物4
5を取り囲むコラム等がなく、且つ被測定物45に上方
側から覆い被さるような構造体もないため、全体−とじ
て構造が簡単であり、被測定物45に対して装置全体が
過大となることもなく、更には前記コラム等に邪魔され
て作業姿勢が制約されることもなく、測定箇所である丸
穴46等も容易に目視確認できるという効果がある。
According to this embodiment, the object to be measured 45 is vertically fixed on the support surface 41 oriented in the vertical direction (XY direction) and measured. 4
Since there is no column surrounding the device 5, and there is no structure that covers the object to be measured 45 from above, the overall structure is simple, and the entire device is too large for the object to be measured 45. Furthermore, the working posture is not restricted by the column or the like, and the round hole 46, etc., which is the measurement location, can be easily visually confirmed.

また、被測定物45が板金等の偏平で比較的面積の広い
場合の測定に特に好適である。
In addition, it is particularly suitable for measurement when the object to be measured 45 is flat and has a relatively large area, such as a sheet metal.

更に、被測定物固定手段44を磁力作用を有するよう構
成したため、被測定物固定手段44の配置位置を適宜自
由に変更し得るとともに、被測定物45の着脱作業も容
易であり、しがも、被測定物固定手段44により被測定
物45の移動機構12側、即ち検知体13が配置された
側の全体が露出されるため、検知体13による測定箇所
が制約されないとともに、この点からも被測定物45の
全体(測定箇所)を目視確認し易い。
Furthermore, since the device to be measured 44 is configured to have a magnetic effect, the arrangement position of the device to be measured 44 can be changed freely, and the work to attach and detach the device to be measured 45 is easy. Since the entirety of the moving mechanism 12 side of the measuring object 45, that is, the side on which the sensing body 13 is arranged, is exposed by the measuring object fixing means 44, the measurement location by the sensing body 13 is not restricted, and from this point of view, It is easy to visually confirm the entire object to be measured 45 (measurement location).

また、位置基準突起部材51により支持面41」−にお
ける被測定物45の位置合わせを正確に行なうことかで
き、その隙1位置基準突起部材51をその偏心位置に取
付けられた数句ねし52を中心として所定角度回転させ
ることにより基準位置の微調整をも容易に行なうこ□と
ができる。
Furthermore, the position reference protrusion member 51 allows accurate positioning of the object 45 on the support surface 41''. By rotating the reference position by a predetermined angle around , the reference position can be easily finely adjusted.

更に、被all定物固定手段44により被測定物45を
所定間隔だけ支持面41から離隔した状態で支持面41
上に固定しているため、例えば、丸穴46の内周面に接
触子47を当接−させて丸穴46の面角度を4111定
しようとする場合等にあっても、接触子47か支持面4
1に邪魔されて接触子47の側部(IIs!部)を充分
丸穴46に当接させることができなくなる等の恐れがな
い。
Further, the object to be measured 45 is fixed to the support surface 41 with the object to be measured 45 separated from the support surface 41 by a predetermined distance by the all object fixing means 44.
Because it is fixed at the top, for example, when trying to fix the surface angle of the round hole 46 by bringing the contact 47 into contact with the inner peripheral surface of the round hole 46, the contact 47 will Support surface 4
There is no fear that the side part (IIs! part) of the contactor 47 cannot be brought into sufficient contact with the round hole 46 due to obstruction by the contactor 47.

次に、前記以外の実施例につき説明するが、前記実施例
と同−若しくは近似する部分は同一符号を用い説明を省
略若しくは簡略にする。
Next, embodiments other than those described above will be described, and the same reference numerals will be used for parts that are the same as or similar to those of the embodiments described above, and the explanation will be omitted or simplified.

第2図には前記以外の実施例が示され1図中、鉛直台2
1は回転基台61を介□・してX軸スライダ16に回転
df能(Y軸方向に沿った回転軸を有する回転)に支持
されるとともに、X軸シール14全体が、移動レール6
2に沿ってZ軸方向に沿って移動可能に水平基台11上
に支持されている。
Fig. 2 shows an embodiment other than the above.
1 is rotatably supported by the X-axis slider 16 via a rotary base 61 (rotation with a rotation axis along the Y-axis direction), and the entire X-axis seal 14 is mounted on the moving rail 6.
2 and is supported on a horizontal base 11 so as to be movable along the Z-axis direction.

また、支持台42は、XY千曲面方向けでなく、YZ平
面方向にも設けられている。
Further, the support stand 42 is provided not only in the direction of the XY thousand curved plane but also in the direction of the YZ plane.

この第2図に示される実施例によれば、一方の支持台4
2上の被測定物45の測定作業中に、他方の支持台上に
被測定物45を着脱する作業を行うことができ、大量測
定を行う場合に効率的である。
According to the embodiment shown in FIG.
While measuring the object to be measured 45 on the second support base, the object to be measured 45 can be attached to and removed from the other support base, which is efficient when performing large-volume measurements.

なお、実施にあたり、支持台42の数やヴいの向きは前
述の場合に限られず種々のものであってもよく、更に、
支持台42が種々の方向や向きに移動可能であってもよ
い、また、前記検知体13は謂わゆるタッチ信号プロー
ブ等のように被測定物45に直接当接して検知信号を生
ずるものに限らず、レーザ光線の投射および反射波の受
信により4被測定物45を検知する非接触型のものであ
っても↓い。
In addition, in implementation, the number of support stands 42 and the orientation of the supports are not limited to the above-mentioned cases, and may be various.
The support base 42 may be movable in various directions and orientations, and the detection body 13 is limited to one that directly contacts the object to be measured 45 and generates a detection signal, such as a so-called touch signal probe. First, it may be a non-contact type that detects the four objects to be measured 45 by projecting a laser beam and receiving reflected waves.

また、各レール14,22.31は夫々互いに平行な2
本の丸軸材等よりなり、送りハンドルl7.24 、3
4の操作により検知体13を3次元方向に手動により送
るものとしたか、各レール14.22.31は必すしも
前述のような丸軸材に限られず、また、送り用の駆動モ
ータを用いで自動送りするものであってもよい。(j−
4L、11j記実施例によれば構造簡易にして安価に提
供できるといeう効果がある。
Moreover, each rail 14, 22.31 has two rails parallel to each other.
Made of round shaft material etc., feed handle l7.24, 3
The detection body 13 is manually fed in a three-dimensional direction by the operation in step 4, and each rail 14, 22, 31 is not necessarily limited to a round shaft material as described above, and a drive motor for feeding may be used. It may also be one that automatically feeds the paper depending on the use. (j-
According to the embodiments 4L and 11j, the structure can be simplified and provided at low cost.

また、各変位検出器18,25.35はロータリ式のエ
ンコータに限らず、直線状のメインスケールとインデッ
クススケールとを含んで構成される直線型のスライド式
のエンコータ等であってもよいし、更には、各スライダ
16.23に夫々x、y、z軸方向の夫々の移動量を表
示するタイヤノL= 、デジタル表示器等の表示装置か
格別に設けられる等していてもよい。
Further, each displacement detector 18, 25.35 is not limited to a rotary encoder, but may be a linear sliding encoder that includes a linear main scale and an index scale, or the like. Furthermore, each slider 16.23 may be specially provided with a display device such as a digital display for displaying the amount of movement in the x-, y-, and z-axis directions, respectively.

更に 支持面41の表面は必ずしも平坦に形成されてい
なくともよく1例えば、被測定物の形状に応した凹凸形
状とされていてもよい。また、リブ43も必ずしも必要
でないが、リブ43が設けられていれば被測定物支持台
42自体を薄く形成しても全体として充分な強度を持た
せることができる。また、支持面41をX軸方向に変位
可能に構成して、プラスチック等の軽量ケ体物(厚物)
の3次元測定に容易に適用できるようにしてもよく、こ
のように被測定物支持台42自体をZ軸方向に移動させ
ることにより、リブ43の着脱作業も一層容易なものと
させることができる。
Further, the surface of the support surface 41 does not necessarily have to be flat; for example, it may have an uneven shape corresponding to the shape of the object to be measured. Further, although the ribs 43 are not necessarily required, if the ribs 43 are provided, the object supporting base 42 itself can be made to be thin and have sufficient strength as a whole. In addition, the support surface 41 is configured to be able to be displaced in the X-axis direction, so that it can be
By moving the object support stand 42 itself in the Z-axis direction in this way, the work of attaching and detaching the rib 43 can be made easier. .

更にまた。被測定物45は非磁性体であってもよく、非
磁性体である場合には被測定物固定手段44と支持面4
1との間に被測定物45を挟持固定してもよいし、或い
はまた、被測定物固定手段44と、被測定物固定手段4
4とは別個に容易された磁石と、の間に非磁性体の被測
定物45を挟持させて被測定物固定手段44上に被測定
物45を固定することとしてもよい。また、被測定物支
持台42は必ずしも磁性体である必要はなく、被測定物
支持台42が非磁性体であり、この非磁性体の被測定物
支持台42に磁力作用を有する被測定物固定手段44を
ボルト止め固定して用いてもよいし、更には、被測定物
固定手段44自体も磁力作用奪有しないものであり、適
宜把持手段を或いはクランクねし止め手段とを用いる等
して磁性体或いは被磁性体の被測定物45を支持面41
上に固定してもよい。
Yet again. The object to be measured 45 may be a non-magnetic material, and if it is a non-magnetic material, the object to be measured 45 is fixed to the object fixing means 44 and the support surface 4.
1, or alternatively, the object to be measured 45 may be clamped and fixed between the object to be measured 45 and the object to be measured 45.
The object to be measured 45 may be fixed on the object-to-be-measured fixing means 44 by sandwiching the object to be measured 45 made of a non-magnetic material between a magnet prepared separately from the object-to-be-measured. Further, the object to be measured support 42 does not necessarily have to be made of a magnetic material, and the object to be measured 42 is made of a non-magnetic material, and the object to be measured 42 which is made of a non-magnetic material has a magnetic force. The fixing means 44 may be fixed with bolts, and furthermore, the object to be measured fixing means 44 itself does not take away the magnetic force, so it may be possible to use a gripping means or a crank fastening means as appropriate. The object to be measured 45, which is a magnetic material or a magnetic material, is placed on the support surface 41.
It may be fixed on top.

また、位置基準突起部材51にあっても前述のように一
部か取付ねし52により偏心位置にてねし止めされた円
柱体状のものに限らず、例えば、断面り字型の長尺なレ
ール材がX軸方向に沿って配置されている等してもよい
。更に、位置基準突起部材51は被測定物45の少なく
とも下端縁側に配置されていればよく、段付き円柱体に
限られない。
Furthermore, the position reference protrusion member 51 is not limited to a cylindrical body that is partly screwed at an eccentric position by the mounting screws 52 as described above; For example, rail materials may be arranged along the X-axis direction. Further, the position reference protrusion member 51 only needs to be disposed at least on the lower edge side of the object to be measured 45, and is not limited to a stepped cylindrical body.

また、Z軸シール31かY軸スライダ23に固戻的に取
千1けられた構造に相当する構造であってもよい。この
場合、検知体13の部分等だけを比較的短いストローク
範囲だけZ軸方向に移動変位し得るようにすればよい。
Alternatively, a structure corresponding to a structure in which the Z-axis seal 31 or the Y-axis slider 23 is fixedly attached may be used. In this case, it is sufficient to allow only a portion of the sensing body 13 to be moved in the Z-axis direction by a relatively short stroke range.

[発明の効果コ 」、述のように本発明によれば、被測定物の大きさにタ
イして装置全体が過大とならず、構造が簡単であり、測
定姿勢や設置場所等についての大きな制約を受けること
が少なく、特に、板金等の偏平で比較的面積の広い被測
定物の測定に好適な多次元測定機を提供することができ
る′。
[Effects of the Invention] As mentioned above, according to the present invention, the entire device does not become oversized due to the size of the object to be measured, the structure is simple, and there are no major problems with measurement posture, installation location, etc. It is possible to provide a multidimensional measuring machine that is less subject to restrictions and is particularly suitable for measuring flat and relatively large objects such as sheet metals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多次元測定機の一般的構成を示す斜視図
、第2図および第3図は夫々本発明に係る多次元測定機
の互いに異なる実施例の全体構成を示す刺視図である。 11・・・水平基台、12・・・移動機構、13・・・
検知体、14,22.31・・・レール、16.23・
・・スライダ、18,25.35・・・変位検出器、3
8・・・データ処理装置、41・・・支持面、42・・
・被測定物支持台、43・・リブ、44・・・被測定物
固定手段、45・・・被測定物、47・・・接触子、4
5・・・位置基準突起部材、52・・・取付ねし。
FIG. 1 is a perspective view showing the general configuration of a conventional multidimensional measuring machine, and FIGS. 2 and 3 are perspective views showing the overall configuration of different embodiments of the multidimensional measuring machine according to the present invention. be. 11...Horizontal base, 12...Movement mechanism, 13...
Sensing object, 14, 22.31...Rail, 16.23.
...Slider, 18, 25.35...Displacement detector, 3
8... Data processing device, 41... Support surface, 42...
・Measurement object support stand, 43...Rib, 44...Measurement object fixing means, 45...Measurement object, 47...Contactor, 4
5...Position reference projection member, 52...Mounting screw.

Claims (1)

【特許請求の範囲】 (1)水−12基台と、被11111疋物を検知する検
−知体を前記水平基台のヒ部側において三次元方向に移
動1’f * 4″、支持する移動機構と、検知体の移
動変位量を検出する変位検出器と、被測定物を支持する
垂直な支持面を有するとともに前記移動機構に対向配設
された被測定物支持台と、前記支持面に被測定物を固定
する被測定物固定手段と、か備えられていることを特徴
とする多次元測定機。 (2、特許請求の範囲第1項において、前記支持面には
被測定物の少なくとも下端縁側に当接して被測定物の支
持面1−における位置を規制する位置基準突起部材が突
設されていることを特徴とする多次元測定機。 (3)特許請求の範g@1項または第2項において、i
;ノ記固定手段は磁力作用を有するよう構成されている
ことを特徴とするや次元測定機。
[Claims] (1) A water base 12 and a detection body for detecting objects 11111 are supported by moving 1'f*4'' in a three-dimensional direction on the side of the horizontal base. a moving mechanism, a displacement detector that detects the amount of displacement of the sensing body, a workpiece support stand having a vertical support surface for supporting the workpiece and disposed opposite to the movement mechanism, and the support surface. A multidimensional measuring machine, characterized in that the support surface is provided with a measuring object fixing means for fixing the measuring object. A multi-dimensional measuring machine characterized by a position reference protruding member protruding from at least the lower edge of the object to regulate the position of the object to be measured on the support surface 1-. (3) Claim g@1 In the term or the second term, i
;Note: A dimension measuring machine, characterized in that the fixing means is configured to have a magnetic effect.
JP64584A 1984-01-06 1984-01-06 Multidimensional measuring machine Pending JPS60144601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP64584A JPS60144601A (en) 1984-01-06 1984-01-06 Multidimensional measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64584A JPS60144601A (en) 1984-01-06 1984-01-06 Multidimensional measuring machine

Publications (1)

Publication Number Publication Date
JPS60144601A true JPS60144601A (en) 1985-07-31

Family

ID=11479436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64584A Pending JPS60144601A (en) 1984-01-06 1984-01-06 Multidimensional measuring machine

Country Status (1)

Country Link
JP (1) JPS60144601A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132409U (en) * 1986-02-14 1987-08-21
JPS62163704U (en) * 1986-04-09 1987-10-17
JPS6363711U (en) * 1986-10-16 1988-04-27
EP0330552A2 (en) * 1988-02-23 1989-08-30 Renault Automation Coordinate-measuring machine
WO1991016594A1 (en) * 1990-04-25 1991-10-31 W. Schneeberger Ag Maschinenfabrik Roggwil Guide device with measurement unit
KR100820764B1 (en) 2007-04-02 2008-04-11 안종국 Inspection device for turbin blade
WO2021128811A1 (en) * 2019-12-23 2021-07-01 苏州舍勒智能科技有限公司 Test robot for performing three-coordinate tension and compression test and fatigue test

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132409U (en) * 1986-02-14 1987-08-21
JPS62163704U (en) * 1986-04-09 1987-10-17
JPS6363711U (en) * 1986-10-16 1988-04-27
EP0330552A2 (en) * 1988-02-23 1989-08-30 Renault Automation Coordinate-measuring machine
WO1991016594A1 (en) * 1990-04-25 1991-10-31 W. Schneeberger Ag Maschinenfabrik Roggwil Guide device with measurement unit
KR100820764B1 (en) 2007-04-02 2008-04-11 안종국 Inspection device for turbin blade
WO2021128811A1 (en) * 2019-12-23 2021-07-01 苏州舍勒智能科技有限公司 Test robot for performing three-coordinate tension and compression test and fatigue test

Similar Documents

Publication Publication Date Title
EP0789833B1 (en) Calibration system for coordinate measuring machine
US8650767B2 (en) Coordinates measuring head unit and coordinates measuring machine
CA1286382C (en) Method for calibrating a coordinate measuring machine and the like and system therefor
US7366637B2 (en) Form measuring instrument
CN108507466B (en) The method that three-dimensional precise information is obtained using two-dimentional line laser scanner
US20030069709A1 (en) Method for calibrating scanning probe and computer-readable medium therefor
KR20000010628A (en) Method and apparatus for measuring the thickness of an article at a plurality of points
JPH0439011B2 (en)
CA1336532C (en) Probe motion guiding device, position sensing apparatus and position sensing method
CA1042200A (en) Constant load probe system for coordinate measurement machines
JPS60144601A (en) Multidimensional measuring machine
JP2001183128A (en) Coordinate measuring instrument
JP2006118911A (en) Surface roughness/contour measuring instrument
CN210346580U (en) Flatness and straightness detection device
US6351313B1 (en) Device for detecting the position of two bodies
US7051449B2 (en) Coordinate measuring device
US20230136366A1 (en) Three-dimensional-measuring-apparatus inspection gauges, three-dimensional-measuring-apparatus inspection methods and three-dimensional measuring apparatuses
CN110864624A (en) One-machine dual-purpose measuring instrument
JPS62265520A (en) Three-dimensional measuring machine equipped with two detecting elements
JP3335074B2 (en) Method and apparatus for detecting grinding force calculation data in centerless grinding
JPS59208401A (en) Right-angle degree measuring device utilizing spherical bodies
CN1104765A (en) Stereo probe and method for measuring small dead hole and narrow slot
JPH0548087Y2 (en)
CN211373502U (en) One-machine dual-purpose measuring instrument
JPH07218207A (en) Surface shape measuring apparatus